JPH0862013A - Coriolis mass flowmeter - Google Patents

Coriolis mass flowmeter

Info

Publication number
JPH0862013A
JPH0862013A JP6200396A JP20039694A JPH0862013A JP H0862013 A JPH0862013 A JP H0862013A JP 6200396 A JP6200396 A JP 6200396A JP 20039694 A JP20039694 A JP 20039694A JP H0862013 A JPH0862013 A JP H0862013A
Authority
JP
Japan
Prior art keywords
signal
vibration
coriolis
flow rate
mass flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6200396A
Other languages
Japanese (ja)
Inventor
Norikazu Osawa
紀和 大沢
Hiroshi Owada
博 大和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP6200396A priority Critical patent/JPH0862013A/en
Publication of JPH0862013A publication Critical patent/JPH0862013A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE: To realize a highly accurate measurement regardless of the temperature variation or the like by contriving the connection method for lead wires to detect the difference and the sum of signals from a plurality of vibration detectors directly. CONSTITUTION: A sensor means 50 comprising two vibration detectors delivers a vibration speed difference signal 100 and a vibration speed sum signal 101, respectively, to amplifiers 7, 8 and the output of the amplifier 7 is connected with a synchronous rectification/integration operating means 9. With such connection of lead wires, a difference signal and a sum signal of the vibration speed of a tube are obtained from the means 50 wherein the difference signal 100 is composed of a Coriolis amplitude component and an exciting amplitude component. The difference signal 100 then undergoes synchronous rectification and integration at the means 9 using the sum signal 101 as a reference signal and outputted as a Coriolis component signal 102 from the means 9. Since the signal 102 is proportional to the mass flow rate, the mass flow rate can be determined based on the signal 102.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コリオリ質量流量計に
関し、特にコリオリ力の検出方法及び信号処理回路を改
良したコリオリ質量流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Coriolis mass flowmeter, and more particularly to a Coriolis mass flowmeter with improved Coriolis force detection method and signal processing circuit.

【0002】[0002]

【従来の技術】コリオリ質量流量計とは、被測定流体が
流れるチューブを振動させ、この際に生じるコリオリ力
を検出して被測定流体の質量流量を測定する装置であ
る。
2. Description of the Related Art A Coriolis mass flow meter is a device for vibrating a tube through which a fluid to be measured is vibrated and detecting the Coriolis force generated at this time to measure the mass flow rate of the fluid to be measured.

【0003】図5はこのような従来のコリオリ質量流量
計の基本概念を示す斜視図である。図5において1はU
字管のチューブ、2及び3はチューブ1の固定端、4は
加振器、5及び6は振動検出器である。
FIG. 5 is a perspective view showing the basic concept of such a conventional Coriolis mass flowmeter. In FIG. 5, 1 is U
The tubes 2 and 3 are fixed ends of the tube 1, 4 are vibrators, and 5 and 6 are vibration detectors.

【0004】チューブ1は固定端2及び3の部分で固定
され、チューブ1の中心部には加振器4が設けられる。
また、加振器4と固定端2との間及び加振器4と固定端
3との間にはそれぞれ振動検出器5及び6が設けられ
る。
The tube 1 is fixed at the fixed ends 2 and 3, and a vibrator 4 is provided at the center of the tube 1.
Further, vibration detectors 5 and 6 are provided between the vibrator 4 and the fixed end 2 and between the vibrator 4 and the fixed end 3, respectively.

【0005】ここで、図5に示す従来例の動作を図6を
用いて説明する。図6はチューブ1の振動モードを説明
する斜視図である。
The operation of the conventional example shown in FIG. 5 will be described with reference to FIG. FIG. 6 is a perspective view illustrating the vibration mode of the tube 1.

【0006】チューブ1の内部に被測定流体を流し、加
振器4により図5中”イ”及び”ロ”の方向に振動を印
加した場合、図6(A)に示すようにチューブ1は”M
1”〜”M3”のように振動する(曲げモード)。これ
は、チューブ1の中心部が振動の腹となる1次モード形
状で振動することを意味する。
When the fluid to be measured is flown inside the tube 1 and vibration is applied by the vibration exciter 4 in the directions of "a" and "b" in FIG. 5, the tube 1 is moved as shown in FIG. 6 (A). "M
It vibrates like 1 "to" M3 "(bending mode), which means that the central part of the tube 1 vibrates in a first-order mode shape which is an antinode of vibration.

【0007】このような振動はチューブ1の上流側及び
下流側について考えると固定端2及び3を中心とする回
転運動と見做すことができるので、この回転運動の角速
度を”ω”、被測定流体の質量流量を”Q”した場
合、”ω”と”Q”との積に比例したコリオリ力がチュ
ーブ1の各微小区間に生じる。
Considering the upstream side and the downstream side of the tube 1, such vibration can be regarded as a rotary motion centered on the fixed ends 2 and 3, so that the angular velocity of this rotary motion is "ω", When the mass flow rate of the measurement fluid is “Q”, Coriolis force proportional to the product of “ω” and “Q” is generated in each minute section of the tube 1.

【0008】このコリオリ力によってチューブ1は図6
(B)中”M4”〜”M6”に示すような振動をする
(ねじりモード)。この振動はチューブ1の中心部に対
して上流部と下流部とで振動方向が対象になっている。
This Coriolis force causes the tube 1 to move as shown in FIG.
(B) Vibrates as shown in "M4" to "M6" in the middle (torsion mode). This vibration is intended for the vibration direction in the upstream portion and the downstream portion with respect to the central portion of the tube 1.

