JPH0859710A - Method for suspension polymerization - Google Patents

Method for suspension polymerization

Info

Publication number
JPH0859710A
JPH0859710A JP22257994A JP22257994A JPH0859710A JP H0859710 A JPH0859710 A JP H0859710A JP 22257994 A JP22257994 A JP 22257994A JP 22257994 A JP22257994 A JP 22257994A JP H0859710 A JPH0859710 A JP H0859710A
Authority
JP
Japan
Prior art keywords
polymerization
polymer
suspension
dispersed phase
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22257994A
Other languages
Japanese (ja)
Other versions
JP2779772B2 (en
Inventor
Masafumi Kamiyama
雅文 上山
Masahiro Maeda
昌宏 前田
Takayuki Hamanaka
孝之 浜中
Katsuhiro Okugawa
克弘 奥川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP6222579A priority Critical patent/JP2779772B2/en
Publication of JPH0859710A publication Critical patent/JPH0859710A/en
Application granted granted Critical
Publication of JP2779772B2 publication Critical patent/JP2779772B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To provide a method for suspension polymerization by which a polymer having about 1-5μm particle diameter can readily be obtained with good productivity. CONSTITUTION: This method for suspension polymerization is to use a polymerizable monomer and an organic solvent having >=150 deg.C boiling point in an amount of 10-5000 pts.wt. based on 100 pts.wt. polymerizable monomer as a dispersed phase in the method for holding the dispersed phase and a continuous phase in each independent vessel, passing the phases through respective independent passages, feeding both at a controlled ratio to a granulator 5 once or twice or more, providing a suspension having polymerizable droplets of a desired size, leading the resultant suspension into a polymerization vessel, completing the polymerization and affording the polymer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は懸濁重合法により重合体
を製造する技術に関するものであり、更に詳しくは懸濁
重合法を用いて1〜5μmの粒子径を有する重合体を効
率よく生産できる製造技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for producing a polymer by a suspension polymerization method. More specifically, the suspension polymerization method is used to efficiently produce a polymer having a particle size of 1 to 5 .mu.m. It relates to possible manufacturing technology.

【0002】[0002]

【従来の技術】近年粒子自身の機能を利用する粒子工業
の重要性が高まりつつあるが、その応用分野として知ら
れている間隙保持剤、滑り性付与剤、機能性担体、表面
活性を有する単分散粒子、標準粒子、トナー、塗料の流
動性や、つや特性を制御する機能性充填剤等の用途の粒
子を重合法で得るには、現在のところ主として乳化重合
方法に頼っているのが現状である。さらに特殊な用途に
あっては、ソープフリー重合、分散重合、シード重合、
膨潤重合等も応用されている。しかしながら、これらの
重合法には幾つかの欠点がある。例えば、乳化剤等の無
視できない不純物の除去が大変困難であること、得られ
る粒子の粒子径に制限があること、極めてコストが高い
こと、製造法が煩雑で大量の生産に不向きなこと等の欠
点がある。また、狭い粒子径分布を有する粒子を得るに
は、主として乳化重合法が用いられているが、乳化重合
法では得られる粒子の粒子径は大きくてもたかだか1μ
m程度であり、それ以上の大きさの粒子を得ることは極
めて困難である。
2. Description of the Related Art In recent years, the importance of the particle industry, which utilizes the functions of particles themselves, has been increasing. At present, in order to obtain particles for use as dispersed particles, standard particles, toners, and functional fillers that control the fluidity and gloss properties of paints by a polymerization method, currently the method mainly relies on an emulsion polymerization method. Is. For more special applications, soap-free polymerization, dispersion polymerization, seed polymerization,
Swelling polymerization and the like are also applied. However, these polymerization methods have some drawbacks. For example, it is very difficult to remove non-negligible impurities such as emulsifiers, the particle size of the obtained particles is limited, the cost is extremely high, and the manufacturing method is complicated and unsuitable for mass production. There is. Emulsion polymerization is mainly used to obtain particles having a narrow particle size distribution, but the particle size obtained by emulsion polymerization is at most 1 μm.
It is about m, and it is extremely difficult to obtain particles with a size larger than m.

【0003】これに対して一般的な懸濁重合法では、得
られる製品が粒子状であるが、粒子径が不均一で、かつ
粒子径分布の広いものしか得られておらず、これが重合
物の機械的強度、耐薬品性、色相、透明性及び成型性等
の性能と重要な関係があるために改良が望まれていた。
すなわち懸濁重合では攪拌分散された液滴が様々な径を
有し、さらに、分散時に液滴は***と合一を繰り返すた
めに得られる粒子の粒子径分布は極めて広いものとな
り、特に粒子径分布の狭い単分散粒子状の粒子を得るこ
とは困難であると言われている。従って容易に均質な粒
子を得ることのできる懸濁重合技術の確立が、前記粒子
工業の分野における重要な課題として要望されていた。
On the other hand, in the general suspension polymerization method, the product obtained is in the form of particles, but only those having a nonuniform particle size and a wide particle size distribution are obtained. Since there is an important relation with the mechanical strength, chemical resistance, hue, transparency, moldability and other performances, improvement has been desired.
That is, in suspension polymerization, the droplets that are agitated and dispersed have various diameters, and the droplets repeatedly disintegrate and coalesce during dispersion, resulting in an extremely wide particle size distribution. It is said that it is difficult to obtain monodisperse particles having a narrow distribution. Therefore, establishment of a suspension polymerization technique capable of easily obtaining homogeneous particles has been demanded as an important subject in the field of the particle industry.

