JPH0852554A - Austenitic stainless steel and its continuous casting method - Google Patents

Austenitic stainless steel and its continuous casting method

Info

Publication number
JPH0852554A
JPH0852554A JP18956894A JP18956894A JPH0852554A JP H0852554 A JPH0852554 A JP H0852554A JP 18956894 A JP18956894 A JP 18956894A JP 18956894 A JP18956894 A JP 18956894A JP H0852554 A JPH0852554 A JP H0852554A
Authority
JP
Japan
Prior art keywords
stainless steel
austenitic stainless
solid
continuous casting
casting method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18956894A
Other languages
Japanese (ja)
Other versions
JP3422082B2 (en
Inventor
Yutaka Kitagawa
豊 北川
Tadayuki Kajima
忠幸 鹿嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP18956894A priority Critical patent/JP3422082B2/en
Publication of JPH0852554A publication Critical patent/JPH0852554A/en
Application granted granted Critical
Publication of JP3422082B2 publication Critical patent/JP3422082B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To provide an austenitic stainless steel which can sufficiently prevent the oxidation, and its continuous casting method. CONSTITUTION:In the continuous casting method of the austenitic stainless steel, the molten steel 3 having a material of the austenitic stainless steel setting solid-liquid coexisting range to <=40 deg.C, is poured into a casting mold 4 from a tundish 1. Then, this molten steel is cast into the casting mold 4 to make a cast slab 5, and the cast slab 5 continuously drawn out from the casting mold 4 is rolled at the position, in where the solidified ratio at the central part becomes >=15%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、オーステナイト系ステ
ンレス鋼及びその連続鋳造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an austenitic stainless steel and a continuous casting method thereof.

【0002】[0002]

【従来の技術】従来より、例えばオーステナイト系のス
テンレス鋼を製造する場合には、図6(a)に示す様な
連続鋳造方法が採用されている。この連続鋳造方法と
は、ターンディッシュP1の注入口P2から、ステンレ
ス鋼の材料の溶湯P3を鋳造型P4内に注入せしめ、こ
の鋳造型P4内にて鋳片P5に鋳造して連続的に引き出
す方法である。
2. Description of the Related Art Conventionally, for example, when austenitic stainless steel is manufactured, a continuous casting method as shown in FIG. 6 (a) has been adopted. In this continuous casting method, a molten metal P3 of a stainless steel material is poured into a casting die P4 from a pouring port P2 of a turn dish P1, and a casting slab P5 is cast in the casting die P4 and continuously drawn out. Is the way.

【0003】前記連続鋳造を行なう際には、溶湯P3は
鋳造型P4によって外周から冷却されるので、鋳造型P
4内では、鋳片P5はその芯部の溶融相Mの周りに凝固
相Sが存在する状態となり、冷却されるに従って凝固相
Sの割合が増大する。それとともに、凝固相Sの熱収縮
によって、鋳造された鋳片P5の芯部の構造が粗くなっ
て、いわゆるザクP6が形成される。従って、この鋳片
P5を切断すると、図6(b)に示す様に、切断面にザ
クP6が露出し、そのまま放置するとザクP6の部分か
ら鋳片P5が酸化することになる。
When performing the continuous casting, since the molten metal P3 is cooled from the outer periphery by the casting mold P4, the casting mold P4
Within 4, the cast slab P5 is in a state in which the solidified phase S exists around the molten phase M of the core, and the proportion of the solidified phase S increases as it is cooled. At the same time, due to the heat shrinkage of the solidified phase S, the structure of the core of the cast slab P5 becomes rough, and so-called Zaku P6 is formed. Therefore, when the cast slab P5 is cut, as shown in FIG. 6B, the Zaku P6 is exposed on the cut surface, and when the cast P5 is left as it is, the cast P5 is oxidized from the Zaku P6.

【0004】この対策として、従来は、鋳片P5の切断
面を溶接したり、切断面付近を押し潰すことによって、
ザクP6を閉塞して酸化を防止していた。
As a countermeasure against this, conventionally, by welding the cut surface of the slab P5 or crushing the vicinity of the cut surface,
It blocked Zaku P6 to prevent oxidation.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この方
法では、鋳片P5を切断してから溶接或は押し潰すまで
の間に酸化が生じる恐れがあり、完全な酸化防止方法と
はならなかった。そこで、この酸化の問題を解決するた
めに、連続鋳造をする際に、鋳造型P4から引き出した
鋳片P5を所定位置で圧下するという対策が、既に本願
発明者によって提案されているが、より一層酸化を防止
する対策が望まれていた。
However, in this method, there is a possibility that oxidation may occur between the cutting of the cast slab P5 and the welding or crushing, and the method is not a perfect method for preventing oxidation. Therefore, in order to solve the problem of this oxidation, a measure of pressing down the cast slab P5 drawn from the casting mold P4 at a predetermined position during continuous casting has been already proposed by the inventor of the present application. A measure to prevent further oxidation has been desired.