【0009】従って、実際には上述の2種類の振動が重
畳された状態でチューブ1が振動することになる。振動
検出器5及び6ではこのような振動を検出し、信号処理
を行うことにより質量流量”Q”を得ている。
Therefore, the tube 1 actually vibrates in a state in which the above-mentioned two types of vibrations are superimposed. The vibration detectors 5 and 6 detect such vibrations and perform signal processing to obtain the mass flow rate "Q".

【0010】コリオリ力によるチューブ1の変形に基づ
き質量流量を求める信号処理方法としては、例えば、同
期整流及び積分による処理、振動検出器5及び6の出力
の位相差を用いる処理等がある。
As a signal processing method for obtaining the mass flow rate based on the deformation of the tube 1 due to the Coriolis force, there are, for example, processing by synchronous rectification and integration, processing using the phase difference between the outputs of the vibration detectors 5 and 6.

【0011】[0011]

【発明が解決しようとする課題】しかし、被測定流体の
平均流速が1m/secの場合でもコリオリ力によって
生じる振動振幅、即ち図6中の”M4”〜”M6”の振
動は、チューブ1に印加される振動振幅、即ち図6中
の”M1”〜”M3”と比較して、数100分の1程度
であり、発生する位相差も0.1°程度と小さい。
However, even when the average flow velocity of the fluid to be measured is 1 m / sec, the vibration amplitude generated by the Coriolis force, that is, the vibrations of "M4" to "M6" in FIG. Compared with the applied vibration amplitude, that is, “M1” to “M3” in FIG. 6, it is about several hundredths, and the generated phase difference is also small, about 0.1 °.

【0012】この結果、コリオリ振動成分の検出が困難
であると言った問題点があった。そこで、従来では演算
増幅器等で振動検出器5及び6の出力の差信号を得るこ
とにより、加振により生じる励振成分を除去し、コリオ
リ振動成分のみを処理して質量流量を得ていた。
As a result, there is a problem that it is difficult to detect the Coriolis vibration component. Therefore, conventionally, by obtaining the difference signal between the outputs of the vibration detectors 5 and 6 with an operational amplifier or the like, the excitation component generated by the vibration is removed, and only the Coriolis vibration component is processed to obtain the mass flow rate.

【0013】但し、この方法では電気的に差信号を得た
り、電気的に信号を増幅するため、温度変動等による影
響を受けやすく高精度の測定が困難であった。従って本
発明の目的は、温度変動等による影響を受けず高精度測
定が可能なコリオリ質量流量計を実現することにある。
However, since this method electrically obtains a difference signal and electrically amplifies the signal, it is easily affected by temperature fluctuations and the like, and high-precision measurement is difficult. Therefore, an object of the present invention is to realize a Coriolis mass flowmeter capable of highly accurate measurement without being affected by temperature fluctuations and the like.

【0014】[0014]

【課題を解決するための手段】このような目的を達成す
るために、本発明の第1では、被測定流体が流れる管を
振動させ、この際に生じるコリオリ力を検出して前記被
測定流体の質量流量を測定するコリオリ質量流量計にお
いて、前記管を加振する加振器と、2種類の導線を同一
のコイルボビンに巻いて前記管の振動振幅を検出する第
1及び第2の振動検出器から構成され、この2つの振動
検出器の出力の和信号及び差信号を出力するセンサ手段
と、このセンサ手段からの前記和信号に基づき前記加振
器に駆動信号を供給すると共に、前記差信号及び前記和
信号に基づき前記質量流量を求める信号処理回路とを備
えたことを特徴とするものである。
In order to achieve such an object, according to the first aspect of the present invention, a pipe through which a fluid to be measured flows is vibrated, and Coriolis force generated at this time is detected to detect the fluid to be measured. In a Coriolis mass flowmeter for measuring the mass flow rate of a pipe, a vibrator for exciting the pipe and first and second vibration detectors for winding two kinds of conductive wires around the same coil bobbin to detect the vibration amplitude of the pipe Means for outputting a sum signal and a difference signal of the outputs of the two vibration detectors, and a drive signal to the vibrator based on the sum signal from the sensor means, and the difference A signal processing circuit for determining the mass flow rate based on a signal and the sum signal.

【0015】本発明の第2では、本発明の第1に対して
センサ手段を構成する第1及び第2の振動検出器の設置
位置若しくは第1及び第2の振動検出器の各々の巻数を
異ならせたことを特徴とするものである。
In the second aspect of the present invention, the installation position of the first and second vibration detectors constituting the sensor means or the number of turns of each of the first and second vibration detectors is set to the first aspect of the present invention. The feature is that they are different.

【0016】[0016]

【作用】2つの振動検出器の差信号及び和信号を導線の
接続方法により直接的に検出して質量流量を得ることに
より、温度変動等による影響を受けず、高精度測定が可
能になる。
The difference signal and the sum signal of the two vibration detectors are directly detected by the connecting method of the lead wires to obtain the mass flow rate, and thus the high accuracy measurement can be performed without being affected by the temperature fluctuation and the like.

【0017】また、2つの振動検出器の各出力の大きさ
を異ならせることにより、温度変動等による影響を受け
ず、高精度測定が可能になる。
Further, by making the magnitudes of the outputs of the two vibration detectors different from each other, it is possible to perform highly accurate measurement without being affected by temperature fluctuations and the like.

【0018】[0018]

【実施例】以下本発明を図面を用いて詳細に説明する。
図1は本発明に係るコリオリ質量流量計の基本概念を示
す斜視図である。ここで、1〜4は図5と同一符号を付
してある。図1において5a及び6aは振動検出器であ
り、振動検出器5a及び6aはセンサ手段50を構成し
ている。但し、振動検出器5a及び6aは固定端2及び
3に対して対称な位置に設置されている。
The present invention will be described in detail below with reference to the drawings.
FIG. 1 is a perspective view showing the basic concept of a Coriolis mass flowmeter according to the present invention. Here, 1 to 4 are assigned the same reference numerals as those in FIG. In FIG. 1, 5a and 6a are vibration detectors, and the vibration detectors 5a and 6a constitute a sensor means 50. However, the vibration detectors 5a and 6a are installed symmetrically with respect to the fixed ends 2 and 3.