【0004】本発明者らは先に上記問題を容易に解決で
きる新たな製造法を見いだした(特開平3−43402
号参照)。即ち、分散相(単量体組成物相)と連続相と
を各々独立した槽に保持し、それらの槽より、分散相及
び連続相を、それぞれ独立した経路を通して、同時に連
続して供給できる装置により、所望の大きさの液滴を持
つ懸濁液を得ることのできる造粒機へ1回ないし2回以
上供給、通過させ、しかる後重合槽中に導いて重合を完
結させて重合体を得る懸濁重合法である。この方法は分
散のための剪断力発生場に被分散液が直接供給される構
造であって、被分散液が剪断力場を離脱するとき必ずそ
の剪断力場を通過せしめるようにした懸濁重合法であ
り、かかる方法により粒子径分布の狭い所望の粒子径を
有する粒子を安定して得ることができた。しかしなが
ら、上記の如き懸濁重合法においては、1〜5μm程度
の微小重合体を得ようとする場合は、分散相の供給量を
少なくし、連続相の供給量を多くして造粒機へ供給しな
ければならず、重合性単量体の供給量が少ないために大
量の重合体を得ようとする場合は製造時間を長時間必要
とし、単位時間あたりの生産性が悪いという問題を有し
ていた。
The present inventors have previously found a new manufacturing method that can easily solve the above problem (Japanese Patent Laid-Open No. 43402/1993).
No.). That is, an apparatus that holds the dispersed phase (monomer composition phase) and the continuous phase in independent tanks, and can simultaneously and continuously supply the dispersed phase and the continuous phase through independent paths from the tanks. According to the above method, the suspension is supplied once or twice or more to a granulator capable of obtaining a suspension having a desired size of droplets, and then passed through the granulator, and then introduced into a polymerization tank to complete the polymerization, thereby obtaining a polymer. It is a suspension polymerization method to obtain. This method has a structure in which the liquid to be dispersed is directly supplied to the shearing force generation field for dispersion, and when the liquid to be dispersed leaves the shearing force field, the suspension load must always pass through the shearing force field. This is a legal method, and particles having a desired particle size with a narrow particle size distribution could be stably obtained by such a method. However, in the suspension polymerization method as described above, in order to obtain a fine polymer of about 1 to 5 μm, the amount of the dispersed phase is reduced and the amount of the continuous phase is increased to the granulator. In order to obtain a large amount of polymer because the amount of the polymerizable monomer to be supplied is small, there is a problem that the production time is long and the productivity per unit time is poor. Was.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、1〜
5μm程度の粒子径をもつ重合体を生産性よく容易に得
ることができる懸濁重合法を提供することにある。
The object of the present invention is to
It is an object of the present invention to provide a suspension polymerization method capable of easily obtaining a polymer having a particle diameter of about 5 μm with high productivity.

【0006】[0006]

【課題を解決するための手段】本発明は、分散相と連続
相とを各々独立した槽に保持し、それぞれ独立した経路
を通して、両者を制御された比率で1回ないし2回以上
造粒機に供給して所望の大きさの重合性液滴を有する懸
濁液を得て、しかる後該懸濁液を重合槽中に導いて重合
を完結させて重合体を得る懸濁重合法において、分散相
として、重合性単量体と、該重合性単量体100重量部
に対して10〜5000重量部の沸点150℃以下の有
機溶媒を用いることを特徴とする懸濁重合法である。
DISCLOSURE OF THE INVENTION According to the present invention, the dispersed phase and the continuous phase are held in independent tanks, respectively, and both are passed through independent paths, at a controlled ratio, once or twice or more. To obtain a suspension having polymerizable droplets of a desired size, and then introducing the suspension into a polymerization tank to complete the polymerization to obtain a polymer. The suspension polymerization method is characterized in that a polymerizable monomer and an organic solvent having a boiling point of 150 ° C. or less of 10 to 5000 parts by weight with respect to 100 parts by weight of the polymerizable monomer are used as a dispersed phase.

