JPH0861217A - Constant pressurizing rotary engine - Google Patents

Constant pressurizing rotary engine

Info

Publication number
JPH0861217A
JPH0861217A JP23199194A JP23199194A JPH0861217A JP H0861217 A JPH0861217 A JP H0861217A JP 23199194 A JP23199194 A JP 23199194A JP 23199194 A JP23199194 A JP 23199194A JP H0861217 A JPH0861217 A JP H0861217A
Authority
JP
Japan
Prior art keywords
cylinder
thrust
output
output cylinder
cylinders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23199194A
Other languages
Japanese (ja)
Inventor
Shin Yoneda
伸 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP23199194A priority Critical patent/JPH0861217A/en
Publication of JPH0861217A publication Critical patent/JPH0861217A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hydraulic Motors (AREA)
  • Rotary Pumps (AREA)

Abstract

PURPOSE: To prevent generation of repulsion and opposite thrust in the case that one side of a cylinder is pressurized by cancelling normal thrust in the direction of a vane by means of opposite thrust generated on an arcuate surface of a rotor, and causing no motion. CONSTITUTION: In an oval output cylinder 2, cylinders 14, 16 are faced to each other and pressurized. Opposite thrusts applied in the direction of an arrow 19 are cancelled by each other accordingly, while normal thrust applied in the direction of an arrow 18 is effective alone, for generating rotational motion. Single side pressurizing is carried out in respect to discharge cylinders 3, 4. Cancelling is not generated between the thrusts in the direction of the arrows 18 and 19. Clockwise rotation is generated by the thrust of the output cylinder 2. Inner fluid is thus pushed out, and rotationally flowed into the output cylinder. Accordingly, the motion of the output cylinder 2 is enabled only by input of the pressure from a pump 6. As the fluid, one having a low compression ratio such as water or oil is effective.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の理用分野】本発明は、液圧流体機関に関する
ものである。省入力流体原動機の提供を目的とする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydraulic fluid engine. The purpose is to provide a power saving prime mover.

【0002】[0002]

【従来の技術】現在、市場において加圧圧力を主入力と
する流体機関は成立してはいません。
[Prior Art] Currently, there is no fluid engine in the market that mainly uses pressurized pressure.

【0003】[0003]

【発明が解決しようとする課題】吐出シリンダーの推進
必要流体の吐出において、反動力、逆推進力の発生を如
何に防止するかが長年の課題であった。
It has been a long-standing problem how to prevent the generation of reaction force and reverse propulsion force in the discharge of the fluid required for propelling the discharge cylinder.

【0004】[0004]

【課題を解決するための手段】楕円形外筒のベーン回転
シリンダーの対向配置としている気筒の片側のみを加圧
した場合、ローターの円弧面に発生する逆推進力によ
り、ベーン方向の正推進力は相殺されて運動を生起しな
いことを確認した点を特徴とします。従って反動力を発
生しない吐出シリンダーとしての使用が可能となりま
す。
[Means for Solving the Problems] When pressure is applied to only one side of a cylinder in which vane rotary cylinders having an elliptical outer cylinder are arranged to face each other, a positive thrust force in the vane direction is generated by a reverse thrust force generated on the arc surface of the rotor. Is characterized by the fact that it has been confirmed that it does not cause any movement by being offset. Therefore, it can be used as a discharge cylinder that does not generate reaction force.

【0005】更に、楕円形ベーン型出力シリンダーの回
転出力は、ローターを介して対向する気筒の同時加圧で
なければ運動を発生しない故に、図1の如く2個のベー
ン型吐出シリンダーを付設するか、図2の実施例の如く
1個の吐出シリンダーの場合は2回路の分割回流により
等加圧が可能となります。
Further, since the rotational output of the elliptical vane type output cylinder does not generate motion unless the cylinders facing each other are simultaneously pressed through the rotor, two vane type discharge cylinders are attached as shown in FIG. Or, in the case of a single discharge cylinder as in the embodiment of Fig. 2, equal pressure can be achieved by the divided circulation of two circuits.

【0006】[0006]

【作用】出力シリンダーにおける対向加圧においての運
動発生は、図1の19の示すローター円弧面に作用する
逆推進力が、相互に対向する故に相殺され、ベーンに働
く18の正推進力のみが有効となり、出力軸回転運動を
発生します。
The action generated by the opposed pressure in the output cylinder is canceled by the reverse propulsive forces acting on the rotor circular arc surface shown by 19 in FIG. 1 because they oppose each other, and only the 18 positive propulsive forces acting on the vanes are cancelled. It becomes valid and the output shaft rotation motion is generated.

【0007】図1の実施例においては出力軸が回転すれ
ば2個の吐出シリシダーベーンを回転させ内部流体を押
しだし、出力シリンダーえ回流します。従って、出力シ
リンダーは、ボンプよりの流体の流入を必要とせず、圧
力のみの入力において時計方向に180度の回転をしま
す。
In the embodiment shown in FIG. 1, when the output shaft rotates, the two discharge silicider vanes are rotated to push out the internal fluid and recirculate the output cylinder. Therefore, the output cylinder does not require the inflow of fluid from the pump, and rotates 180 degrees clockwise when only pressure is input.

【0008】出力シリンダーの図1の示す水平のベーン
の位置から移動して垂直位置付近に到達すれば、対向す
る両気筒は圧力流体で満杯となる故に運動は停止しま
す。故に加圧を停止し、減圧弁を作動させ内部流体全体
量の約5パーセントを外部に流失させます。
When the output cylinder moves from the horizontal vane position shown in FIG. 1 and reaches the vicinity of the vertical position, the two cylinders facing each other are filled with the pressure fluid, and thus the motion is stopped. Therefore, pressurization is stopped and the pressure reducing valve is activated to drain about 5% of the total internal fluid to the outside.

【0009】次に、ベーンが慣性等により図1の22の
角度付近に至れば滅圧を止め加圧弁をONにすることに
より再び180度の回転をします。図1の実施例の場
合、ベーンの垂直位置付近の推進力の消失を補うには
シリンダーの角度を替えた3個1組を軸直列か軸並列と
する合計6個のシリンダー構成が必要です。図2の実施
例の場合はシリンダー合計4個で可能です。
Next, when the vane reaches the angle of 22 in FIG. 1 due to inertia or the like, the decompression is stopped and the pressurizing valve is turned on to rotate 180 degrees again. In the case of the embodiment of FIG. 1, in order to compensate for the loss of propulsion near the vertical position of the vane
A total of 6 cylinders are required, with each set of 3 cylinders with different cylinder angles being in series or parallel. In the case of the embodiment shown in Fig. 2, a total of 4 cylinders is possible.

【0010】上記の説明の操作を半回転毎に繰り返して
回転運動を連続させます。以上が等加圧回転運動の発生
原理です。
The operation described above is repeated every half rotation to make the rotary motion continuous. The above is the principle of generation of equal pressure rotary motion.

【0011】[0011]

【実施例】図1の実施例は、同一構造故にベーンシリン
ダー3個の構成のみを示す動作説明図です。1の出力軸
に直列に、2の出力シリンダーと3、4の吐出シリンダ
ーを設けています。 図1の示す状態は9と10の加圧
回路により等加圧され90度の位置を時計方向に運動途
中の状況です。
[Embodiment] The embodiment of FIG. 1 is an operation explanation diagram showing only the structure of three vane cylinders because of the same structure. Two output cylinders and three and four discharge cylinders are installed in series with the one output shaft. The state shown in Fig. 1 is a state in which the pressure is equalized by the pressure circuits 9 and 10 and is moving in the clockwise direction at a position of 90 degrees.

【0012】2の楕円形出力シリンダーは、15と16
の気筒が対向加圧されている故に、19の方向に作用す
る逆推力は相互に打ち消し合い、18の方向に作用する
正推力のみが有効となり回転運動を発生します。
Two elliptical output cylinders have 15 and 16
Because the cylinders of No. 2 are counter-pressurized, the reverse thrusts acting in the direction of 19 cancel each other out, and only the positive thrusts acting in the direction of 18 become effective and a rotary motion is generated.

【0013】3と4の吐出シリンダーは共に片側加圧で
あり18と19の推力が打ち消し合い運動を発生せず、
単に出力シリンダーの推力により時計方向に回転しつつ
内部流体を押しだし、出力シリンダー気筒え回流しま
す。従って出力シリンダーの運動は、6のポンプよりの
入力を圧力のみで可能となります、然し減圧時において
5パーセントの流失があるので、起動時において5パー
セントの流体の瞬時入力は必要です。
Both the discharge cylinders 3 and 4 are pressurized on one side, and the thrusts 18 and 19 do not cancel each other out to generate a motion.
It simply pushes the internal fluid while rotating clockwise by the thrust of the output cylinder and circulates the output cylinder. Therefore, the movement of the output cylinder is possible only by inputting pressure from the 6th pump, but there is a 5% loss during depressurization, so an instantaneous input of 5% of fluid is required at startup.

【0014】尚、図面でわ7の加圧弁と8の減圧弁を独
立して表示していますが、回転軸に設けたカムに、カム
弁、電磁弁等により連動します。第1実施例の寸法は下
記の通りです。
Although the pressurizing valve (7) and the pressure reducing valve (8) are shown separately in the drawing, they are interlocked with the cam installed on the rotating shaft by a cam valve or solenoid valve. The dimensions of the first embodiment are as follows.

【0015】ローター直径 100センチ ベーンの最
大加圧面積200平方センチ 平均加圧面積100平方センチ 15、16の合計気筒容積 20リッター シリンダー6個の使用の場合、気筒容積のみが倍の40
リッターです。 加圧圧力30kg ベーン速度 秒速1メーター と
した場合。
Rotor diameter 100 cm Maximum pressure area 200 square centimeters of vanes Average pressure area 100 square centimeters Total cylinder volume 15 and 16 20 liters When using 6 cylinders, only the cylinder volume is doubled 40
It's a liter. Pressurized pressure 30kg Vane speed 1 meter / sec.

【0016】理論出力3000KG/Msec 入力としては、40リッターの5パーセント 2リッタ
ー秒が必要です。2リッター秒のポンプ容量は5KWで
す。
Theoretical output 3000 KG / Msec As an input, 5% of 40 liters and 2 liter seconds are required. The pump capacity for 2 liter seconds is 5 kW.

【0017】上記のデーターのしめす如く入出力を比較
して如何に省入力原動機であるかわ明らかです。理論出
力の計算式は、圧力とベーンの平均面積と速度に比例
し、入力流体量に逆比例します。尚、使用流体としては
水、油、等の圧縮率の低い流体が有効です。亦、吐出用
回転ベーンシリンダーと直進型出力シリンダーとを歯
車、クランク等を介して組み合わせた往復動機関の製造
も可能です。
By comparing the input and output as shown in the above data, it is clear how the power saving prime mover is. The theoretical output formula is proportional to the average area and velocity of the pressure and vanes and inversely proportional to the input fluid volume. A fluid with a low compression rate, such as water or oil, is effective. It is also possible to manufacture a reciprocating engine that combines a rotary vane cylinder for discharge and a linear output cylinder via gears, cranks, etc.

【0018】亦、吐出シリンダーの楕円形カーブを変更
し少量の有効推力を発生させる方式も可能です、亦、花
びら型外筒お使用し、多極対向方式の製造も可能です。
制作に当り加圧回路と回流回路の分離が必要です。亦、
出力軸、ローター内部等に回路を設ける方式も有効で
す、第1実施例では、シリンダー3個に対して4個の弁
を使用していますが2個でも可能です。
It is also possible to change the elliptical curve of the discharge cylinder to generate a small amount of effective thrust. Also, using a petal-shaped outer cylinder, it is also possible to manufacture a multi-pole opposed method.
It is necessary to separate the pressure circuit and circulation circuit for production. also,
It is also effective to provide a circuit inside the output shaft, rotor, etc. In the first embodiment, 4 valves are used for 3 cylinders, but 2 valves are also possible.

【0019】[0019]

【発明の効果】本発明は、省入力機関として大出力機関
の製造も簡単である故に船舶、車両等の推進機関として
適当であり、発電機の駆動原動機として有効であり、今
後のエネルギー問題に貢献する重要な発明です。
INDUSTRIAL APPLICABILITY The present invention is suitable as a propulsion engine for ships, vehicles, etc., because it is easy to manufacture a high-output engine as a power-saving input engine, is effective as a driving prime mover for a generator, and is effective for future energy problems It is an important invention that contributes.

【図面の簡単な説明】[Brief description of drawings]

【図1】 第1実施例の構造動作説明図です。FIG. 1 is a structural operation explanatory diagram of the first embodiment.

【図2】 第2実施例の構造動作説明図です。FIG. 2 is a structural operation explanatory diagram of the second embodiment.

【符号の説明】[Explanation of symbols]

1 出力軸 2 出力シリンダー 3 吐出シリンダー 4 吐出シリンダー 5 モーター 6 ポンプ 7 加圧弁 8 滅圧弁 9 加圧回路 10 加圧回路 11 減圧回流回路 12 減圧回流回路 13 加圧回流回路 14 加圧回流回路 15 出力気筒 16 出力気筒 17 ベーン 18 正推力の方向 19 逆推力の方向 20 回転方向 21 加圧停止減圧指令位置 22 加圧指令位置 23 吐出気筒 24 吐出気筒 25 回転方向 26 アキュムレーター 27 半回転毎切替弁 28 回転弁 29 半回転毎切替回路 1 Output Shaft 2 Output Cylinder 3 Discharge Cylinder 4 Discharge Cylinder 5 Motor 6 Pump 7 Pressurization Valve 8 Decompression Valve 9 Pressurization Circuit 10 Pressurization Circuit 11 Decompression Diversion Circuit 12 Decompression Diversion Circuit 13 Pressurization Diversion Circuit 14 Pressurization Diversion Circuit 15 Output Cylinder 16 Output cylinder 17 Vane 18 Direction of forward thrust 19 Direction of reverse thrust 20 Rotation direction 21 Pressurization stop Decompression command position 22 Pressurization command position 23 Discharge cylinder 24 Discharge cylinder 25 Rotation direction 26 Accumulator 27 Half rotation switch valve 28 Rotation valve 29 Half rotation switching circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項 1】 楕円形、花ひら型等のベーシ型シリン
ダーを使用し、片側の気筒のみを加圧して吐出シリンダ
ーとする。吐出シリンダーと出力シリンダー間に回流回
路を設け、等加圧により吐出シリンダー内部流体を出力
シリンダーえ回流させて推進力を発生させ、半回転毎
か、部分回転毎等において、減圧と加圧を繰り返すこと
により回転運動を連続させる如くした、加圧圧力を主入
力として成る等加圧回転機関。
1. A basic cylinder, such as an elliptical or flower-shaped cylinder, is used, and only one cylinder is pressurized to form a discharge cylinder. A circulation circuit is provided between the discharge cylinder and the output cylinder, and the fluid inside the discharge cylinder is circulated around the output cylinder by equal pressurization to generate propulsive force, and pressure reduction and pressurization are repeated every half rotation or every partial rotation. This is an equal pressure rotating engine that uses the pressure as the main input so that the rotary motion is made continuous.
JP23199194A 1994-08-22 1994-08-22 Constant pressurizing rotary engine Pending JPH0861217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23199194A JPH0861217A (en) 1994-08-22 1994-08-22 Constant pressurizing rotary engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23199194A JPH0861217A (en) 1994-08-22 1994-08-22 Constant pressurizing rotary engine

Publications (1)

Publication Number Publication Date
JPH0861217A true JPH0861217A (en) 1996-03-08

Family

ID=16932237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23199194A Pending JPH0861217A (en) 1994-08-22 1994-08-22 Constant pressurizing rotary engine

Country Status (1)

Country Link
JP (1) JPH0861217A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005315082A (en) * 2004-04-27 2005-11-10 Akihiro Obara Rotary fluid engine
WO2009078890A1 (en) * 2007-12-17 2009-06-25 James Michael Fichera Thrust generator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005315082A (en) * 2004-04-27 2005-11-10 Akihiro Obara Rotary fluid engine
JP4734488B2 (en) * 2004-04-27 2011-07-27 昭博 小原 Rotating fluid engine
WO2009078890A1 (en) * 2007-12-17 2009-06-25 James Michael Fichera Thrust generator
AU2008339048B2 (en) * 2007-12-17 2012-12-13 James Michael Fichera Thrust generator
KR101433251B1 (en) * 2007-12-17 2014-08-25 제임스 마이클 피체라 Thrust generator
US9038365B2 (en) 2007-12-17 2015-05-26 James Michael Fichera Thrust generator
EP2232067A4 (en) * 2007-12-17 2015-08-05 James Michael Fichera Thrust generator
RU2655889C2 (en) * 2007-12-17 2018-05-29 Джеймс Майкл ФИЧЕРА Thrust generator

Similar Documents

Publication Publication Date Title
CN1986332A (en) Directly driven volume controlled electro-hydraulic servo rotating-vane helm
JPH0861217A (en) Constant pressurizing rotary engine
CN110541868B (en) Engineering machinery slewing braking energy recovery system utilizing flywheel to store energy
CN100513775C (en) Dual-active blade type secondry component
JP2002188454A (en) Eccentric shaft pressurized rotational engine
JP2001525511A (en) Pendulum piston motor
RU2783579C1 (en) Method for fluid distribution in piston hydraulic machines
CN110143271A (en) Pump control hydraulic steering engine
JPH0571463A (en) Equivalent pressurizing differential rotation fluid motor
CN110107560A (en) Rotary blade type hydraulic steering gear
JPH09105303A (en) Equally pressing differential propulsion engine
JPS6225999Y2 (en)
JPH06147100A (en) Pressurizing engine for differential propulsion, etc.
JPH06137257A (en) Differential propulsive fluid prime mover
JPH06200862A (en) Principle of equal pressure type differential fluid engine
JPS61171883A (en) Gas liquid engine
RU2162972C2 (en) Inertial hydromechanical transmission
US3768935A (en) Continuously adjustable transmission
RU2065104C1 (en) Torque converter
JP2001132701A (en) Hydraulic driving device
US3298662A (en) Hydraulic device
JPH06173601A (en) Prime mover formed by using principle of differential round current engine
JPH07224603A (en) Differential opposed balance engine
JP2005321082A (en) Fluid pressure engine
JPH10299638A (en) Rotary engine driven by differential pressure