【0019】また、接続関係についても図5とほぼ同一
である。異なる点は振動検出器5a及び6aの構造であ
り、その構造は図2に示す通りである。ここで、図2は
センサ手段50を構成する振動検出器5a及び6aの導
線の接続関係を示す説明図である。
The connection relationship is almost the same as in FIG. The different point is the structure of the vibration detectors 5a and 6a, and the structure is as shown in FIG. Here, FIG. 2 is an explanatory view showing the connection relationship of the conductors of the vibration detectors 5a and 6a which constitute the sensor means 50.

【0020】すなわち、振動検出器5aは図2中”イ”
及び”ロ”の2つの導線が同一のコイルボビン(図示せ
ず。)に巻かれた構成であり、同様に振動検出器6aは
図2中”ハ”及び”ニ”の2つの導線が同一のコイルボ
ビン(図示せず。)に巻かれた構成となっている。
That is, the vibration detector 5a is "a" in FIG.
2 and "b" are wound around the same coil bobbin (not shown). Similarly, in the vibration detector 6a, the two wires "c" and "d" are the same in FIG. It is configured to be wound around a coil bobbin (not shown).

【0021】また、各導線の接続方法については導線”
イ”及び”ハ”はチューブ1の振動速度”Z1”及び”
Z2”が加算される方向で接続され、導線”ロ”及び”
ニ”はチューブ1の振動速度”Z1”から振動速度”Z
2”が減算される方向で接続される。すなわち、出力
端”ホ”には振動速度和”Z1+Z2”が出力され、一
方、出力端”ヘ”には振動速度差”Z1−Z2”が出力
される。
Regarding the connection method of each conductor,
"A" and "C" are the vibration speeds of tube 1, "Z1" and "
Z2 "is connected in the direction in which they are added, and the conductors" B "and"
D "is the vibration velocity" Z1 "of the tube 1 to the vibration velocity" Z "
2 "is connected in the direction of subtraction. That is, the vibration velocity sum" Z1 + Z2 "is output to the output end" e ", while the vibration velocity difference" Z1-Z2 "is output to the output end" f ". To be done.

【0022】また、図3は本発明に係るコリオリ質量流
量計の信号処理回路の第1の実施例を示す構成ブロック
図であり、4及び50は図1と同一符号を付してある。
図3において、7及び8は増幅器、9は同期整流/積分
演算手段、10は駆動回路、11は質量流量演算手段で
ある。また、100は振動速度差信号、101は振動速
度和信号、102はコリオリ成分信号、103は励振信
号、104は駆動信号、105は質量流量信号である。
FIG. 3 is a configuration block diagram showing a first embodiment of the signal processing circuit of the Coriolis mass flowmeter according to the present invention, and 4 and 50 are designated by the same reference numerals as in FIG.
In FIG. 3, 7 and 8 are amplifiers, 9 is a synchronous rectification / integration calculation means, 10 is a drive circuit, and 11 is a mass flow rate calculation means. Further, 100 is a vibration velocity difference signal, 101 is a vibration velocity sum signal, 102 is a Coriolis component signal, 103 is an excitation signal, 104 is a drive signal, and 105 is a mass flow rate signal.

【0023】センサ手段50からの振動速度差信号10
0及び振動速度和信号101は増幅器7及び8にそれぞ
れ接続され、増幅器7の出力は同期整流/積分演算手段
9に接続される。また、増幅器8の出力である励振信号
103は同期整流/積分演算手段9、駆動回路10及び
質量流量演算手段11にそれぞれ接続される。
Vibration velocity difference signal 10 from the sensor means 50
0 and the vibration velocity sum signal 101 are connected to the amplifiers 7 and 8, respectively, and the output of the amplifier 7 is connected to the synchronous rectification / integration calculation means 9. The excitation signal 103, which is the output of the amplifier 8, is connected to the synchronous rectification / integration calculation means 9, the drive circuit 10, and the mass flow rate calculation means 11, respectively.

【0024】同期整流/積分演算手段9の出力であるコ
リオリ成分信号102は質量流量演算手段11に接続さ
れ、質量流量演算手段11は質量流量信号105を出力
する。一方、駆動回路10の出力は駆動信号104とし
て加振器4に接続される。
The Coriolis component signal 102 which is the output of the synchronous rectification / integration calculation means 9 is connected to the mass flow rate calculation means 11, and the mass flow rate calculation means 11 outputs the mass flow rate signal 105. On the other hand, the output of the drive circuit 10 is connected to the vibrator 4 as the drive signal 104.

【0025】ここで、図3に示す信号処理回路の動作を
説明する。図1及び図2に示すチューブ1の振動速度
を”Z1”及び”Z2”を、 Z1=Asinθ+Ccosθ (1) Z2=A’sinθ+C’cosθ (2) とする。但し、”A”及び”A’”は加振器4により生
じる励振振幅成分であり、”C”及び”C’”はコリオ
リ力によって生じるコリオリ振幅成分である。
The operation of the signal processing circuit shown in FIG. 3 will be described. The vibration speeds of the tube 1 shown in FIGS. 1 and 2 are “Z1” and “Z2”, and Z1 = A sin θ + C cos θ (1) Z2 = A ′ sin θ + C ′ cos θ (2). However, "A" and "A '" are excitation amplitude components generated by the vibrator 4, and "C" and "C'" are Coriolis amplitude components generated by the Coriolis force.

【0026】図2のような導線の接続をとることによっ
て、センサ手段50からはチューブ1の振動速度の差信
号と和信号が得られ、式(1)及び(2)から、 Z1−Z2=(A−A’)sinθ+(C+C’)cosθ (3) Z1+Z2=(A+A’)sinθ+(C−C’)cosθ (4) となる。
By connecting the conductors as shown in FIG. 2, the difference signal and the sum signal of the vibration velocity of the tube 1 are obtained from the sensor means 50, and from the equations (1) and (2), Z1-Z2 = (A−A ′) sin θ + (C + C ′) cos θ (3) Z1 + Z2 = (A + A ′) sin θ + (CC ′) cos θ (4)

【0027】式(4)においてコリオリ振幅成分は励振
振幅成分よりも遙に小さいので、 Z1+Z2≒(A+A’)sinθ (5) と近似でき、振動速度和信号101からは励振振幅成分
のみの検出が可能になる。
Since the Coriolis amplitude component is much smaller than the excitation amplitude component in the equation (4), it can be approximated as Z1 + Z2≈ (A + A ') sin θ (5), and only the excitation amplitude component can be detected from the vibration velocity sum signal 101. It will be possible.

【0028】この振動速度和信号101は増幅器8を介
して励振信号103となり、駆動回路10は励振信号1
03を用いて駆動信号104を発生させ、また、励振信
号103は同期整流/積分演算手段9及び質量流量演算
手段11に対して基準信号等として供給される。
This vibration velocity sum signal 101 becomes an excitation signal 103 via the amplifier 8, and the drive circuit 10 makes the excitation signal 1
03 is used to generate the drive signal 104, and the excitation signal 103 is supplied to the synchronous rectification / integration calculation means 9 and the mass flow rate calculation means 11 as a reference signal or the like.

【0029】一方、理想的には”A=A’”であり、式
(3)から振動速度差信号100はコリオリ振幅成分の
みになるはずであるが、実際には”A≠A’”であり、
振動速度差信号100はコリオリ振幅成分と励振振幅成
分が混在した信号になる。
On the other hand, ideally "A = A '", and the vibration velocity difference signal 100 should be only the Coriolis amplitude component from the equation (3), but in reality "A ≠ A'". Yes,
The vibration velocity difference signal 100 is a signal in which the Coriolis amplitude component and the excitation amplitude component are mixed.

【0030】従って、同期整流/積分演算手段9で振動
速度和信号101を基準信号として振動速度差信号10
0の同期整流及び積分を行うことにより、振動速度差信
号100は、 ∫(Z1−Z2)dθ=∫{(A−A’)sinθ+(C+C’)cosθ}dθ =C+C’ (6) 但し、”∫”は”π/2+2nπ”〜”3π/2+2n
π”の区間を積分することを意味する。となる。
Therefore, the synchronous rectification / integration calculation means 9 uses the vibration velocity sum signal 101 as a reference signal and the vibration velocity difference signal 10
By performing synchronous rectification and integration of 0, the vibration speed difference signal 100 is ∫ (Z1-Z2) dθ = ∫ {(A−A ′) sinθ + (C + C ′) cosθ} dθ = C + C ′ (6) "∫" is "π / 2 + 2nπ" to "3π / 2 + 2n"
It means to integrate the interval of π ″.

【0031】式(6)よりコリオリ振幅成分”C+
C’”のみが得られ、コリオリ成分信号102として同
期整流/積分演算手段9から出力される。コリオリ成分
信号102は質量流量に比例するので、コリオリ成分信
号102を用いて質量流量を得ることができる。
From the equation (6), the Coriolis amplitude component "C +"
Only C ′ ″ is obtained and output as the Coriolis component signal 102 from the synchronous rectification / integration calculation means 9. Since the Coriolis component signal 102 is proportional to the mass flow rate, the Coriolis component signal 102 can be used to obtain the mass flow rate. it can.

【0032】但し、コリオリ成分信号102は励振振
幅、励振周波数及び温度等による補正が必要なので質量
流量演算手段11において当該補正がなされ質量流量信
号105として出力される。
However, since the Coriolis component signal 102 needs to be corrected by the excitation amplitude, the excitation frequency, the temperature, etc., the Coriolis component signal 102 is corrected by the mass flow rate calculation means 11 and output as the mass flow rate signal 105.

【0033】この結果、2つの振動検出器の差信号及び
和信号を導線の接続方法により直接的に検出することに
より、電気的に差信号及び和信号を得たりする必要がな
いので、従来例と比較して温度変動等による影響を受け
ず、また、差信号を直接的に検出することにより差信号
のコリオリ振幅成分の混入率が高くなり高精度測定が可
能になる。
As a result, since it is not necessary to electrically obtain the difference signal and the sum signal by directly detecting the difference signal and the sum signal of the two vibration detectors by the method of connecting the conductors, the conventional example. Compared with the above, it is not affected by temperature fluctuation and the like, and by directly detecting the difference signal, the mixing rate of the Coriolis amplitude component of the difference signal is increased, and highly accurate measurement becomes possible.

【0034】但し、式(3)は、 Z1−Z2={(A−A’)2+(C+C’)2}1/2 ×sin(θ+φ) (7) 但し、φ=tan-1{(C+C’)/(A−A’)}である。と
変形でき、センサ手段50やチューブ1の構造の微小な
非対称性により、コリオリ振幅成分と励振振幅成分との
比のバラツキが大きく製造時の調整が容易ではない。
[0034] However, Equation (3) is, Z1-Z2 = {(A -A ') 2 + (C + C') 2} 1/2 × sin (θ + φ) (7) where, φ = tan -1 {( C + C ') / (AA')}. Due to the minute asymmetry of the structure of the sensor means 50 and the tube 1, the ratio of the Coriolis amplitude component to the excitation amplitude component varies greatly and adjustment during manufacture is not easy.

【0035】さらに、”tanφ={(C+C’)/(A−
A’)}>1”の領域ではわずかな位相変化で”tanφ ”
が非線形的に変化する。この”tanφ ”が質量流量に比
例することから、位相差測定による質量流量の高精度測
定も困難である。
Furthermore, "tan φ = {(C + C ') / (A-
A ')}> 1 ”, the small phase change causes" tanφ "
Changes non-linearly. Since this "tanφ" is proportional to the mass flow rate, it is also difficult to measure the mass flow rate with high accuracy by phase difference measurement.

【0036】図4はこのような問題点を改善した本発明
に係るコリオリ質量流量計の信号処理回路の第2の実施
例を示す構成ブロック図であり、4,7,8,10,1
03及び104は図3と同一符号を付してある。図4に
おいて、12は位相差検出による質量流量演算手段、1
00aは振動速度差信号、101aは振動速度和信号、
106は出力信号、107は質量流量信号である。
FIG. 4 is a constitutional block diagram showing a second embodiment of the signal processing circuit of the Coriolis mass flowmeter according to the present invention, in which the above problems are improved, and is 4, 7, 8, 10, 1.
Reference numerals 03 and 104 are the same as those in FIG. In FIG. 4, reference numeral 12 is a mass flow rate calculation means by phase difference detection, 1
00a is a vibration velocity difference signal, 101a is a vibration velocity sum signal,
106 is an output signal and 107 is a mass flow rate signal.

【0037】また、50aは図2に示すようなセンサ手
段であり、基本的には図3に示すセンサ手段50と同様
であるが、図2中の導線”イ”及び”ロ”の巻数と導
線”ハ”及び”ニ”の巻数とが異なっている。
Further, 50a is a sensor means as shown in FIG. 2, which is basically the same as the sensor means 50 shown in FIG. 3, except that the number of turns of the conducting wires "a" and "b" in FIG. The number of turns of the conductors "c" and "d" is different.

【0038】センサ手段50aからの振動速度差信号1
00a及び振動速度和信号101aは増幅器7及び8に
それぞれ接続され、増幅器7の出力信号106は質量流
量演算手段12に接続される。また、増幅器8の出力で
ある励振信号103は駆動回路10及び質量流量演算手
段12にそれぞれ接続される。
Vibration velocity difference signal 1 from the sensor means 50a
00a and the vibration velocity sum signal 101a are connected to the amplifiers 7 and 8, respectively, and the output signal 106 of the amplifier 7 is connected to the mass flow rate calculation means 12. The excitation signal 103, which is the output of the amplifier 8, is connected to the drive circuit 10 and the mass flow rate calculation means 12, respectively.

【0039】質量流量演算手段12は質量流量信号10
7を出力し、駆動回路10の出力は駆動信号104とし
て加振器4に接続される。
The mass flow rate calculation means 12 uses the mass flow rate signal 10
7 is output, and the output of the drive circuit 10 is connected to the shaker 4 as the drive signal 104.

【0040】ここで、図4に示す信号処理回路の動作を
説明する。センサ手段50aを構成する導線”イ”及
び”ロ”の巻数は”n1”、導線”ハ”及び”ニ”の巻
数は”n2”であり、 n1>n2 (8) n1=r・n2 (9) という関係にある。
The operation of the signal processing circuit shown in FIG. 4 will be described. The number of turns of the conducting wires "a" and "b" constituting the sensor means 50a is "n1", the number of turns of the conducting wires "c" and "d" is "n2", and n1> n2 (8) n1 = r.n2 ( 9).

【0041】図1及び図2に示すチューブ1の振動速
度”Z1”及び”Z2”は前述の式(1)及び(2)で
あり、図2のような導線の接続をとることによって、セ
ンサ手段50aからはチューブ1の振動速度の差信号と
和信号が得られる。但し、前述の説明の式との区別を図
るため振動速度は”z1”及び”z2”と小文字で記載
する。
The vibration velocities "Z1" and "Z2" of the tube 1 shown in FIGS. 1 and 2 are expressed by the above-mentioned formulas (1) and (2), and by connecting the lead wires as shown in FIG. From the means 50a, a difference signal of the vibration velocity of the tube 1 and a sum signal are obtained. However, in order to distinguish it from the equation described above, the vibration speed is described as a small letter such as "z1" and "z2".

【0042】式(1)及び(2)を用いて、振動速度差
信号100a及び振動速度和信号101aは、 z1−z2=(A−rA)sinθ+(C+rC)cosθ ={(A−rA)2+(C+rC)2}1/2 ×sin(θ+φ) (10) 但し、φ=tan-1{(1+r)・C/(1−r)・A}である。 z1+z2=(A+rA)sinθ+(C−rC)cosθ (11) となる。
Using the equations (1) and (2), the vibration velocity difference signal 100a and the vibration velocity sum signal 101a are calculated as follows: z1-z2 = (A-rA) sinθ + (C + rC) cosθ = {(A-rA) 2 + (C + rC) 2 } 1/2 × sin (θ + φ) (10) where φ = tan −1 {(1 + r) · C / (1-r) · A}. z1 + z2 = (A + rA) sin θ + (C−rC) cos θ (11).

【0043】式(11)においてコリオリ振幅成分は励
振振幅成分よりも遙に小さいので、 z1+z2≒(A+rA)sinθ (12) と近似でき、振動速度和信号101aからは励振振幅成
分のみの検出が可能になる。
Since the Coriolis amplitude component is much smaller than the excitation amplitude component in equation (11), it can be approximated as z1 + z2≈ (A + rA) sin θ (12), and only the excitation amplitude component can be detected from the vibration velocity sum signal 101a. become.

【0044】この振動速度和信号101aは増幅器8を
介して出力信号103となり、駆動回路10は出力信号
103により駆動信号104を発生させ、また、出力信
号103は質量流量演算手段12に供給される。
This vibration velocity sum signal 101a becomes an output signal 103 via the amplifier 8, the drive circuit 10 generates a drive signal 104 by the output signal 103, and the output signal 103 is supplied to the mass flow rate calculating means 12. .

【0045】一方、振動速度差信号100aはコリオリ
振幅成分と励振振幅成分が混在した信号であり、質量流
量演算手段12は振動速度差信号100aの位相と振動
速度和信号101aの位相の差に基づき質量流量を求め
る。
On the other hand, the vibration velocity difference signal 100a is a signal in which the Coriolis amplitude component and the excitation amplitude component are mixed, and the mass flow rate calculation means 12 is based on the difference between the phase of the vibration velocity difference signal 100a and the phase of the vibration velocity sum signal 101a. Calculate the mass flow rate.

【0046】式(10)の”φ”に関し、 tanφ=r'・C/A (13) 但し、r'=(1+r)/(1−r)である。であり、”C
/A”は質量流量に比例することから、”tanφ ”は質
量流量に比例するので、質量流量演算手段12は位相を
検出して、この検出位相に基づき質量流量を得ている。
Regarding “φ” in the equation (10), tan φ = r ′ · C / A (13) where r ′ = (1 + r) / (1-r). And then "C
Since / A ”is proportional to the mass flow rate,“ tanφ ”is proportional to the mass flow rate, and therefore the mass flow rate calculation means 12 detects the phase and obtains the mass flow rate based on this detected phase.

【0047】この結果、2つの振動検出器5a及び6a
の各出力の大きさを異ならせてその差信号及び和信号を
得ることにより、電気的に差信号及び和信号を得たりす
る必要がないので、従来例と比較して温度変動等による
影響を受けず、また、差信号を直接的に検出することに
より差信号のコリオリ振幅成分の混入率が高くなり高精
度測定が可能になる。
As a result, the two vibration detectors 5a and 6a
Since it is not necessary to electrically obtain the difference signal and the sum signal by changing the magnitude of each output of the above to obtain the difference signal and the sum signal, it is possible to reduce the influence of temperature fluctuation and the like as compared with the conventional example. By not directly receiving the difference signal and directly detecting the difference signal, the mixing rate of the Coriolis amplitude component of the difference signal becomes high, and high-precision measurement becomes possible.

【0048】特に、導線”イ”〜”ニ”の巻数を異なら
せて2つの振動検出器5a及び6aの各出力の大きさを
異ならせることによって、式(10)の但書に示すよう
に位相差に対し巻数比に関連する係数が乗じられること
になり、この係数”r”を適当に調節することにより、 0.1<tanφ<1.0 (14) にすることができる。
In particular, by varying the number of turns of the conductors "a" to "d" to vary the magnitudes of the outputs of the two vibration detectors 5a and 6a, as shown in the proviso of equation (10). The phase difference is multiplied by a coefficient related to the turns ratio, and by appropriately adjusting this coefficient "r", 0.1 <tanφ <1.0 (14) can be obtained.

【0049】即ち、式(14)に示す範囲内では位相
差”φ”と質量流量に比例する”tanφ ”とが比較的線
形的に対応するので精度の良い測定が可能になる。
That is, within the range shown in the equation (14), the phase difference "φ" and "tanφ" proportional to the mass flow rate relatively linearly correspond to each other, so that accurate measurement can be performed.

【0050】さらに、式(14)に示す範囲内ではセン
サ手段50やチューブ1の構造の微小な非対称性でコリ
オリ振幅成分と励振振幅成分との比にある程度のバラツ
キがあっても、”tanφ ”は”(1+r)/(1−r)”で
支配的に決まるため”tanφ”のフルスケールの値のバ
ラツキは少なくなり製造時の調整も容易になる。
Further, within the range shown in the equation (14), even if there is some variation in the ratio between the Coriolis amplitude component and the excitation amplitude component due to the minute asymmetry of the structure of the sensor means 50 and the tube 1, "tanφ". Is dominantly determined by “(1 + r) / (1-r)”, the variation in the full scale value of “tan φ” is reduced and the adjustment at the time of manufacturing becomes easy.

【0051】また、導線”イ”〜”ニ”の巻数を異なら
せる代わりに振動検出器5a及び6aを固定端2及び3
に対して非対称な位置に設置することにより、同様の効
果、即ち、チューブ1の構造の微小な非対称性によるコ
リオリ振幅成分と励振振幅成分との比の変動を小さくす
ることができる。
Further, the vibration detectors 5a and 6a are fixed to the fixed ends 2 and 3 instead of changing the number of turns of the conductive wires "a" to "d".
The same effect, that is, the variation in the ratio between the Coriolis amplitude component and the excitation amplitude component due to the minute asymmetry of the structure of the tube 1 can be reduced by installing the asymmetrical position with respect to the above.

【0052】なお、図1及び図3に示すセンサ手段50
若しくは図4に示すセンサ手段50aの実施例では加振
器4でチューブ1を”曲げモード”で加振することによ
り、”ねじりモード”のコリオリ振動を発生させている
が、逆の場合も可能である。即ち、2つの加振器を用い
チューブ1を”ねじりモード”で加振することによ
り、”曲げモード”のコリオリ振動を発生させることも
可能である。
The sensor means 50 shown in FIGS. 1 and 3 is used.
Alternatively, in the embodiment of the sensor means 50a shown in FIG. 4, by vibrating the tube 1 in the "bending mode" by the vibration exciter 4, Coriolis vibrations in the "torsion mode" are generated, but the reverse case is also possible. Is. That is, it is possible to generate Coriolis vibration in the "bending mode" by vibrating the tube 1 in the "twisting mode" using two vibrators.

【0053】また、実施例ではチューブ1として1本の
U字管を用いた場合を示したが、振動するチューブの構
造はこれに限るわけではない。例えば、直管構造等でも
良く、また、2本の平行管等の複数本の管を用いる構造
であっても良い。
Further, in the embodiment, the case where one U-shaped tube is used as the tube 1 is shown, but the structure of the vibrating tube is not limited to this. For example, a straight pipe structure or the like may be used, or a structure using a plurality of pipes such as two parallel pipes may be used.

【0054】また、センサ手段50aの2つの出力信号
を図3に示す信号処理回路で処理することにより、質量
流量を得ることも可能である。
It is also possible to obtain the mass flow rate by processing the two output signals of the sensor means 50a by the signal processing circuit shown in FIG.

【0055】また、前述の説明ではセンサ手段50aを
構成する導線”イ”及び”ロ”の巻数は”n1”、導
線”ハ”及び”ニ”の巻数は”n2”としたが、導線”
イ”,”ロ”,”ハ”及び”ニ”の巻数を”na”,”
nb”,”nc”及び”nd”と互いに異なる巻数にし
ても良い。
In the above description, the number of turns of the conducting wires "a" and "b" constituting the sensor means 50a is "n1" and the number of turns of the conducting wires "c" and "d" is "n2".
The number of turns of "a", "b", "c" and "d" is "na", "
The number of turns may be different from nb "," nc ", and" nd ".

【0056】すなわち、前記各巻数の相互関係を、 nb=r・na nd=r・nc na=s・nc nb=s・nd (15) 但し、0<r<1、0<s<1である。とする。That is, the mutual relation of the numbers of turns is expressed as follows: nb = r.na nd = r.nc na = s.nc nb = s.nd (15) where 0 <r <1 and 0 <s <1 is there. And

【0057】この場合、振動速度差信号及び振動速度和
信号は、 z1'−z2'=(A−rA)sinθ+(C−rC)cosθ ={(A−rA)2+(C+rC)2}1/2 ×sin(θ+φ) (16) z1'+z2'=s・(A+rA)sinθ+s・(C−rC)cosθ ≒s・(A+rA)sinθ (17) となる。
[0057] In this case, the vibration speed difference signal and an oscillation speed sum signal, z1'-z2 '= (A -rA) sinθ + (C-rC) cosθ = {(A-rA) 2 + (C + rC) 2} 1 / 2 × sin (θ + φ) (16) z1 ′ + z2 ′ = s · (A + rA) sinθ + s · (C−rC) cosθ ≈s · (A + rA) sinθ (17).

【0058】式(14)及び(15)から振動速度差信
号及び振動速度和信号の振幅がほぼ同じになようよう
に”s”を設定することにより、初段増幅器である増幅
器7及び8は同じ利得の増幅器を用いることが可能にな
る。
From equations (14) and (15), by setting "s" so that the amplitudes of the vibration velocity difference signal and the vibration velocity sum signal are almost the same, the amplifiers 7 and 8 which are the first stage amplifiers are the same. It becomes possible to use a gain amplifier.

【0059】この結果、初段増幅器の利得の違いによる
温度の影響等を抑えることが可能になり、より高精度測
定が可能になる。
As a result, it is possible to suppress the influence of temperature and the like due to the difference in gain of the first-stage amplifier, and it becomes possible to perform more accurate measurement.

【0060】[0060]

【発明の効果】以上説明したことから明らかなように、
本発明によれば次のような効果がある。請求項1の発明
に関しては、2つの振動検出器の差信号及び和信号を導
線の接続方法により直接的に検出して質量流量を得るこ
とにより、温度変動等による影響を受けず、高精度測定
が可能なコリオリ質量流量計が実現できる。
As is apparent from the above description,
The present invention has the following effects. According to the first aspect of the invention, the difference signal and the sum signal of the two vibration detectors are directly detected by the method of connecting the conductors to obtain the mass flow rate, so that it is not affected by temperature fluctuations and the like and highly accurate measurement is performed. It is possible to realize a Coriolis mass flowmeter capable of

【0061】また、請求項2の発明に関しては、センサ
手段を構成する2つの振動検出器の設置位置若しくは2
つの振動検出器の各々の巻数を異ならせて、2つの振動
検出器の各出力の大きさを異ならせることにより、温度
変動等による影響を受けず、高精度測定が可能で、且
つ、質量流量のフルスケール時のセンサ手段のバラツキ
が小さくなり製造時の調整が容易なコリオリ質量流量計
が実現できる。
Further, according to the invention of claim 2, the installation positions of the two vibration detectors constituting the sensor means or the two vibration detectors are set.
By changing the number of turns of each of the two vibration detectors and the size of each output of the two vibration detectors, high-precision measurement is possible without being affected by temperature fluctuations, etc. The variation of the sensor means at full scale can be reduced, and a Coriolis mass flowmeter that can be easily adjusted during manufacturing can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るコリオリ質量流量計の基本概念を
示す斜視図である。
FIG. 1 is a perspective view showing the basic concept of a Coriolis mass flowmeter according to the present invention.

【図2】振動検出器の導線の接続関係を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing a connection relationship of conductors of a vibration detector.

【図3】本発明に係るコリオリ質量流量計の信号処理回
路の第1の実施例を示す構成ブロック図である。
FIG. 3 is a configuration block diagram showing a first embodiment of the signal processing circuit of the Coriolis mass flowmeter according to the present invention.

【図4】本発明に係るコリオリ質量流量計の信号処理回
路の第2の実施例を示す構成ブロック図である。
FIG. 4 is a configuration block diagram showing a second embodiment of the signal processing circuit of the Coriolis mass flowmeter according to the present invention.

【図5】従来のコリオリ質量流量計の基本概念を示す斜
視図である。
FIG. 5 is a perspective view showing the basic concept of a conventional Coriolis mass flowmeter.

【図6】チューブの振動モードを説明する斜視図であ
る。
FIG. 6 is a perspective view illustrating a vibration mode of a tube.

【符号の説明】[Explanation of symbols]

1 チューブ 2,3 固定端 4 加振器 5,5a,6,6a 振動検出器 7,8 増幅器 9 同期整流/積分演算手段 10 駆動回路 11,12 質量流量演算手段 50,50a センサ手段 100,100a 振動速度差信号 101,101a 振動速度和信号 102 コリオリ成分信号 103 励振信号 104 駆動信号 105,107 質量流量信号 106 出力信号 DESCRIPTION OF SYMBOLS 1 tube 2,3 fixed end 4 vibrator 5,5a, 6,6a vibration detector 7,8 amplifier 9 synchronous rectification / integral calculation means 10 drive circuit 11,12 mass flow rate calculation means 50,50a sensor means 100,100a Vibration velocity difference signal 101, 101a Vibration velocity sum signal 102 Coriolis component signal 103 Excitation signal 104 Drive signal 105, 107 Mass flow rate signal 106 Output signal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】被測定流体が流れる管を振動させ、この際
に生じるコリオリ力を検出して前記被測定流体の質量流
量を測定するコリオリ質量流量計において、 前記管を加振する加振器と、 2種類の導線を同一のコイルボビンに巻いて前記管の振
動振幅を検出する第1及び第2の振動検出器から構成さ
れ、この2つの振動検出器の出力の和信号及び差信号を
出力するセンサ手段と、 このセンサ手段からの前記和信号に基づき前記加振器に
駆動信号を供給すると共に、前記差信号及び前記和信号
に基づき前記質量流量を求める信号処理回路とを備えた
ことを特徴とするコリオリ質量流量計。
1. A Coriolis mass flowmeter for vibrating a pipe through which a fluid to be measured flows, and detecting the Coriolis force generated at this time to measure the mass flow rate of the fluid to be measured. And a first vibration detector and a second vibration detector that detect the vibration amplitude of the pipe by winding two kinds of conductors on the same coil bobbin, and output a sum signal and a difference signal of the outputs of the two vibration detectors. And a signal processing circuit that supplies a drive signal to the vibrator based on the sum signal from the sensor means and that determines the mass flow rate based on the difference signal and the sum signal. Characteristic Coriolis mass flowmeter.
【請求項2】センサ手段を構成する第1及び第2の振動
検出器の設置位置若しくは第1及び第2の振動検出器の
各々の巻数を異ならせたことを特徴とする特許請求の範
囲第1項記載のコリオリ質量流量計。
2. The position where the first and second vibration detectors constituting the sensor means are installed or the number of turns of each of the first and second vibration detectors is made different. The Coriolis mass flowmeter according to item 1.
JP6200396A 1994-08-25 1994-08-25 Coriolis mass flowmeter Pending JPH0862013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6200396A JPH0862013A (en) 1994-08-25 1994-08-25 Coriolis mass flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6200396A JPH0862013A (en) 1994-08-25 1994-08-25 Coriolis mass flowmeter

Publications (1)

Publication Number Publication Date
JPH0862013A true JPH0862013A (en) 1996-03-08

Family

ID=16423631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6200396A Pending JPH0862013A (en) 1994-08-25 1994-08-25 Coriolis mass flowmeter

Country Status (1)

Country Link
JP (1) JPH0862013A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009069144A (en) * 2007-09-10 2009-04-02 Berkin Bv Device and method for measuring coriolis-type mass flow having at least three sensor measuring sections

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009069144A (en) * 2007-09-10 2009-04-02 Berkin Bv Device and method for measuring coriolis-type mass flow having at least three sensor measuring sections

Similar Documents

Publication Publication Date Title
US5728952A (en) Vibration measuring instrument
US8695439B2 (en) Dual pick-off vibratory flowmeter
CA2378004C (en) Type identification for drive control of a coriolis flowmeter
US10209112B2 (en) Apparatus and method for detecting asymmetric flow in vibrating flowmeters
JPH0353131A (en) Mass flowmeter operating under coriolis principle
JP2850556B2 (en) Coriolis mass flowmeter
US7854176B2 (en) Method for determining the mass flow through a coriolis mass flowmeter
US9976890B2 (en) Vibrating flowmeter and related methods
JPH0862013A (en) Coriolis mass flowmeter
JP3200826B2 (en) Coriolis mass flowmeter
JPH0882541A (en) Coriolis mass flowmeter
JP3058094B2 (en) Mass flow meter
JPH0783718A (en) Coriolis mass flowmeter
JP2003227741A (en) Coriolis mass flowmeter
JPH08193864A (en) Coriolis mass flowmeter
JP3227691B2 (en) Coriolis mass flowmeter
JPH07286879A (en) Coriolis mass flowmeter
WO2023191763A1 (en) Flowmeter primary containment failure detection
JPH06137920A (en) Coriolis mass flowmeter
JPS63233328A (en) Mass flowmeter
JPH08278181A (en) Coriolis mass flow meter
JP2023513689A (en) Apparatus and associated method for applying temperature flow coefficients in vibratory flowmeters
JPH02206722A (en) Coriolis mass flowmeter
JPH06147948A (en) Coriolis mass flow meter
JP2000111380A (en) Coriolis-type mass flowmeter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050113

A131 Notification of reasons for refusal

Effective date: 20050125

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050629

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20050630

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20080715

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090715

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100715

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20120715

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20120715

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250