【0007】まず本発明の懸濁重合法を実施するための
装置の一例について図面を参照しつつ説明する。図1に
示すように、連続相をいれた連続相槽1と分散相をいれ
た凝縮機6を備えた分散相槽2とをそれぞれ定量ポンプ
4、4を介して造粒機5に一定比率で同時に導入するよ
うにしてあり、ここで剪断力を与えて懸濁液としてこの
液滴のサイズをある範囲として排出し、凝縮機6を備え
た重合槽3に導き、この重合槽3の周囲に設けられてい
る加熱用ジャケット7により必要な加熱をして、重合反
応を完結させ、粒子径が小さく、粒度分布の揃った重合
体が得られる。なお、造粒機5には、分散相および連続
相を1回ないし2回以上供給するよう設けてもよいし、
造粒機5を複数設けて分散相および連続相を複数の分散
機に供給するようにしてもよい。本発明では上記の分散
相に重合性単量体と該重合性単量体100重量部に対し
て10〜5000重量部の沸点150℃以下の有機溶媒
の混合物を用いることを特徴とする。かかる分散相を連
続相中に懸濁させたとき、水中に生ずる分散相液滴は、
重合して高分子となりうる単量体と、重合に全く関与し
ない有機溶媒とで構成される。そして、重合を目的とす
る分散相を攪拌加熱すると液滴中に含まれる有機溶媒は
重合し得ないので液滴中より蒸発し、あるいはまた連続
相中に溶出することにより液滴中より除去される。この
とき、液滴中における有機溶媒が占有していた領域が消
失するので、液滴は収縮し、重合完結後には1〜5μm
程度の微小な粒子径をもつ重合体を得ることができる。
First, an example of an apparatus for performing the suspension polymerization method of the present invention will be described with reference to the drawings. As shown in FIG. 1, a continuous phase tank 1 containing a continuous phase and a dispersion phase tank 2 having a condenser 6 containing a dispersed phase are provided to a granulator 5 at a constant ratio via metering pumps 4 and 4, respectively. At the same time, a shearing force is applied to discharge the droplets as a suspension in a certain size range, and the droplets are guided to a polymerization tank 3 equipped with a condenser 6, and the circumference of the polymerization tank 3 is reduced. Necessary heating is performed by the heating jacket 7 provided in the above to complete the polymerization reaction, and a polymer having a small particle size and a uniform particle size distribution can be obtained. The granulator 5 may be provided so as to supply the dispersed phase and the continuous phase once or twice or more,
A plurality of granulators 5 may be provided to supply the dispersed phase and the continuous phase to the plurality of dispersers. The present invention is characterized in that a mixture of a polymerizable monomer and an organic solvent having a boiling point of 150 ° C. or less, which is 10 to 5000 parts by weight with respect to 100 parts by weight of the polymerizable monomer, is used in the dispersed phase. When such a dispersed phase is suspended in a continuous phase, the dispersed phase droplets produced in water are
It is composed of a monomer that can be polymerized into a polymer and an organic solvent that does not participate in the polymerization at all. When the dispersed phase for the purpose of polymerization is stirred and heated, the organic solvent contained in the droplets cannot be polymerized, so it is evaporated from the droplets, or it is eluted from the droplets by elution into the continuous phase and removed from the droplets. It At this time, since the region occupied by the organic solvent in the droplet disappears, the droplet shrinks, and 1 to 5 μm after the completion of the polymerization.
It is possible to obtain a polymer having a fine particle size.

【0008】本発明を構成する重合性単量体としては、
スチレン、o−メチルスチレン、m−メチルスチレン、
p−メチルスチレン、p−メトキシスチレン、p−フェ
ニルスチレン、p−クロルスチレン、3、4−ジクロル
スチレン、p−エチルスチレン、2、4−ジメチルスチ
レン、p−n−ブチルスチレン、p−tert−ブチル
スチレン、p−n−ヘキシルスチレン、p−n−オクチ
ルスチレン、p−n−ノニルスチレン、p−n−デシル
スチレン等のスチレン及びその誘導体;エチレン、プロ
ピレン、ブチレン、イソブチレン等のエチレン不飽和モ
ノオレフィン類;塩化ビニル、塩化ビニリデン、臭化ビ
ニル、フッ化ビニル等のハロゲン化ビニル類;酢酸ビニ
ル、プロピオン酸ビニル、ベンゾエ酸ビニル等の有機酸
ビニルエステル類;メタクリル酸、メタクリル酸メチ
ル、メタクリル酸エチル、メタクリル酸プロピル、メタ
クリル酸n−ブチル、メタクリル酸n−オクチル、メタ
クリル酸ドデシル、メタクリル酸2−エチルヘキシル、
メタクリル酸ステアリル、メタクリル酸フェニル、メタ
クリル酸ジメチルアミノエチル、メタクリル酸ジエチル
アミノエチル等のメタクリル酸及びその誘導体;アクリ
ル酸、アクリル酸メチル、アクリル酸エチル、アクリル
酸n−ブチル、アクリル酸イソブチル、アクリル酸プロ
ピル、アクリル酸n−オクチル、アクリル酸ドデシル、
アクリル酸2−エチルヘキシル、アクリル酸ステアリ
ル、アクリル酸2−クロルエチル、アクリル酸フェニル
等のアクリル酸及びその誘導体;ビニルメチルエーテ
ル、ビニルエチルエーテル、ビニルイソブチルエーテル
等のビニルエーテル類;ビニルメチルケトン、ビニルヘ
キシルケトン、ビニルイソプロペニルケトン等のビニル
ケトン類;N−ビニルピロール、N−ビニルカルバゾー
ル、N−ビニルインドール、N−ビニルピロリドン等の
N−ビニル化合物;ビニルナフフタリン類;アクリロニ
トリル、メタクリロニトリル、アクリルアミド等が挙げ
られる。
As the polymerizable monomer constituting the present invention,
Styrene, o-methylstyrene, m-methylstyrene,
p-methylstyrene, p-methoxystyrene, p-phenylstyrene, p-chlorostyrene, 3,4-dichlorostyrene, p-ethylstyrene, 2,4-dimethylstyrene, pn-butylstyrene, p-tert. -Styrene and its derivatives such as butyl styrene, pn-hexyl styrene, pn-octyl styrene, pn-nonyl styrene and pn-decyl styrene; ethylene unsaturated such as ethylene, propylene, butylene and isobutylene Mono-olefins; vinyl halides such as vinyl chloride, vinylidene chloride, vinyl bromide, vinyl fluoride, etc .; organic acid vinyl esters such as vinyl acetate, vinyl propionate, vinyl benzoate; methacrylic acid, methyl methacrylate, methacryl Ethyl acid, propyl methacrylate, n-butyl methacrylate Methacrylic acid n- octyl, dodecyl methacrylate, 2-ethylhexyl methacrylate,
Methacrylic acid and its derivatives such as stearyl methacrylate, phenyl methacrylate, dimethylaminoethyl methacrylate and diethylaminoethyl methacrylate; acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, propyl acrylate. , N-octyl acrylate, dodecyl acrylate,
Acrylic acid and its derivatives such as 2-ethylhexyl acrylate, stearyl acrylate, 2-chloroethyl acrylate, phenyl acrylate; vinyl ethers such as vinyl methyl ether, vinyl ethyl ether, vinyl isobutyl ether; vinyl methyl ketone, vinyl hexyl ketone , Vinyl isopropenyl ketone, and other vinyl ketones; N-vinyl pyrrole, N-vinyl carbazole, N-vinyl indole, N-vinyl pyrrolidone, and other N-vinyl compounds; vinyl naphthalines; acrylonitrile, methacrylonitrile, acrylamide, and the like. Can be mentioned.