【0006】本発明は、前記課題を解決するためになさ
れたものであり、十分に酸化を防止できるオーステナイ
ト系ステンレス鋼及びその連続鋳造方法を提供すること
を目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide an austenitic stainless steel capable of sufficiently preventing oxidation and a continuous casting method thereof.

【0007】[0007]

【課題を解決するための手段】かかる目的を達成するた
めの請求項1の発明は、連続鋳造方法によって製造され
るオーステナイト系ステンレス鋼の固液共存幅を40℃
以下に設定したことを特徴とするオーステナイト系ステ
ンレス鋼を要旨とする。
The invention according to claim 1 for achieving the above object has a solid-liquid coexistence width of 40 ° C. of an austenitic stainless steel produced by a continuous casting method.
The gist is an austenitic stainless steel characterized by being set as follows.

【0008】請求項2の発明は、固液共存幅を40℃以
下に設定したオーステナイト系ステンレス鋼の材料の溶
湯を、タンディッシュから鋳造型内に注入し、該鋳造型
内にて鋳片に鋳造して連続的に引き出すことを特徴とす
るオーステナイト系ステンレス鋼の連続鋳造方法を要旨
とする。
According to a second aspect of the present invention, a molten metal of an austenitic stainless steel material having a solid-liquid coexistence width set to 40 ° C. or less is poured from a tundish into a casting mold to form a slab in the casting mold. The gist is a continuous casting method for austenitic stainless steel, which is characterized by casting and continuously drawing.

【0009】請求項3の発明は、固液共存幅を40℃以
下に設定したオーステナイト系ステンレス鋼の材料の溶
湯を、タンディッシュから鋳造型内に注入し、該鋳造型
内にて鋳片に鋳造して連続的に引き出すとともに、該鋳
造型から引出した鋳片を中心部固相率15%以上となる
位置で圧下することを特徴とするオーステナイト系ステ
ンレス鋼の連続鋳造方法を要旨とする。
According to a third aspect of the present invention, a molten metal of an austenitic stainless steel material having a solid-liquid coexistence width set to 40 ° C. or less is poured from a tundish into a casting mold to form a slab in the casting mold. A gist is a continuous casting method for austenitic stainless steel, which comprises casting and continuously drawing out, and rolling down a cast piece drawn out from the casting mold at a position where the solid fraction of the central portion is 15% or more.

【0010】請求項4の発明は、使用する材料の成分を
調節することによって、前記固液共存幅を40℃以下に
設定したことを特徴とする前記請求項2又は3記載のオ
ーステナイト系ステンレス鋼の連続鋳造方法を要旨とす
る。
The invention according to claim 4 is characterized in that the solid-liquid coexistence width is set to 40 ° C. or less by adjusting the composition of the material used, and the austenitic stainless steel according to claim 2 or 3 is characterized. The main point is the continuous casting method.

【0011】請求項5の発明は、材料の成分の中のS且
つ/又はCの含有量を調節することによって、前記固液
共存幅を40℃以下に設定したことを特徴とする前記請
求項4記載のオーステナイト系ステンレス鋼の連続鋳造
方法を要旨とする。
The invention of claim 5 is characterized in that the solid-liquid coexistence width is set to 40 ° C. or less by adjusting the content of S and / or C in the components of the material. The gist is the continuous casting method for austenitic stainless steel described in 4.

【0012】[0012]

【作用】[Action]

(1) 本発明は、下記の,の研究の結果から得ら
れたものである。 連続鋳造される鋳片においては、例えばSを固相部
分、Lを液相部分とすると、その中心部固相率(S/
(S+L))=0.2にて圧下する場合には、未凝固部
面積(固液共存面積)は、鋼種によって定まる固液共存
幅(△T)により異なり、△Tが大きい鋼種は、圧下時
の未凝固部面積が広いという性質がある。
(1) The present invention is obtained from the results of the following research. In a continuously cast slab, for example, if S is a solid phase portion and L is a liquid phase portion, the solid phase ratio (S /
(S + L)) = 0.2, the unsolidified area (solid-liquid coexisting area) depends on the solid-liquid coexistence width (ΔT) determined by the steel type, and the steel type with a large ΔT is rolled down. It has the property that the area of the unsolidified part is large.

【0013】また、鋳片の中心性状は、圧下時の圧下
代が大きいほど、かつ未凝固部面積が狭いほど良化する
(即ちザクが少なくなる)。従って、△Tが大きい鋼種
は、軽圧下におけるキャビティ圧着効果が少ない。そこ
で、本発明では、下記に述べる様に、△Tを所定値(4
0℃)以下に設定することによって、未凝固部面積を小
さくし、それによって、ザクを少なくして、酸化が発生
し難いオーステナイト系ステンレス鋼の優れた製品を得
る方法に至ったものである。
Further, the central property of the cast slab is improved (that is, the amount of scrap is reduced) as the rolling stock during rolling is larger and the area of the unsolidified portion is smaller. Therefore, steel grades with a large ΔT have little effect of cavity pressure bonding under light pressure. Therefore, in the present invention, as described below, ΔT is set to a predetermined value (4
By setting the temperature to 0 ° C. or less, the area of the non-solidified portion can be reduced, thereby reducing the amount of scrap and obtaining an excellent product of austenitic stainless steel in which oxidation hardly occurs.

【0014】そして、△Tを所定値以下に設定する方法
としては、具体的には、オーステナイト系ステンレス鋼
の組成を調節する方法を採用した。尚、この組成の調節
にあたっては、△Tに及ぼす成分元素の影響について重
回帰分析を行った。その結果、特にS、Cの影響が大き
いことが判明した。 (2) 請求項1のオーステナイト系ステンレス鋼で
は、固液共存幅△Tが40℃以下となる様に、予めその
組成が調整されている。そのため、連続鋳造する際に
は、固液共存面積は小さくなるとともにザクの発生が抑
えられるので、酸化が防止される。
As a method of setting ΔT to a predetermined value or less, specifically, a method of adjusting the composition of austenitic stainless steel was adopted. In adjusting this composition, multiple regression analysis was performed on the effect of the constituent elements on ΔT. As a result, it was found that the effects of S and C were particularly large. (2) In the austenitic stainless steel according to claim 1, its composition is adjusted in advance so that the solid-liquid coexistence width ΔT is 40 ° C. or less. Therefore, during continuous casting, the solid-liquid coexisting area is reduced and the occurrence of zaku is suppressed, so that oxidation is prevented.

【0015】請求項2のオーステナイト系ステンレス鋼
の連続鋳造方法では、固液共存幅△Tが40℃以下のオ
ーステナイト系ステンレス鋼の材料の溶湯を、タンディ
ッシュから鋳造型内に注入し、鋳造型内にて鋳片に鋳造
して連続的に引き出すので、固液共存面積が少なくなっ
てザクの発生が抑えられ、酸化が防止される。
In the continuous casting method for austenitic stainless steel according to the second aspect, a molten metal of austenitic stainless steel material having a solid-liquid coexistence width ΔT of 40 ° C. or less is poured from a tundish into a casting mold to form a casting mold. Since it is cast into a slab and continuously drawn out, the solid-liquid coexisting area is reduced, the occurrence of zaku is suppressed, and oxidation is prevented.

【0016】請求項3のオーステナイト系ステンレス鋼
の連続鋳造方法では、固液共存幅△Tが40℃以下のオ
ーステナイト系ステンレス鋼の材料の溶湯を、タンディ
ッシュから鋳造型内に注入し、鋳造型内にて鋳片に鋳造
して連続的に引き出すとともに、鋳造型から引出した鋳
片を中心部固相率15%以上となる位置で圧下するの
で、固液共存面積が少なくなった上に圧下が行われてザ
クが低減され、一層効果的に酸化が防止される。
In the continuous casting method of austenitic stainless steel according to claim 3, a molten metal of a material of austenitic stainless steel having a solid-liquid coexistence width ΔT of 40 ° C. or less is poured from a tundish into a casting mold, In the inside, it is cast into a slab and continuously withdrawn, and the slab withdrawn from the casting mold is squeezed at a position where the solid fraction of the central portion is 15% or more. Is performed to reduce zaku and more effectively prevent oxidation.

【0017】請求項4のオーステナイト系ステンレス鋼
の連続鋳造方法では、使用する材料の成分を調節するこ
とによって、固液共存幅を40℃以下に設定してあるの
で、ザクの発生が抑えられて、酸化が防止される。請求
項5のオーステナイト系ステンレス鋼の連続鋳造方法で
は、材料の成分のうち、特にS且つ/又はCの含有量を
調節することによって、容易に固液共存幅を40℃以下
に設定することが可能である。
In the continuous casting method for austenitic stainless steel according to claim 4, since the solid-liquid coexistence width is set to 40 ° C. or less by adjusting the composition of the material used, the occurrence of Zaku is suppressed. , Oxidation is prevented. In the continuous casting method for austenitic stainless steel according to claim 5, the solid-liquid coexistence width can be easily set to 40 ° C. or less by adjusting the content of S and / or C among the components of the material. It is possible.

【0018】[0018]

【実施例】次に、本発明を一層明らかにするために、好
適な実施例を説明する。 (1)本実施例では、使用する材料として、オーステナ
イト系ステンレス鋼のうち、例えば下記表1に示す様に
調製した材料を用いた。つまり、従来の鋼材(JIS3
04)の組成のうち、特にC及びSの含有量(重量%;
以下同様)を精密に調節して(低減して)、その固液共
存幅△Tを40℃以下に設定した材料を使用した。
Next, preferred examples will be described in order to further clarify the present invention. (1) In this example, as the material to be used, among austenitic stainless steels, the materials prepared as shown in Table 1 below were used. In other words, conventional steel materials (JIS3
In the composition of 04), especially the contents of C and S (% by weight;
The same applies hereinafter) was precisely adjusted (reduced), and the solid-liquid coexistence width ΔT was set to 40 ° C. or less.

【0019】[0019]

【表1】 [Table 1]

【0020】そして、この様な△T=36℃に設定され
たオーステナイト系ステンレス鋼の材料を使用して、図
1に示す様な連続鋳造を行った。この図1において、1
は前記オーステナイト系ステンレス鋼の材料の溶湯3が
充填されているターンディッシュであり、該ターンディ
ッシュ1の注入口から溶湯3が鋳造型4内に注入され
る。
Then, continuous casting as shown in FIG. 1 was performed using the austenitic stainless steel material set at ΔT = 36 ° C. In FIG. 1, 1
Is a turn dish filled with the molten metal 3 of the austenitic stainless steel material, and the molten metal 3 is injected into the casting mold 4 from the inlet of the turn dish 1.

【0021】前記ターンディッシュ1から注入した溶湯
3は、鋳造型4により外周から冷却されて鋳片5に鋳造
されて連続的に引き出されるが、該鋳造型4内では、芯
部に溶融相Mが僅かに存在するとともに外周部に凝固相
Sが存在し、冷却が進むにつれて凝固相Sの比率、即ち
中心部固相率(fs)が増大する。そして、中心部固相
率が増大するにつれて溶融相Mの周りにはザク6が形成
されてくるが、中心部固相率15%以上になる位置(例
えば20%;fs=0.2)で、図2に示す様なカリバ
ーロール7等の圧下手段によって圧下する。
The molten metal 3 poured from the turn dish 1 is cooled from the outer periphery by the casting die 4 and cast into a slab 5 to be continuously drawn out. And the solidified phase S exists in the outer peripheral portion, and the ratio of the solidified phase S, that is, the solid fraction (fs) in the central portion increases as the cooling progresses. Zaku 6 is formed around the molten phase M as the central solid fraction increases, but at the position where the central solid fraction is 15% or more (for example, 20%; fs = 0.2). , The caliber roll 7 as shown in FIG.

【0022】この様にして、溶融相Mの周りのザク6が
押し潰されつつ、該溶融相Mが凝固する結果、鋳片5の
芯部には実質的にザク6が存在しなくなる。 (2)ここで、前記オーステナイト系ステンレス鋼にお
ける△Tを推定するために行った重回帰分析について説
明する。
In this way, while the zaku 6 around the molten phase M is crushed and the molten phase M is solidified, the zaku 6 does not substantially exist in the core of the slab 5. (2) Here, the multiple regression analysis performed to estimate ΔT in the austenitic stainless steel will be described.

【0023】鋼種の相変態を示すDTA(示差熱分析)
を実施し、そのデータを基に、△Tの重回帰分析を行っ
た。その結果を下記式(1)に示す。 △T=202+282C−39.9Si−6.28Mn+800S−1.72Cu −3.61Ni−6.66Cr−32.4Mo+127N …(1) (重相関係数;0.91) 尚、△Tを低下させる低下元素は、Cr、Mn、Si、
Ni、Cu △Tを増加させる向上元素は、S、C、N(特にS、C
の影響大) この様に、前記オーステナイト系ステンレス鋼において
は、上記式(1)に基づいて、固液共存幅の△Tを設定
することができるので、上記式(1)を用いて△Tが4
0℃以下になる様にその組成を調節することによって、
固液共存面積を小さくすることができる。
DTA (differential thermal analysis) showing phase transformation of steel type
Was performed, and multiple regression analysis of ΔT was performed based on the data. The result is shown in the following formula (1). ΔT = 202 + 282C-39.9Si-6.28Mn + 800S-1.72Cu-3.61Ni-6.66Cr-32.4Mo + 127N (1) (Multiple correlation coefficient; 0.91) The elements are Cr, Mn, Si,
The improving elements that increase Ni, Cu ΔT are S, C, N (especially S, C
As described above, in the austenitic stainless steel, the solid-liquid coexistence width ΔT can be set based on the above formula (1). Therefore, using the above formula (1), ΔT Is 4
By adjusting the composition so that it becomes 0 ° C or less,
The solid-liquid coexisting area can be reduced.

【0024】(3)つまり、本実施例では、その組成の
調節によって△Tを40℃以下に設定したオーステナイ
ト系ステンレス鋼の材料を用い、上述した様な連続鋳造
を行なうとともに、中心部固相率15%以上の所定位置
で圧下することによって、固液共存面積が小さくなった
状態にて圧下を行なうことになるので、ザク6の発生を
抑えるとともに発生したザク6を効果的に押し潰すこと
ができる。その結果、鋳片5の酸化が十分に防止できる
という顕著な効果を奏する。
(3) That is, in the present embodiment, the austenitic stainless steel material whose ΔT is set to 40 ° C. or less by adjusting the composition is used to perform the continuous casting as described above and the solid phase in the central portion. By pressing at a predetermined position with a rate of 15% or more, the pressing is performed in a state where the solid-liquid coexisting area becomes small. Therefore, it is possible to suppress the generation of Zaku 6 and to effectively crush the Zaku 6 that has occurred. You can As a result, there is a remarkable effect that the slab 5 can be sufficiently prevented from being oxidized.

【0025】次に、本発明の効果を確認するために行っ
た実験例について説明する。 (実験例1)この実験例1は、△Tが異なるオーステナ
イト系ステンレス鋼の凝固プロフィールを計算したもの
である。
Next, an example of an experiment conducted to confirm the effect of the present invention will be described. (Experimental Example 1) In Experimental Example 1, the solidification profiles of austenitic stainless steels having different ΔT were calculated.

【0026】具体的には、下記の表2の発明例(No.
1)及び比較例(No.2)の試料(共にスパーヒートS
H=40℃)を用い、鋳造速度Vc=0.50m/分で連
続鋳造を行なった場合の凝固プロフィールを計算した。
その結果を図3に示す。また、中心部固相率20%位置
(鋳造圧下効果の大きい位置)における固液共存面積を
計算した。その結果を、同じく表2及び表3に記す。
Specifically, the invention examples (No.
1) and the sample of Comparative Example (No. 2) (both Super Heat S
(H = 40 ° C.) was used to calculate the solidification profile when continuous casting was performed at a casting speed Vc = 0.50 m / min.
The result is shown in FIG. Further, the solid-liquid coexisting area at the central solid fraction 20% position (position having a large casting rolling reduction effect) was calculated. The results are also shown in Tables 2 and 3.

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 [Table 3]

【0029】図3から明らかな様に、固液共存幅△Tが
40℃以下の本発明例のものは、引き出される全ての段
階において固液共存面積が少なく、特に圧下位置におい
ては、1350mm2とその面積が少ない。よって、ザク
の発生が少ないので酸化を効果的に防止できる。これに
対して、固液共存幅△Tが40℃より大きい比較例のも
のは、固液共存面積が全ての段階で多く、特に圧下位置
においては、3850mm2にも達している。よって、ザ
クの発生が多いので、酸化を完全に防止することは困難
である。 (実験例2)本実験例2は、△Tが異なるオーステナイ
ト系ステンレス鋼を使用し、△Tの違いが、実際にどの
様に固液共存面積に影響を与えるかについて調べたもの
である。
As is apparent from FIG. 3, the solid-liquid coexistence width ΔT of the example of the present invention having a solid-liquid coexistence width ΔT of 40 ° C. or less has a small solid-liquid coexistence area at all stages of extraction, and is particularly 1350 mm 2 And its area is small. Therefore, since the occurrence of zaku is small, the oxidation can be effectively prevented. On the other hand, in the comparative example having the solid-liquid coexistence width ΔT of more than 40 ° C., the solid-liquid coexistence area is large at all stages, and particularly reaches 3850 mm 2 at the rolling position. Therefore, it is difficult to completely prevent oxidization, because a lot of Zaku is generated. (Experimental Example 2) In Experimental Example 2, austenitic stainless steels having different ΔT are used, and how the difference in ΔT actually affects the solid-liquid coexisting area is examined.

【0030】具体的には、下記の表4の発明例(試料N
o.3〜7)及び比較例(試料No.8〜10)の試料(ス
パーヒートSH=40℃)を用い、実験例1と同様に、
鋳造速度Vc=0.50m/分で連続鋳造を行なって、△
Tの異なる鋼種の中心部固相率fs=0.2の時の固液
共存面積を調べた。その結果を図4に示す。
Specifically, the invention examples (Sample N) shown in Table 4 below were used.
o.3 to 7) and the samples of Comparative Examples (Sample Nos. 8 to 10) (Superheat SH = 40 ° C.), as in Experimental Example 1,
Continuous casting was performed at a casting speed Vc = 0.50 m / min, and
The solid-liquid coexisting area was investigated when the solid fractions fs of the central portion of steel types having different Ts were 0.2. The result is shown in FIG.

【0031】[0031]

【表4】 [Table 4]

【0032】図4から明らかな様に、固液共存幅△Tが
40℃以下の発明例のものは、固液共存面積が小さく好
適であり、このうち、固液共存幅△Tが30℃以下のも
のが一層好適である。それに対して、固液共存幅△Tが
40℃を上回る比較例のものは、固液共存面積が大きく
好ましくない。 (実験例3)本実験例3は、固液共存幅△Tと内部酸化
との関係について調べたものである。
As is apparent from FIG. 4, the invention examples having a solid-liquid coexistence width ΔT of 40 ° C. or less are suitable because the solid-liquid coexistence area ΔT is 30 ° C. The following are even more preferred: On the other hand, the comparative example having a solid-liquid coexistence width ΔT of more than 40 ° C. has a large solid-liquid coexistence area, which is not preferable. (Experimental Example 3) In Experimental Example 3, the relationship between the solid-liquid coexistence width ΔT and the internal oxidation was examined.

【0033】具体的には、前記表4と同様な組成及び△
Tが異なる発明例の試料(No.3〜7)及び比較例の試
料(No.8〜10)に対して、上記実験例1と同様な連
続鋳造を行ない、各試料10個づつの固液共存幅△Tと
内部酸化の発生の状態との関係を調べた。その結果を下
記表5に記す。尚、表中で○は内部酸化の発生が殆どな
いことを示し、△は多少内部酸化が発生したことを示
し、×は内部酸化が多く発生したことを示している。
Specifically, the same composition and Δ as in Table 4 above were used.
For the samples of the invention examples (No. 3 to 7) having different T and the samples of the comparative examples (No. 8 to 10), the same continuous casting as in the above-mentioned Experimental Example 1 was performed, and 10 solid liquids of each sample. The relationship between the coexistence width ΔT and the state of occurrence of internal oxidation was investigated. The results are shown in Table 5 below. In the table, ○ indicates that almost no internal oxidation occurred, Δ indicates that some internal oxidation occurred, and × indicates that many internal oxidation occurred.

【0034】[0034]

【表5】 [Table 5]

【0035】この表5から明らかな様に、固液共存幅△
Tが小さくなるほど内部酸化が少ないことが明らかであ
る。従って、固液共存幅△Tを抑えることによって、良
好な製品を得ることができることがわかる。 (実験例4)本実験例4は、圧下の程度と内部酸化との
関係について調べたものである。
As is clear from Table 5, the solid-liquid coexistence width Δ
It is clear that the smaller T is, the less internal oxidation is. Therefore, it is understood that a good product can be obtained by suppressing the solid-liquid coexistence width ΔT. (Experimental Example 4) In Experimental Example 4, the relationship between the degree of reduction and internal oxidation was examined.

【0036】具体的には、上記表1の実施例と同じ組成
の複数の試料を用い、図5(a)に示す様に、圧下によ
って減少する面積(2S2)を未凝固部面積(S1)で割
った値(2S2/S1)、即ち(減面率/未凝固部面積)
と内部酸化の発生頻度との関係を調べた。その結果を、
図5(b)に示す。
Specifically, using a plurality of samples having the same composition as that of the embodiment in Table 1 above, as shown in FIG. 5 (a), the area (2S 2 ) which is reduced by the reduction is set to the unsolidified area (S). divided by the 1) (2S 2 / S 1 ), i.e. (reduction of area / unsolidified portion area)
The relationship between the frequency of internal oxidation and the frequency of internal oxidation was investigated. The result is
It shows in FIG.5 (b).

【0037】図6(b)から明らかな様に、圧下時の
(固液共存幅△Tに対応する)未凝固部面積が狭く、圧
下代の大きいほど中心性状が良化し、内部酸化が少ない
ことが明らかである。従って、固液共存幅△Tを抑えた
材料を用い、連続鋳造の際に圧下することによって、良
好な製品を得ることができることがわかる。
As is apparent from FIG. 6 (b), the area of the non-solidified portion (corresponding to the solid-liquid coexistence width ΔT) at the time of reduction is small, and the larger the reduction amount, the better the central properties and the less internal oxidation. It is clear. Therefore, it is understood that a good product can be obtained by using a material with a solid-liquid coexistence width ΔT suppressed and by rolling the material down during continuous casting.

【0038】以上本発明の実施例を説明したが、本発明
はこれら実施例に限定されるものではなく、その要旨を
逸脱しない範囲内で種々なる態様にて実現することがで
きることはいうまでもない。
Although the embodiments of the present invention have been described above, it is needless to say that the present invention is not limited to these embodiments and can be realized in various modes without departing from the scope of the invention. Absent.

【0039】[0039]

【発明の効果】以上詳述した様に、請求項1のオーステ
ナイト系ステンレス鋼では、固液共存幅△Tが40℃以
下であるので、連続鋳造する際には、固液共存面積は小
さくなるとともにザクの発生が抑えられ、酸化が防止さ
れる。よって、従来より容易に優れた性質の製品を得る
ことができる。
As described in detail above, in the austenitic stainless steel of claim 1, the solid-liquid coexistence width ΔT is 40 ° C. or less, so that the solid-liquid coexistence area becomes small during continuous casting. At the same time, the occurrence of zaku is suppressed and oxidation is prevented. Therefore, it is possible to easily obtain a product having excellent properties.

【0040】請求項2のオーステナイト系ステンレス鋼
の連続鋳造方法では、固液共存幅△Tが40℃以下のオ
ーステナイト系ステンレス鋼の材料の溶湯を、タンディ
ッシュから鋳造型内に注入し、鋳造型内にて鋳片に鋳造
して連続的に引き出す。よって、固液共存面積が少なく
なってザクの発生が抑えられるので、酸化を防止するこ
とができる。
In the continuous casting method for austenitic stainless steel according to the second aspect, a molten metal of the material of austenitic stainless steel having a solid-liquid coexistence width ΔT of 40 ° C. or less is poured from a tundish into a casting mold, It is cast into a slab and drawn continuously. Therefore, since the solid-liquid coexisting area is reduced and the occurrence of zaku is suppressed, the oxidation can be prevented.

【0041】請求項3のオーステナイト系ステンレス鋼
の連続鋳造方法では、固液共存幅△Tが40℃以下のオ
ーステナイト系ステンレス鋼の材料の溶湯を、タンディ
ッシュから鋳造型内に注入し、鋳造型内にて鋳片に鋳造
して連続的に引き出すとともに、鋳造型から引出した鋳
片を中心部固相率15%以上となる位置で圧下する。よ
って、固液共存面積が少なくなった上に圧下が行われて
ザクが低減されるので、一層効果的に酸化を防止するこ
とができる。
In the continuous casting method for austenitic stainless steel according to claim 3, the molten metal of the austenitic stainless steel material having a solid-liquid coexistence width ΔT of 40 ° C. or less is poured into the casting mold from the tundish, and the casting mold is used. While casting into a slab and continuously withdrawing the slab, the slab withdrawn from the casting mold is rolled down at a position where the central solid fraction is 15% or more. Therefore, since the solid-liquid coexisting area is reduced and the reduction is performed to reduce zaku, the oxidation can be more effectively prevented.

【0042】請求項4のオーステナイト系ステンレス鋼
の連続鋳造方法では、使用する材料の成分を調節するこ
とによって、固液共存幅を40℃以下に設定してあるの
で、ザクの発生を抑えて、酸化を防止することができ
る。請求項5のオーステナイト系ステンレス鋼の連続鋳
造方法では、材料の成分のうち、S且つ/又はCの含有
量を調節するという簡易な手段で、固液共存幅を40℃
以下に設定することができる。
In the continuous casting method for austenitic stainless steel according to claim 4, since the solid-liquid coexistence width is set to 40 ° C. or less by adjusting the composition of the material used, the occurrence of zaku is suppressed, Oxidation can be prevented. In the continuous casting method for austenitic stainless steel according to claim 5, the solid-liquid coexistence width is set to 40 ° C. by a simple means of adjusting the content of S and / or C in the material components.
It can be set to:

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例の連続鋳造を示す説明図である。FIG. 1 is an explanatory diagram showing continuous casting according to an example.

【図2】 実施例の圧下部分を示す説明図である。FIG. 2 is an explanatory view showing a rolled-down portion of the embodiment.

【図3】 実験例1の実験結果を示すグラフである。FIG. 3 is a graph showing experimental results of Experimental Example 1.

【図4】 実験例2の実験結果を示すグラフである。FIG. 4 is a graph showing experimental results of Experimental Example 2.

【図5】 実験例4の実験結果を示すグラフである。5 is a graph showing experimental results of Experimental Example 4. FIG.

【図6】 従来技術を示し、(a)は連続鋳造の説明
図、(b)は鋳片を切断して示す説明図である。
FIG. 6 shows a conventional technique, (a) is an explanatory view of continuous casting, and (b) is an explanatory view showing a cast piece by cutting.

【符号の説明】[Explanation of symbols]

1…ターンディッシュ、 2…注入口、3…
溶湯、 4…鋳造型、5…鋳
片、 6…カリバーロール
1 ... turn dish, 2 ... inlet, 3 ...
Molten metal, 4 ... Casting mold, 5 ... Cast slab, 6 ... Caliber roll

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 連続鋳造方法によって製造されるオース
テナイト系ステンレス鋼の固液共存幅を40℃以下に設
定したことを特徴とするオーステナイト系ステンレス
鋼。
1. An austenitic stainless steel characterized in that a solid-liquid coexistence width of the austenitic stainless steel produced by a continuous casting method is set to 40 ° C. or less.
【請求項2】 固液共存幅を40℃以下に設定したオー
ステナイト系ステンレス鋼の材料の溶湯を、タンディッ
シュから鋳造型内に注入し、該鋳造型内にて鋳片に鋳造
して連続的に引き出すことを特徴とするオーステナイト
系ステンレス鋼の連続鋳造方法。
2. A molten metal of an austenitic stainless steel material having a solid-liquid coexistence width set to 40 ° C. or less is poured from a tundish into a casting mold, and cast into a slab in the casting mold to be continuously cast. A continuous casting method for austenitic stainless steel, which is characterized in that
【請求項3】 固液共存幅を40℃以下に設定したオー
ステナイト系ステンレス鋼の材料の溶湯を、タンディッ
シュから鋳造型内に注入し、該鋳造型内にて鋳片に鋳造
して連続的に引き出すとともに、該鋳造型から引出した
鋳片を中心部固相率15%以上となる位置で圧下するこ
とを特徴とするオーステナイト系ステンレス鋼の連続鋳
造方法。
3. A molten metal of an austenitic stainless steel material having a solid-liquid coexistence width set to 40 ° C. or less is poured from a tundish into a casting mold and continuously cast by casting into a cast piece in the casting mold. A continuous casting method for austenitic stainless steel, characterized in that the slab drawn from the casting die is pressed at a position where the solid fraction of the central portion is 15% or more.
【請求項4】 使用する材料の成分を調節することによ
って、前記固液共存幅を40℃以下に設定したことを特
徴とする前記請求項2又は3記載のオーステナイト系ス
テンレス鋼の連続鋳造方法。
4. The continuous casting method for austenitic stainless steel according to claim 2, wherein the solid-liquid coexistence width is set to 40 ° C. or less by adjusting the composition of the material used.
【請求項5】 材料の成分の中のS且つ/又はCの含有
量を調節することによって、前記固液共存幅を40℃以
下に設定したことを特徴とする前記請求項4記載のオー
ステナイト系ステンレス鋼の連続鋳造方法。
5. The austenitic alloy according to claim 4, wherein the solid-liquid coexistence width is set to 40 ° C. or less by adjusting the content of S and / or C in the components of the material. Continuous casting method for stainless steel.
JP18956894A 1994-08-11 1994-08-11 Continuous casting of austenitic stainless steel Expired - Fee Related JP3422082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18956894A JP3422082B2 (en) 1994-08-11 1994-08-11 Continuous casting of austenitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18956894A JP3422082B2 (en) 1994-08-11 1994-08-11 Continuous casting of austenitic stainless steel

Publications (2)

Publication Number Publication Date
JPH0852554A true JPH0852554A (en) 1996-02-27
JP3422082B2 JP3422082B2 (en) 2003-06-30

Family

ID=16243517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18956894A Expired - Fee Related JP3422082B2 (en) 1994-08-11 1994-08-11 Continuous casting of austenitic stainless steel

Country Status (1)

Country Link
JP (1) JP3422082B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010073236A (en) * 1999-11-09 2001-08-01 이구택 Method for continuously casting duplex stainless steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010073236A (en) * 1999-11-09 2001-08-01 이구택 Method for continuously casting duplex stainless steel

Also Published As

Publication number Publication date
JP3422082B2 (en) 2003-06-30

Similar Documents

Publication Publication Date Title
RU2142861C1 (en) Method for continuous casting of peritectic steels
US4255188A (en) Free machining steel with bismuth and manganese sulfide
AU757307B2 (en) Method for continuously casting ferritic stainless steel strips free of microcracks
EP0027510B1 (en) Bismuth containing steel
JP3422082B2 (en) Continuous casting of austenitic stainless steel
US3940976A (en) Method of determining the suitability of continuously cast slabs of Al- or Al-Si-killed soft steel for producing cold rolled sheets to be tinned
JP3257224B2 (en) Continuous casting method
JPH02303661A (en) Continuous casting method
JP4466335B2 (en) Steel continuous casting method
JP2004307931A (en) Continuously cast piece, and casting method therefor
JP7273307B2 (en) Steel continuous casting method
JP3365338B2 (en) Continuous cast slab and continuous casting method
JPH0390259A (en) Continuous casting method
JPH078421B2 (en) Continuous casting method
JP2000301306A (en) Cast slab excellent in quality and working characteristic and steel material worked from this slab
JP2977366B2 (en) Manufacturing method of austenitic stainless steel sheet
JP2823085B2 (en) Continuous casting method
JP2000288698A (en) Cast slab excellent in rolling characteristic and steel material using this cast slab
JPH11179489A (en) Production of steel wire rod
JPH07121437B2 (en) Method for preventing defects in the center of a continuously cast slab of Cr-containing steel
Chickarev et al. Improving the casting process of peritectic steel grades
JP2001347349A (en) Cast slab provided with fine solidification structure and steel material processed from the cast slab
KR20040011015A (en) method of manufacturing high Ni alloy steel with good surface quality
JPH04279264A (en) Continuous casting method
JP2920836B2 (en) Continuous casting method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees