JPH085801A - Fluorite for photolithography - Google Patents

Fluorite for photolithography

Info

Publication number
JPH085801A
JPH085801A JP6134720A JP13472094A JPH085801A JP H085801 A JPH085801 A JP H085801A JP 6134720 A JP6134720 A JP 6134720A JP 13472094 A JP13472094 A JP 13472094A JP H085801 A JPH085801 A JP H085801A
Authority
JP
Japan
Prior art keywords
fluorite
photolithography
optical
refractive index
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6134720A
Other languages
Japanese (ja)
Other versions
JP3083957B2 (en
Inventor
Shigeru Sakuma
繁 佐久間
Tsutomu Mizugaki
勉 水垣
Masaki Shiozawa
正樹 塩澤
Shuichi Takano
修一 高野
Hidemi Nishikawa
秀美 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OYO KOKEN KOGYO KK
Nikon Corp
Original Assignee
OYO KOKEN KOGYO KK
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OYO KOKEN KOGYO KK, Nikon Corp filed Critical OYO KOKEN KOGYO KK
Priority to JP13472094A priority Critical patent/JP3083957B2/en
Publication of JPH085801A publication Critical patent/JPH085801A/en
Application granted granted Critical
Publication of JP3083957B2 publication Critical patent/JP3083957B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To obtain sufficient imaging performance when fluorite is used as an optical member for photolithography, such as a stepper, by respectively specifying a refractive index difference, RMS of wave front aberration and optical path difference by double refraction. CONSTITUTION:The fluorite for photolithography to be used in a specific wavelength band of <=350nm is so formed as to satisfy the following conditions: Firstly, the refractive index DELTAn is <=5X10<-6>. Secondly, the value of the RMS (root-mean-square) of the wave front aberration is <=0.015lambda after power component correction. Thirdly, the optical path difference by the double refracting power in any direction of three coordinate directions is <=10nm/cm. The optical system using quartz glass as a single blank for the optical system using a KrF excimer laser (248mn) as a light source 1 is most popularly used at present as a projecting lens 4 for the photolithography. However, there is a significant effect in removing chromatic aberrations by building the fluorite into such optical system. The latitude of the monochromaticity of an exposure light source of the stepper is, therefore, widened by using this fluorite and the drastic cost reduction of the illumination system is attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光リソグラフィー技術
において350nm以下の特定波長帯域で、レンズ等の光学
系に使用される光リソグラフィー用蛍石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to fluorite for photolithography used in optical systems such as lenses in a specific wavelength band of 350 nm or less in photolithography technology.

【0002】[0002]

【従来の技術】近年におけるVLSIは、高集積化、高機能
化が進行し、ウェハ上の微細加工技術が要求されてい
る。その加工方法として、光リソグラフィーによる方法
が一般的に行われている。このVLSIの中で、DRAMを例に
あげればLSIからVLSIへと展開され1K、256K、1M、4M、1
6Mと容量が増大してゆくにつれ、その加工線幅がそれぞ
れ 10μm、2μm、1μm、0.8μm、0.5μmと微細になって
いる。このため、光リソグラフィー技術の主流になって
いるステッパーの投影レンズには高い解像度と深い焦点
深度が要求されている。
2. Description of the Related Art In recent years, VLSI is highly integrated and highly functionalized, and a fine processing technique on a wafer is required. A photolithography method is generally used as the processing method. In this VLSI, if DRAM is taken as an example, it will be expanded from LSI to VLSI, and 1K, 256K, 1M, 4M, 1
As the capacity increases to 6M, the processed line widths become finer at 10μm, 2μm, 1μm, 0.8μm and 0.5μm, respectively. For this reason, high resolution and a deep depth of focus are required for the projection lens of the stepper, which is the mainstream of the optical lithography technology.

【0003】この解像度と焦点深度は、露光に使う光の
波長とレンズのN.A.(開口数)によって決まる。細
かいパターンほど回折光の角度が大きくなり、レンズの
N.A.が大きくなければ回折光を取り込めなくなる。
また、露光波長λが短いほど同じパターンでの回折光の
角度は小さくなり、従ってN.A.は小さくてよいこと
になる。
The resolution and the depth of focus depend on the wavelength of light used for exposure and the N.V. of the lens. A. (Numerical aperture). The finer the pattern, the larger the angle of the diffracted light, and the N. A. If it is not large, the diffracted light cannot be captured.
Also, the shorter the exposure wavelength λ, the smaller the angle of the diffracted light in the same pattern. A. Will be small.

【0004】解像度と焦点深度は、次式のように表され
る。 解像度=k1・λ/N.A. 焦点深度=k2・λ/N.A.2 (但し、k1、k2は比例定数である。) 解像度を向上させるためには、N.A.を大きくする
か、λを短くするかのどちらかであるが、上式からも明
らかなように、λを短くするほうが深度の点で有利であ
る。
The resolution and the depth of focus are expressed by the following equations. Resolution = k1 · λ / N. A. Depth of focus = k2 · λ / N. A. 2 (However, k1 and k2 are proportional constants.) To improve the resolution, N. A. Is either increased or λ is shortened, but as is clear from the above equation, it is advantageous to shorten λ in terms of depth.

【0005】露光波長の短波長化はこうした技術の流れ
により進んできている。350nm以下の波長になると、レ
ンズ等の光学系に通常の光学ガラスを用いると透過率が
低いため、使用可能な光学材料は限定されてくる。蛍石
は石英ガラスと共に透過率の優れた光学材料としてよく
知られている。また、この2つの光学材料を組み合わせ
ることで色収差を補正することもできる。
The shortening of the exposure wavelength has been advanced by the flow of such technology. At a wavelength of 350 nm or less, the transmittance is low when ordinary optical glass is used for an optical system such as a lens, so that usable optical materials are limited. Fluorite is well known as an optical material having excellent transmittance together with quartz glass. Also, chromatic aberration can be corrected by combining these two optical materials.

【0006】[0006]

【発明が解決しようとする課題】しかし、ステッパーの
結像性能を向上させるために、光源の波長を350nm以下
とし、350nm以下の特定波長帯域での光透過率が高いだ
けの従来の蛍石を用いて投影レンズを製作しても、ステ
ッパーとして充分な結像性能は得られなかった。本発明
は、従来の問題点を解決し、ステッパー等の光リソグラ
フィー用の光学部材として用いたときに充分な結像性能
が得られるような蛍石を提供することを目的とする。
However, in order to improve the imaging performance of the stepper, the wavelength of the light source is set to 350 nm or less, and the conventional fluorite which has a high light transmittance in a specific wavelength band of 350 nm or less is used. Even if a projection lens was manufactured using it, sufficient image forming performance as a stepper could not be obtained. It is an object of the present invention to solve the conventional problems and provide a fluorite that can obtain sufficient imaging performance when used as an optical member for optical lithography such as a stepper.

【0007】[0007]

【課題を解決するための手段】そこで本発明者らは、光
リソグラフィー技術において、微細かつ鮮明な結像性能
を得ることができる光リソグラフィー用蛍石について鋭
意研究した結果、以下の3つの条件を満たす蛍石におい
て充分な結像性能を得ることができた。従って、本発明
は第1に、350nm以下の特定波長帯域で使用される光リ
ソグラフィー用蛍石において、屈折率差Δnが5×10-6
以下であることを特徴とする光リソグラフィー用蛍石を
提供する。ここで、屈折率差とは最大屈折率と最小屈折
率との差である。
Accordingly, the inventors of the present invention have made earnest researches on a fluorite for optical lithography capable of obtaining a fine and clear image forming performance in the optical lithography technique, and as a result, the following three conditions are satisfied. Sufficient imaging performance could be obtained in the fluorite to be filled. Therefore, firstly, the present invention relates to a fluorite for photolithography used in a specific wavelength band of 350 nm or less with a refractive index difference Δn of 5 × 10 −6.
Provided is a fluorite for photolithography, which is characterized as follows. Here, the refractive index difference is the difference between the maximum refractive index and the minimum refractive index.

【0008】本発明は第2に、350nm 以下の特定波長領
域で使用される光リソグラフィー用蛍石において、波面
収差のRMS(2乗平均平方根)の値がパワー成分補正
後に0.015λ以下であることを特徴とする光リソグラフ
ィー用蛍石を提供する。本発明は第3に、350nm 以下の
特定波長領域で使用される光リソグラフィー用蛍石にお
いて、3座標方向のいずれの方向においても複屈折によ
る光路差が10nm/cm以下であることを特徴とする光リソ
グラフィー用蛍石を提供する。
Secondly, the present invention is that, in an optical lithography fluorite used in a specific wavelength region of 350 nm or less, the value of RMS (root mean square) of wavefront aberration is 0.015λ or less after power component correction. A fluorite for photolithography is provided. Thirdly, the present invention is characterized in that the optical path difference due to birefringence is 10 nm / cm or less in any of the three coordinate directions in the fluorite for photolithography used in a specific wavelength region of 350 nm or less. We provide fluorite for optical lithography.

【0009】なお、上記の3つの発明は独立した発明で
あり、いずれかの条件を満たす蛍石においても目的とす
る結像性能が得られるが、2つ以上の条件を満たせば、
より満足のいく性能が得られることは言うまでもない。
The above-mentioned three inventions are independent inventions, and the desired imaging performance can be obtained even with fluorite satisfying any of the conditions, but if two or more conditions are satisfied,
It goes without saying that more satisfactory performance can be obtained.

【0010】[0010]

【作用】一般に蛍石といっても、原料の純度や結晶の育
成方法によって品質はかなりのばらつきがある。解像
度、焦点深度等の結像性能を向上させるためには、高品
質の蛍石を用いることが考えられるが、一口に高品質と
言っても結像性能と結びつく品質を見極めることは容易
なことではない。
In general, the quality of fluorspar varies considerably depending on the purity of the raw material and the crystal growth method. In order to improve the imaging performance such as resolution and depth of focus, it is conceivable to use high quality fluorite, but even if it is called high quality, it is easy to determine the quality that is linked to the imaging performance. is not.

【0011】まず、本発明は第1に、測定領域内の屈折
率の最大値と最小値との差(屈折率のばらつき)を規定
する。この値はPV値とも呼ばれ、Δnで表される。こ
の値が小さいほど屈折率の均質性が良い蛍石であると考
えられる。屈折率差Δnが5×10-6以下であることは、
波面収差を小さくすることに効果的であり、結像性能の
向上に大きく寄与すると考えられる。
First of all, the present invention defines the difference (refractive index variation) between the maximum and minimum values of the refractive index in the measurement region. This value is also called a PV value and is represented by Δn. It is considered that the smaller this value is, the better the homogeneity of the refractive index is. The refractive index difference Δn being 5 × 10 −6 or less means that
It is effective in reducing the wavefront aberration, and is considered to greatly contribute to the improvement of the imaging performance.

【0012】また、本発明は第2に、波面収差のパワー
成分補正後のRMS(2乗平均平方根)の値を規定す
る。蛍石の屈折率分布を細かく見ると、パワー(2次)
成分、アス成分、回転対称成分、傾斜成分、ランダム成
分等に分離でき、それぞれが重なりあって全体の屈折率
分布を作っている。そして、ここで述べた各成分が光学
性能に及ぼす影響はそれぞれ異なっている。このため、
同一のPV値の蛍石を使用して光学部材を製造しても、
各成分の比率が異なれば、光学性能に差が出てしまう恐
れがある。したがって、これらの要素を個別に考慮せ
ず、単にPV値を一定値以下に抑えたのみでは、光リソ
グラフィー技術において微細かつ鮮明なパターンが得ら
れない場合がある。
The present invention secondly defines the value of RMS (root mean square) after the power component of wavefront aberration is corrected. Looking closely at the refractive index distribution of fluorite, the power (second order)
It can be separated into components, astigmatism components, rotationally symmetric components, gradient components, random components, etc., and these components overlap to form the entire refractive index distribution. The influence of each component described here on the optical performance is different. For this reason,
Even if an optical member is manufactured by using fluorspar with the same PV value,
If the ratio of each component is different, the optical performance may be different. Therefore, a fine and clear pattern may not be obtained in the photolithography technique by simply suppressing the PV value to a certain value or less without individually considering these factors.

【0013】そこで、光学性能に直接影響を与える成分
のみを表す波面収差のRMS値(パワー成分補正後)を
規定することにより、より確実に光学性能を保証するこ
とが可能となる。パワー成分は、曲率半径の誤差と同一
であり、レンズの曲率で補正も可能であるし、レンズの
空気間隔でも容易に補正可能である。したがって、像質
に直接影響を及ぼすパワー補正(除外)後の成分を問題
にすべきである。
Therefore, by defining the RMS value (after power component correction) of the wavefront aberration that represents only the component that directly affects the optical performance, the optical performance can be more surely guaranteed. The power component is the same as the error of the radius of curvature, and can be corrected by the curvature of the lens, and can also be easily corrected by the air gap of the lens. Therefore, the component after power correction (exclusion) that directly affects the image quality should be a problem.

【0014】RMS(二乗平均平方根)値は、全測定点
を用い計算されるため情報量が多く測定誤差の影響を受
けにくく、統計処理も可能である。上限である0.01
5λは、パワー成分を除いた屈折率分布の各成分の影響
により発生する諸収差を考慮してシミュレーションし、
光リソグラフィー用光学部材の性能を発揮できる値とし
て決定したものである。つまり、0.015λ以上であ
ると収差が大きくなり、光学部材として適さない。
Since the RMS (root mean square) value is calculated using all measurement points, it has a large amount of information and is hardly affected by measurement errors, and statistical processing is also possible. 0.01 which is the upper limit
For 5λ, a simulation is performed in consideration of various aberrations generated by the influence of each component of the refractive index distribution excluding the power component,
It is determined as a value at which the performance of the optical member for photolithography can be exhibited. That is, if it is 0.015λ or more, the aberration becomes large and it is not suitable as an optical member.

【0015】本発明は第3に、3座標方向の複屈折によ
る光路差を規定する。レンズに複屈折があると、像が半
径方向と光軸方向にそれぞれ2重になって現れるため好
ましくない。複屈折がある蛍石光学部材をレンズとして
使用するとなると、光源からの光は結晶中をいろいろな
向きに進むため、3座標方向の複屈折を小さくする必要
がある。本発明の光リソグラフィー用蛍石は、3座標方
向のいずれの方向においても複屈折による光路差が10nm
/cm以下であり、これにより、光学性能を損なうことの
ない光学部材が得られる。
The present invention thirdly defines an optical path difference due to birefringence in the three coordinate directions. If the lens has birefringence, the image is duplicated in the radial direction and the optical axis direction, which is not preferable. If a fluorite optical member having birefringence is used as a lens, the light from the light source travels in various directions in the crystal, and thus it is necessary to reduce the birefringence in the three coordinate directions. The fluorspar for photolithography of the present invention has an optical path difference of 10 nm due to birefringence in any of the three coordinate directions.
/ cm or less, whereby an optical member that does not impair the optical performance can be obtained.

【0016】[0016]

【実施例】ブリッジマン法(ストックバーガー法、ルツ
ボ降下法ともいう)を用いて、温度条件、引き下げ速度
等を精密に制御することにより、φ250mm、高さ300mmの
蛍石単結晶を育成した。以下にその製造方法の一例を述
べる。紫外ないし真空紫外域で使用される蛍石の場合、
原料に天然の蛍石を使用することはなく、化学合成で作
られた高純度原料を使用することが一般的である。原料
は粉末のまま使用することも可能であるが、熔融したと
きの体積の減少が激しいため、半熔融品やその粉砕品を
用いることが普通である。蛍石単結晶の育成装置の中に
上記原料を充填したルツボを置き、育成装置内を10-5
10-6Torrの真空雰囲気に保つ。次に、育成装置内の温度
を蛍石の融点以上(1390℃〜1450℃)の温度まで上げ、
原料を熔融する。結晶育成段階では、ルツボを引き下げ
ることによりルツボの下部から徐々に結晶化させる。育
成した結晶(インゴット)は、急冷をさけ、簡単な徐冷
を行う。このままでは残留応力と歪が非常に大きいた
め、インゴットを熱処理する。
Example A fluorite single crystal with a diameter of 250 mm and a height of 300 mm was grown by precisely controlling the temperature conditions, the pulling rate, etc. using the Bridgman method (also referred to as the Stockburger method or the crucible descent method). An example of the manufacturing method will be described below. In the case of fluorite used in the ultraviolet or vacuum ultraviolet region,
It is common to use high-purity raw materials made by chemical synthesis without using natural fluorspar as the raw material. Although it is possible to use the raw material as a powder, it is common to use a semi-molten product or a crushed product thereof because the volume of the raw material is drastically reduced when melted. Place the crucible filled with the above raw material in the fluorite single crystal growing device, and set the inside of the growing device to 10 -5 ~
Maintain a vacuum atmosphere of 10 -6 Torr. Next, raise the temperature inside the growth device to a temperature above the melting point of fluorspar (1390 ° C-1450 ° C),
Melt raw materials. In the crystal growth stage, the crucible is pulled down to gradually crystallize from the lower part of the crucible. The grown crystal (ingot) is subjected to simple slow cooling, avoiding rapid cooling. Since the residual stress and strain are very large as they are, the ingot is heat-treated.

【0017】こうして得られたインゴットインゴットか
ら{111}面が上下面となるようにφ200mm、厚さ50m
mの試料を切りだした。この試料の屈折率差Δnは3×10
-6であった。さらにアニール工程を付加することによ
り、633nmのHe-Neレーザー光で波面収差を測定したとこ
ろ、RMSが0.010λになった。この結晶の複屈折によ
る光路差をHe-Neレーザー光で測定したところ、3座標
方向ともに10nm/cm以下であった。
From the ingot thus obtained, the {111} planes are the upper and lower surfaces of φ200 mm, and the thickness is 50 m.
A sample of m was cut out. The refractive index difference Δn of this sample is 3 × 10
It was -6 . By further adding an annealing step, the wavefront aberration was measured with He-Ne laser light of 633 nm, and the RMS was 0.010λ. When the optical path difference due to the birefringence of this crystal was measured with He-Ne laser light, it was 10 nm / cm or less in all three coordinate directions.

【0018】この蛍石を投影レンズの光学部材として用
いて、図1に概略を示したような装置を製作したとこ
ろ、線幅0.3μm程度の解像力が得られた。
When this fluorite was used as an optical member of a projection lens to manufacture a device as schematically shown in FIG. 1, a resolution of a line width of about 0.3 μm was obtained.

【0019】[0019]

【発明の効果】光リソグラフィーの投影レンズとして、
KrFエキシマレーザー(248nm)を光源としたものに
ついては、現在、石英ガラスを単一素材として用いた光
学系が主流である。しかし、この光学系に蛍石を組み入
れることで色収差の除去に大変な効果がある。このた
め、本発明の光リソグラフィー用蛍石を用いることでス
テッパーの露光光源の単色性に許容度が広がり、照明系
の大幅なコストダウンが実現できる。結像性能について
は、石英ガラスだけで光学系を組み立てた場合とほとん
ど差がなかった。さらに、より短波長のArFエキシマ
レーザー(193nm)を光源とした場合は、石英ガラスで
は充分な光透過率を得ることは難しいため、本発明の光
リソグラフィー用蛍石を単一素材として用いた光学系を
構成することも考えられる。その場合でも充分な結像性
能が保証できる。
As a projection lens for optical lithography,
Regarding those using a KrF excimer laser (248 nm) as a light source, an optical system using quartz glass as a single material is currently the mainstream. However, incorporating fluorite in this optical system is very effective in removing chromatic aberration. Therefore, by using the fluorite for photolithography of the present invention, the tolerance of the monochromaticity of the exposure light source of the stepper is widened, and the cost of the illumination system can be significantly reduced. The imaging performance was almost the same as when the optical system was assembled with only quartz glass. Further, when a shorter wavelength ArF excimer laser (193 nm) is used as a light source, it is difficult to obtain sufficient light transmittance with quartz glass. It is also possible to construct a system. Even in that case, sufficient imaging performance can be guaranteed.

【0020】よって、本発明によれば、ステッパーの投
影レンズ等として充分な結像性能を持つ光リソグラフィ
ー用蛍石が得られる。
Therefore, according to the present invention, it is possible to obtain a fluorite for optical lithography having a sufficient imaging performance as a projection lens of a stepper or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る光リソグラフィー用蛍石を用い
て製造された投影レンズを組み込んだリソグラフィー装
置の概略図である。
FIG. 1 is a schematic view of a lithographic apparatus incorporating a projection lens manufactured by using the fluorite for photolithography according to the present invention.

【符号の説明】[Explanation of symbols]

1・・・レーザー光源 2・・・照明系光学系 3・・・レチクル 4・・・投影レンズ 5・・・ウエハー 1 ... Laser light source 2 ... Illumination system optical system 3 ... Reticle 4 ... Projection lens 5 ... Wafer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 塩澤 正樹 東京都千代田区丸の内3丁目2番3号 株 式会社ニコン内 (72)発明者 高野 修一 東京都福生市大字熊川1642番地26 応用光 研工業株式会社内 (72)発明者 西川 秀美 東京都福生市大字熊川1642番地26 応用光 研工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masaki Shiozawa 3 2-3 Marunouchi, Chiyoda-ku, Tokyo Nikon Co., Ltd. (72) Inventor Shuichi Takano 1642 Kumakawa, Fussa, Tokyo 26 Applied Light Research Institute Incorporated (72) Inventor Hidemi Nishikawa 1642, Kumakawa, Fussa, Tokyo 26 Applied Koken Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】350nm以下の特定波長帯域で使用される光
リソグラフィー用蛍石において、屈折率差Δnが5×10
-6以下であることを特徴とする光リソグラフィー用蛍
石。
1. A fluorite for photolithography used in a specific wavelength band of 350 nm or less, having a refractive index difference Δn of 5 × 10 5.
-6 or less, fluorspar for optical lithography.
【請求項2】350nm以下の特定波長帯域で使用される光
リソグラフィー用蛍石において、波面収差のRMS値が
パワー成分補正後に0.015λ以下であることを特徴とす
る光リソグラフィー用蛍石。
2. A fluorite for optical lithography used in a specific wavelength band of 350 nm or less, wherein the RMS value of wavefront aberration is 0.015λ or less after power component correction.
【請求項3】350nm以下の特定波長帯域で使用される光
リソグラフィー用蛍石において、3座標方向のいずれの
方向においても複屈折による光路差が10nm/cm以下であ
る光リソグラフィー用蛍石。
3. A fluorite for photolithography used in a specific wavelength band of 350 nm or less, wherein the optical path difference due to birefringence is 10 nm / cm or less in any of the three coordinate directions.
JP13472094A 1994-06-16 1994-06-16 Fluorite for optical lithography Expired - Lifetime JP3083957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13472094A JP3083957B2 (en) 1994-06-16 1994-06-16 Fluorite for optical lithography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13472094A JP3083957B2 (en) 1994-06-16 1994-06-16 Fluorite for optical lithography

Publications (2)

Publication Number Publication Date
JPH085801A true JPH085801A (en) 1996-01-12
JP3083957B2 JP3083957B2 (en) 2000-09-04

Family

ID=15135028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13472094A Expired - Lifetime JP3083957B2 (en) 1994-06-16 1994-06-16 Fluorite for optical lithography

Country Status (1)

Country Link
JP (1) JP3083957B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998043135A1 (en) * 1997-03-25 1998-10-01 Heraeus Quarzglas Gmbh Optical system for integrated circuit fabrication
WO2000041226A1 (en) * 1999-01-06 2000-07-13 Nikon Corporation Projection optical system, method for producing the same, and projection exposure apparatus using the same
EP0939147A3 (en) * 1998-02-26 2001-08-16 Nikon Corporation A manufacturing method for calcium fluoride and calcium fluoride for photolithography
WO2002103413A1 (en) * 2001-06-15 2002-12-27 Nikon Corporation Optical member, process for producing the same, and projection aligner
US6769273B1 (en) 1999-07-05 2004-08-03 Nikon Corporation Method of manufacturing silica glass member and silica glass member obtained by the method
JP2005508018A (en) * 2001-10-30 2005-03-24 アプティカル リサーチ アソシエイツ Structure and method for reducing aberrations in optical systems
WO2006030684A1 (en) * 2004-09-13 2006-03-23 Nikon Corporation Projection optical system, production method for projection optical system, exposure system and exposure method
WO2012011372A1 (en) 2010-07-22 2012-01-26 日本結晶光学株式会社 Fluorite

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998043135A1 (en) * 1997-03-25 1998-10-01 Heraeus Quarzglas Gmbh Optical system for integrated circuit fabrication
US6483639B2 (en) 1997-03-25 2002-11-19 Heraeus Quarzglas Gmbh Optical system for integrated circuit fabrication
EP0939147A3 (en) * 1998-02-26 2001-08-16 Nikon Corporation A manufacturing method for calcium fluoride and calcium fluoride for photolithography
US6332922B1 (en) 1998-02-26 2001-12-25 Nikon Corporation Manufacturing method for calcium fluoride and calcium fluoride for photolithography
US6811606B2 (en) 1998-02-26 2004-11-02 Nikon Corporation Manufacturing method for calcium fluoride and calcium fluoride for photolithography
WO2000041226A1 (en) * 1999-01-06 2000-07-13 Nikon Corporation Projection optical system, method for producing the same, and projection exposure apparatus using the same
US6366404B1 (en) 1999-01-06 2002-04-02 Nikon Corporation Projection optical system, production method thereof, and projection exposure apparatus using it
US6583931B2 (en) 1999-01-06 2003-06-24 Nikon Corporation Projection optical system, production method thereof, and projection exposure apparatus using it
US6769273B1 (en) 1999-07-05 2004-08-03 Nikon Corporation Method of manufacturing silica glass member and silica glass member obtained by the method
WO2002103413A1 (en) * 2001-06-15 2002-12-27 Nikon Corporation Optical member, process for producing the same, and projection aligner
JP2005508018A (en) * 2001-10-30 2005-03-24 アプティカル リサーチ アソシエイツ Structure and method for reducing aberrations in optical systems
WO2006030684A1 (en) * 2004-09-13 2006-03-23 Nikon Corporation Projection optical system, production method for projection optical system, exposure system and exposure method
US7706074B2 (en) 2004-09-13 2010-04-27 Nikon Corporation Projection optical system, method of manufacturing projection optical system, exposure apparatus, and exposure method
JP4780412B2 (en) * 2004-09-13 2011-09-28 株式会社ニコン Projection optical system, projection optical system manufacturing method, exposure apparatus, and exposure method
WO2012011372A1 (en) 2010-07-22 2012-01-26 日本結晶光学株式会社 Fluorite
EP2708921A1 (en) 2010-07-22 2014-03-19 Nihon Kessho Kogaku Co., Ltd Fuorite having excellent laser durability
US8784970B2 (en) 2010-07-22 2014-07-22 Nihon Kessho Kogaku Co., Ltd. Fluorite
US9448330B2 (en) 2010-07-22 2016-09-20 Nihon Kessho Kogaku Co., Ltd. Fluorite

Also Published As

Publication number Publication date
JP3083957B2 (en) 2000-09-04

Similar Documents

Publication Publication Date Title
US6332922B1 (en) Manufacturing method for calcium fluoride and calcium fluoride for photolithography
US5719698A (en) Silica glass member for UV-lithography, method for silica glass production, and method for silica glass member production
US6788389B2 (en) Production method of projection optical system
TWI484220B (en) Unit-magnification large-format catadioptric lens for microlithography
EP0687896B1 (en) Optical element for photolithography and method for evaluating an optical element
JPH08107060A (en) Optical member and projection optical system for photolithography
JP3083957B2 (en) Fluorite for optical lithography
US20040261691A1 (en) Crystallization apparatus and method
JP2000128696A (en) Fluoride single crystal-made raw material for making optical element and production of the same raw material
JPH07187684A (en) Production of quartz glass and quartz glass made by the same
US20040005266A1 (en) Optical member, process for producing the same, and projection aligner
US7706074B2 (en) Projection optical system, method of manufacturing projection optical system, exposure apparatus, and exposure method
JP3686204B2 (en) Annealing method of fluorite single crystal
JP3083952B2 (en) Fluorite for UV optics with excellent UV resistance and method for testing transmittance of fluorite
JP4092515B2 (en) Fluorite manufacturing method
JP2814866B2 (en) Manufacturing method of quartz glass
JPH0269332A (en) Light transmitting body for laser light
EP1464992A1 (en) Fluoride crystal material for optical device used for photolithographic apparatus and its manufacturing method
JP3656855B2 (en) Quartz glass material for optical lithography
Yanagi et al. Properties of large CaF2 crystals grown by CZ method for lens materials
WO2003044570A1 (en) Dispersion management optical lithography crystals for below 160nm optical lithography &amp; method thereof
JP3976083B2 (en) Optical system for circuit pattern exposure
JP2001335398A (en) Large diameter fluorite single crystal for photolithography and its production method
JP3421629B2 (en) Fluorite transmittance inspection method
Serebriakov et al. Correction of the phase retardation caused by intrinsic birefringence in deep UV lithography

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140630

Year of fee payment: 14

EXPY Cancellation because of completion of term