【0009】本発明を構成する有機溶媒としては、沸点
が150℃以下であればその組成構造に特に制限はなく
使用でき、例えば、メタノール、メチルアルコール、エ
チルアルコール、ブチルアルコール、テトラヒドロフラ
ン、アセトン、ベンゼン、トルエン、メチルエチルケト
ン等が使用可能である。なお、該有機溶媒の沸点は15
0℃以下であることが必要であるが好ましくは100℃
以下のものである。沸点が150℃より高い有機溶媒で
は粒子中から有機溶媒が除去するのが困難なため微小な
粒径の高分子微粒子が得られないか、あるいは得られた
高分子微粒子中に液体成分が残留する。有機溶媒は、重
合性単量体100重量部に対して10〜5000重量部
の割合で混合され、好ましくは50〜2000重量部で
ある。有機溶媒の割合が10重量部より少ないと微小な
粒径の重合体が得られなく、5000重量部より多いと
重合反応が阻害され重合体が得られにくい。本発明を構
成する分散相には重合開始剤を配合してもよい。該重合
開始剤としては、重合性単量体に可溶であることが好ま
しく、このような重合開始剤としては、N,N’−アゾ
ビスイソブチロニトリル、2,2′−アゾビスイソブチ
ロニトリル、2,2′−アゾビス−(2,4−ジメチル
バレロニトリル)、2,2′−アゾビス−4−メトキシ
−2,4−ジメチルバレロニトリル、その他のアゾ系ま
たはジアゾ系重合開始剤;ベンゾイルパーオキサイド、
メチルエチルケトンパーオキサイド、イソプロピルパー
オキシカーボネート、その他の過酸化物系重合開始剤等
が挙げられる。また、分散相には染料や顔料等の着色剤
を溶解あるいは分散させた後、重合性単量体を重合し、
着色性の高分子微粒子を得ることもできる。染料や顔料
としては、例えば、カーボンブラック、鉄黒、ローズベ
ンガル、ベンジジンイエロー、キナクリドン、ローダミ
ンB、フタロシアニンおよびこれらの混合物等が挙げら
れる。
As the organic solvent constituting the present invention, the composition structure thereof can be used without particular limitation as long as it has a boiling point of 150 ° C. or lower, and examples thereof include methanol, methyl alcohol, ethyl alcohol, butyl alcohol, tetrahydrofuran, acetone and benzene. , Toluene, methyl ethyl ketone, etc. can be used. The boiling point of the organic solvent is 15
It is necessary to be 0 ° C or lower, preferably 100 ° C
It is as follows. With an organic solvent having a boiling point higher than 150 ° C., it is difficult to remove the organic solvent from the particles, so that it is not possible to obtain fine polymer particles having a fine particle size, or the liquid component remains in the obtained fine polymer particles. . The organic solvent is mixed in a ratio of 10 to 5000 parts by weight, preferably 50 to 2000 parts by weight, based on 100 parts by weight of the polymerizable monomer. If the proportion of the organic solvent is less than 10 parts by weight, a polymer having a fine particle diameter cannot be obtained, and if it exceeds 5,000 parts by weight, the polymerization reaction is inhibited and the polymer is difficult to obtain. A polymerization initiator may be added to the dispersed phase constituting the present invention. The polymerization initiator is preferably soluble in a polymerizable monomer, and examples of such a polymerization initiator include N, N'-azobisisobutyronitrile and 2,2'-azobisiso Butyronitrile, 2,2'-azobis- (2,4-dimethylvaleronitrile), 2,2'-azobis-4-methoxy-2,4-dimethylvaleronitrile, and other azo or diazo polymerization initiators Benzoyl peroxide,
Examples thereof include methyl ethyl ketone peroxide, isopropyl peroxy carbonate, and other peroxide type polymerization initiators. Further, after dissolving or dispersing a colorant such as a dye or a pigment in the dispersed phase, a polymerizable monomer is polymerized,
It is also possible to obtain colored polymer particles. Examples of dyes and pigments include carbon black, iron black, rose bengal, benzidine yellow, quinacridone, rhodamine B, phthalocyanine and mixtures thereof.

【0010】本発明においては、分散相と連続相とを各
々独立した槽に保持し、それぞれ独立した経路を通し
て、両者を制御された比率で1回ないし2回以上造粒機
に供給して所望の大きさの重合性液滴を有する懸濁液を
得て、しかる後該懸濁液を重合槽中に導いて懸濁重合に
付されるが、懸濁重合反応は、通常、重合温度50℃以
上でおこなわれ、重合開始剤の分解温度を考慮して温度
を設定する。設定温度が高すぎると、重合開始剤の急激
な分解が生じ、分子量などに影響を与えるため好ましく
ない。分散相と連続相との造粒機への供給量比は、1:
1〜1:10が好ましく、さらに好ましくは1:2〜
1:10である。分散相1に対し連続相の割合が1未満
の場合は、懸濁液が得られないため重合体が得られにく
く、分散相1に対し連続相の割合が10より多い場合
は、重合性単量体の量が少ないため単位時間あたりの生
産性に劣る場合がある。連続相は、水を主体とするもの
であるが水以外に重合体を溶解しない有機溶媒が適用可
能である。また、連続相には分散相の分散向上のため分
散安定剤を添加することが好ましく、分散安定剤として
は、カルボキシメチルセルロース、ポリビニルアルコー
ルのような有機化合物、硫酸カルシウム、燐酸三カルシ
ウムのような水難溶性無機微粒子が使用可能である。か
かる分散安定剤の添加量は、連続相に対して0.2〜2
0重量%が好ましく、より好ましくは0.5〜5重量%
である。分散安定剤の添加量が0.2重量%より少ない
と分散相の充分な分散安定性が得られにくく、20重量
%より多いと重合反応から得られた重合体から分散安定
剤を除去しにくくなる。さらに分散安定剤の助剤として
界面活性剤、例えばドデシルスルフォン酸ナトリウム、
ドデシルベンゼンスルフォン酸ナトリウムなどを加える
ことも可能である。そのほか連続相に塩化ナトリウム、
硫酸ナトリウム、ドデシル硫酸ナトリウム等の中性塩を
乳化防止の目的で加えてもよい。また重合反応して得ら
れた重合体の合一を防ぐ目的で、グリセリン、エチレン
グリコール等の増粘剤を加えてもよい。
In the present invention, the dispersed phase and the continuous phase are held in independent tanks, respectively, and they are supplied to the granulator at a controlled ratio once or twice or more through independent paths, respectively. A suspension having polymerizable droplets of the size is obtained, and the suspension is then introduced into a polymerization tank and subjected to suspension polymerization. It is carried out at a temperature of ℃ or higher, and the temperature is set in consideration of the decomposition temperature of the polymerization initiator. If the set temperature is too high, the polymerization initiator will be rapidly decomposed and the molecular weight will be affected, which is not preferable. The supply amount ratio of the dispersed phase and the continuous phase to the granulator is 1:
1 to 1:10 is preferable, and more preferably 1: 2 to 1.
It is 1:10. If the ratio of the continuous phase to the dispersed phase 1 is less than 1, it is difficult to obtain a polymer because a suspension cannot be obtained. If the ratio of the continuous phase to the dispersed phase 1 is more than 10, the polymerizable single phase is not obtained. Since the amount of the monomer is small, the productivity per unit time may be poor. The continuous phase is mainly composed of water, but other than water, an organic solvent that does not dissolve the polymer can be applied. In addition, it is preferable to add a dispersion stabilizer to the continuous phase in order to improve the dispersion of the dispersed phase. Examples of the dispersion stabilizer include organic compounds such as carboxymethyl cellulose and polyvinyl alcohol, and water resistant compounds such as calcium sulfate and tricalcium phosphate. Soluble inorganic fine particles can be used. The amount of the dispersion stabilizer added is 0.2 to 2 with respect to the continuous phase.
0% by weight is preferred, more preferably 0.5-5% by weight
Is. When the amount of the dispersion stabilizer added is less than 0.2% by weight, it is difficult to obtain sufficient dispersion stability of the dispersed phase, and when it is more than 20% by weight, it is difficult to remove the dispersion stabilizer from the polymer obtained from the polymerization reaction. Become. Further, as a dispersion stabilizer, a surfactant such as sodium dodecyl sulfonate,
It is also possible to add sodium dodecylbenzene sulfonate or the like. In addition, sodium chloride in the continuous phase,
A neutral salt such as sodium sulfate or sodium dodecyl sulfate may be added for the purpose of preventing emulsification. Further, a thickener such as glycerin or ethylene glycol may be added for the purpose of preventing coalescence of the polymers obtained by the polymerization reaction.

【0011】[0011]

【実施例】次に、本発明を実施例ならびに比較例によっ
て具体的に説明する。 (A)分散相の調製 (1)スチレン200gにメタノール(沸点64・5
℃)1000gを加え混合した混合液に、N,N’−ア
ゾビスイソブチロニトリル2.5gを加え溶解させ、得
られた分散液を分散相(a)とした。 (2)(1)の分散相の調製において、メタノールの代
わりにテトラヒドロフラン(沸点65〜66℃)100
0gを用いる以外は同様の方法で調製した分散液を分散
相(b)とした。 (3)(1)の分散相の調製において、メタノールの代
わりにジエチレングリコールジエチルエーテル(沸点1
90℃)1000gを用いる以外は同様の方法で調製し
た分散液を分散相(c)とした。
EXAMPLES Next, the present invention will be specifically described with reference to Examples and Comparative Examples. (A) Preparation of dispersed phase (1) 200 g of styrene in methanol (boiling point 64.5)
(° C.) 1000 g was added and mixed, and 2.5 g of N, N′-azobisisobutyronitrile was added and dissolved, and the obtained dispersion was used as a dispersion phase (a). (2) In the preparation of the dispersed phase of (1), tetrahydrofuran (boiling point 65 to 66 ° C.) 100 instead of methanol 100
A dispersion prepared in the same manner except that 0 g was used was the dispersion phase (b). (3) In the preparation of the dispersed phase of (1), diethylene glycol diethyl ether (boiling point 1
A dispersion prepared by the same method except that 1000 g (90 ° C.) was used as a dispersion phase (c).

【0012】(4)スチレン200gにメタノール10
00gを加え混合した混合液に、カーボンブラック(キ
ャボット社製、商品名:ACARB304)を20g加
え、ホモミキサーM型(特殊機化工業社製)にて500
0rpmで10分間攪拌し、カーボンブラック分散液を
得た。この分散液に重合開始剤N,N’−アゾビスイソ
ブチロニトリル5.0gを加え溶解させた。得られた分
散液を分散相(d)とした。 (5)スチレン200gにメタノール1000gを加え
混合した混合液に、ローズベンガル(和光純薬製)0.
5gを加え、タービン攪拌翼にて150rpmで10分
間攪拌し、ローズベンガル溶液を得た。この溶液に重合
開始剤N,N’−アゾビスイソブチロニトリル2.5g
を加え溶解させた。得られた溶液を分散相(e)とし
た。 (6)(1)の分散相の調製において、メタノールの添
加を省略して調製した他は同様にして分散相(f)を得
た。
(4) 200 g of styrene and 10 parts of methanol
20 g of carbon black (manufactured by Cabot Co., Ltd., trade name: ACARB304) was added to a mixed solution in which 00 g was added and mixed, and 500 with a homomixer M type (manufactured by Tokushu Kika Kogyo).
The mixture was stirred at 0 rpm for 10 minutes to obtain a carbon black dispersion liquid. 5.0 g of a polymerization initiator N, N′-azobisisobutyronitrile was added to and dissolved in this dispersion. The obtained dispersion was used as a dispersion phase (d). (5) Rose Bengal (manufactured by Wako Pure Chemical Industries, Ltd.) was added to a mixed solution prepared by adding 1000 g of methanol to 200 g of styrene and mixing them.
5 g was added, and the mixture was stirred with a turbine stirring blade at 150 rpm for 10 minutes to obtain a rose bengal solution. 2.5 g of a polymerization initiator N, N'-azobisisobutyronitrile was added to this solution.
Was added and dissolved. The resulting solution was used as the dispersed phase (e). (6) A dispersed phase (f) was obtained in the same manner except that the addition of methanol was omitted in the preparation of the dispersed phase of (1).

【0013】(B)連続相の調製 水1000gに、燐酸三カルシウム(太平化学産業株式
会社製 商品名:TCP−10)100gを加えよく攪
拌した。さらに、ドデシル硫酸ナトリウム0.8gを加
え、溶解させた液を連続相とする。 <実施例1>上記連続相2000gを図1の連続相槽1
に、さらに上記分散相(a)2000gを図1の分散相
槽2に加えた。両相を定量ポンプ4により連続相を毎分
500ml、分散相を毎分50mlで造粒機5に供給し
た。造粒機5の回転部の線速度を毎秒15mに調整し、
分散液を得た。そして得られた分散液を低剪断力攪拌器
を設置した重合槽3に導入した。両相がすべて分散され
た後、重合槽3内で分散液を15rpmで攪拌しなが
ら、80℃で7時間加熱し、さらに90℃に昇温した後
1時間加熱した。そして、室温まで冷却した後、内容物
に10Kgの水と300gの濃硝酸を加えて30分間攪
拌した。内容物を遠心脱水機に移し、遠心脱水により水
分のほとんどを除去した後、真空乾燥機により水分が
0.3%以下になるまで乾燥させることにより重合体を
得た。この重合体の形状を光学顕微鏡で観察したとこ
ろ、いずれも真球状の形態を有していた。 <実施例2>実施例1において、分散相(a)の代わり
に分散相(b)を用いる他は同様の方法で重合体を得
た。この重合体の形状を光学顕微鏡で観察したところ、
いずれも真球状の形態を有していた。
(B) Preparation of continuous phase To 1000 g of water, 100 g of tricalcium phosphate (trade name: TCP-10 manufactured by Taihei Chemical Industry Co., Ltd.) was added and stirred well. Further, 0.8 g of sodium dodecyl sulfate is added and the liquid thus dissolved is used as a continuous phase. <Example 1> 2000 g of the above continuous phase was added to the continuous phase tank 1 of FIG.
Further, 2000 g of the above dispersed phase (a) was further added to the dispersed phase tank 2 in FIG. Both phases were fed to the granulator 5 by the metering pump 4 at a continuous phase of 500 ml / min and a dispersed phase of 50 ml / min. Adjust the linear velocity of the rotating part of the granulator 5 to 15 m / s,
A dispersion was obtained. Then, the obtained dispersion liquid was introduced into the polymerization tank 3 provided with a low shear stirring device. After all the phases were dispersed, the dispersion was heated in the polymerization tank 3 at 15 rpm while being stirred at 80 ° C. for 7 hours, further heated to 90 ° C., and then heated for 1 hour. Then, after cooling to room temperature, 10 Kg of water and 300 g of concentrated nitric acid were added to the contents and stirred for 30 minutes. The content was transferred to a centrifugal dehydrator, most of the water content was removed by centrifugal dehydration, and then dried by a vacuum dryer until the water content was 0.3% or less to obtain a polymer. When the shape of this polymer was observed with an optical microscope, all had a spherical shape. <Example 2> A polymer was obtained in the same manner as in Example 1 except that the dispersed phase (b) was used instead of the dispersed phase (a). When the shape of this polymer was observed with an optical microscope,
All had a spherical shape.

【0014】<実施例3>実施例1において、造粒機5
に供給する分散相の供給量を毎分500ml、連続相の
供給量を150mlに調整した他は同様の方法で重合体
を得た。この重合体の形状を光学顕微鏡で観察したとこ
ろ、いずれも真球状の形態を有していた。 <実施例4>実施例1において、分散相(a)の代わり
に分散相(d)を用いる他は同様の方法で重合体を得
た。この重合体の形状を光学顕微鏡で観察したところ、
いずれも真球状の形態を有していた。 <実施例5>実施例1において、分散相(a)の代わり
に分散相(e)を用いる他は同様の方法で重合体を得
た。この重合体の形状を光学顕微鏡で観察したところ、
いずれも真球状の形態を有していた。 <比較例1>実施例1において、分散相(a)の代わり
に分散相(f)を用いる他は同様の方法で重合体を得
た。この重合体の形状を光学顕微鏡で観察したところ、
いずれも真球状の形態を有していた。 <比較例2>実施例1において、分散相(a)の代わり
に分散相(c)を用いる他は、実施例1と同様の方法で
重合体を得た。この重合体の形状を光学顕微鏡で観察し
たところ、いずれも真球状の形態を有していた。
<Example 3> In Example 1, the granulator 5 was used.
A polymer was obtained in the same manner as above, except that the amount of the dispersed phase fed to the above was adjusted to 500 ml per minute and the amount of the continuous phase fed was adjusted to 150 ml. When the shape of this polymer was observed with an optical microscope, all had a spherical shape. <Example 4> A polymer was obtained in the same manner as in Example 1 except that the dispersed phase (d) was used in place of the dispersed phase (a). When the shape of this polymer was observed with an optical microscope,
All had a spherical shape. <Example 5> A polymer was obtained in the same manner as in Example 1 except that the dispersed phase (e) was used instead of the dispersed phase (a). When the shape of this polymer was observed with an optical microscope,
All had a spherical shape. Comparative Example 1 A polymer was obtained in the same manner as in Example 1 except that the dispersed phase (f) was used instead of the dispersed phase (a). When the shape of this polymer was observed with an optical microscope,
All had a spherical shape. Comparative Example 2 A polymer was obtained in the same manner as in Example 1 except that the dispersed phase (c) was used in place of the dispersed phase (a). When the shape of this polymer was observed with an optical microscope, all had a spherical shape.

【0015】以上により得られた実施例および比較例の
重合体における体積平均粒子径をコールターカウンター
(アパーチャー100μm)を用いて測定し、その結果
を表1に示した。表1から明かなように本発明の懸濁重
合法により得られた実施例1〜5の重合体は2.7〜
4.5μmという微小な体積平均粒子径を有していた。
これに対し、比較用の重合体は5μm以下の体積平均粒
子径を得ることができなかった。すなわち、有機溶媒を
分散相に添加していない比較例1においては、実施例1
と同様な製造条件では、分散相の造粒機への供給量が多
すぎるため5μm以下の重合体が製造されにくく、重合
体全体に対する5μm以下の重合体の割合が少ないため
に体積平均粒子径が12.5μmという大きいものにな
ることが確認された。また、有機溶媒の沸点が150℃
より大きい比較例2においては、懸濁重合時に有機溶媒
が良好に除去されなかったために、体積平均粒子径が
8.7μmという大きいものになることが確認された。
The volume average particle diameters of the polymers of Examples and Comparative Examples obtained above were measured using a Coulter counter (aperture 100 μm), and the results are shown in Table 1. As is clear from Table 1, the polymers of Examples 1 to 5 obtained by the suspension polymerization method of the present invention are 2.7 to
It had a minute volume average particle diameter of 4.5 μm.
On the other hand, the comparative polymer could not obtain a volume average particle diameter of 5 μm or less. That is, in Comparative Example 1 in which the organic solvent was not added to the dispersed phase,
Under the same production conditions as described above, the amount of the dispersed phase supplied to the granulator was too large, so that it was difficult to produce a polymer having a particle size of 5 μm or less, and the ratio of the polymer having a particle size of 5 μm or less to the whole polymer was small. Was confirmed to be as large as 12.5 μm. The boiling point of the organic solvent is 150 ° C.
In larger Comparative Example 2, it was confirmed that the volume average particle diameter was as large as 8.7 μm because the organic solvent was not removed satisfactorily during suspension polymerization.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【発明の効果】本発明の懸濁重合法によれば、1〜5μ
m程度の粒子径をもつ重合体を効率的で容易に生産でき
るという優れた効果を有するものである。
According to the suspension polymerization method of the present invention, 1 to 5 μm
It has an excellent effect that a polymer having a particle diameter of about m can be efficiently and easily produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の懸濁重合法に用いられる重合装
置の一例である。
FIG. 1 is an example of a polymerization apparatus used in the suspension polymerization method of the present invention.

【符号の説明】[Explanation of symbols]

1 連続相槽 2 分散相槽 3 重合槽 4 定量ポンプ 5 造粒機 6 凝縮機 7 加熱用ジャケット 1 Continuous phase tank 2 Dispersion phase tank 3 Polymerization tank 4 Metering pump 5 Granulator 6 Condenser 7 Heating jacket

フロントページの続き (72)発明者 奥川 克弘 静岡県静岡市用宗巴町3番1号 株式会社 巴川製紙所技術研究所内Front Page Continuation (72) Inventor Katsuhiro Okugawa 3-1, Somoe-cho, Shizuoka-shi, Shizuoka Prefecture Tomagawa Paper Mill Technical Research Institute

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 分散相と連続相とを各々独立した槽に保
持し、それぞれ独立した経路を通して、両者を制御され
た比率で1回ないし2回以上造粒機に供給して所望の大
きさの重合性液滴を有する懸濁液を得て、しかる後該懸
濁液を重合槽中に導いて重合を完結させて重合体を得る
懸濁重合法において、分散相として、重合性単量体と、
該重合性単量体100重量部に対して10〜5000重
量部の沸点150℃以下の有機溶媒を用いることを特徴
とする懸濁重合法。
1. A dispersion phase and a continuous phase are held in independent tanks, respectively, and both are supplied to a granulator at a controlled ratio once or twice or more through independent paths to obtain a desired size. In the suspension polymerization method in which a suspension having polymerizable droplets of 1) is obtained, and then the suspension is introduced into a polymerization tank to complete the polymerization to obtain a polymer, Body and
A suspension polymerization method, which comprises using an organic solvent having a boiling point of 150 ° C. or lower, which is 10 to 5000 parts by weight with respect to 100 parts by weight of the polymerizable monomer.
【請求項2】 分散相に染料を溶解させた後、重合する
ことを特徴とする請求項1記載の懸濁重合法。
2. The suspension polymerization method according to claim 1, wherein the dye is dissolved in the dispersed phase and then the polymerization is performed.
【請求項3】 分散相に顔料を分散させた後、重合する
ことを特徴とする請求項1記載の懸濁重合法。
3. The suspension polymerization method according to claim 1, wherein the pigment is dispersed in the dispersed phase, and then the polymerization is carried out.
【請求項4】 造粒機へ供給される分散相と連続相との
供給量比が1:1〜1:10であることを特徴とする請
求項1記載の懸濁重合法。
4. The suspension polymerization method according to claim 1, wherein the supply ratio of the dispersed phase and the continuous phase supplied to the granulator is 1: 1 to 1:10.
JP6222579A 1994-08-23 1994-08-23 Suspension polymerization method Expired - Fee Related JP2779772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6222579A JP2779772B2 (en) 1994-08-23 1994-08-23 Suspension polymerization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6222579A JP2779772B2 (en) 1994-08-23 1994-08-23 Suspension polymerization method

Publications (2)

Publication Number Publication Date
JPH0859710A true JPH0859710A (en) 1996-03-05
JP2779772B2 JP2779772B2 (en) 1998-07-23

Family

ID=16784686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6222579A Expired - Fee Related JP2779772B2 (en) 1994-08-23 1994-08-23 Suspension polymerization method

Country Status (1)

Country Link
JP (1) JP2779772B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016904A (en) * 2009-07-08 2011-01-27 Nippon Shokubai Co Ltd Method for producing vinylic polymer fine particles and vinylic polymer fine particles obtained by the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5666858A (en) * 1979-10-22 1981-06-05 Xerox Corp Dispersion polymerization process for producing magnetic toner particles containing more than 45 wtpercent concentration of magnetic particles
JPH02173003A (en) * 1988-12-26 1990-07-04 Mitsui Toatsu Chem Inc Production of porous polymer particle
JPH0586108A (en) * 1991-09-30 1993-04-06 Tomoegawa Paper Co Ltd Suspension polymerization method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5666858A (en) * 1979-10-22 1981-06-05 Xerox Corp Dispersion polymerization process for producing magnetic toner particles containing more than 45 wtpercent concentration of magnetic particles
JPH02173003A (en) * 1988-12-26 1990-07-04 Mitsui Toatsu Chem Inc Production of porous polymer particle
JPH0586108A (en) * 1991-09-30 1993-04-06 Tomoegawa Paper Co Ltd Suspension polymerization method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016904A (en) * 2009-07-08 2011-01-27 Nippon Shokubai Co Ltd Method for producing vinylic polymer fine particles and vinylic polymer fine particles obtained by the same

Also Published As

Publication number Publication date
JP2779772B2 (en) 1998-07-23

Similar Documents

Publication Publication Date Title
US6140394A (en) Method and apparatus of suspension polymerization
US6177525B1 (en) Process for preparing microemulsion polymer particles using high shear forces
JP2779772B2 (en) Suspension polymerization method
JPH0343402A (en) Suspension polymerization
US5608017A (en) Suspension polymerization method
JP2779775B2 (en) Suspension polymerization method
JP2712064B2 (en) Suspension polymerization method
JP3514657B2 (en) Method for producing suspension polymerized particles
JP2779768B2 (en) Suspension polymerization method
JPH06102684B2 (en) Suspension polymerization method
JPH06102682B2 (en) Suspension polymerization method
JPH06102683B2 (en) Suspension polymerization method
EP0554072B1 (en) Suspension polymerization method and particles obtained therewith
JP2832867B2 (en) Suspension polymerization method
JP3386718B2 (en) Suspension polymerization method
JP3248747B2 (en) Suspension polymerization method
JP2597257B2 (en) Suspension polymerization method
JPH03215502A (en) Method for suspension polymerization
JPH08146667A (en) Manufacture of electrophotographic toner
JP3248748B2 (en) Suspension polymerization method
JP2597254B2 (en) Suspension polymerization method
JPS60243664A (en) Preparation of toner for electrostatic charge image development
JPH0570507A (en) Suspension polymerization method
JPH03246554A (en) Production of polymerized toner
JPH06102687B2 (en) Suspension polymerization method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980331

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090515

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees