JPH08505076A - 超音波手段を用いる薬学的組成物の製造法 - Google Patents

超音波手段を用いる薬学的組成物の製造法

Info

Publication number
JPH08505076A
JPH08505076A JP6515716A JP51571694A JPH08505076A JP H08505076 A JPH08505076 A JP H08505076A JP 6515716 A JP6515716 A JP 6515716A JP 51571694 A JP51571694 A JP 51571694A JP H08505076 A JPH08505076 A JP H08505076A
Authority
JP
Japan
Prior art keywords
drug
matrix
biodegradable
composition
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6515716A
Other languages
English (en)
Inventor
オラビ テルメレ、ペルチ
スザンナ ミエチネン−レデ、サイラ
Original Assignee
オラビ テルメレ、ペルチ
スザンナ ミエチネン−レデ、サイラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オラビ テルメレ、ペルチ, スザンナ ミエチネン−レデ、サイラ filed Critical オラビ テルメレ、ペルチ
Publication of JPH08505076A publication Critical patent/JPH08505076A/ja
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/2031Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyethylene oxide, poloxamers
    • A61K9/204Polyesters, e.g. poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2095Tabletting processes; Dosage units made by direct compression of powders or specially processed granules, by eliminating solvents, by melt-extrusion, by injection molding, by 3D printing

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Steroid Compounds (AREA)

Abstract

(57)【要約】 マトリックス型薬物送達システムを形成するために、高分子/薬物組成物を、迅速および効率的に成形することが可能である、超音波加工を用いる方法を開示する。前記方法の長所は、製造の速さおよび良好な制御である。前記方法によれば、最も常套的な製造法よりも、高分子および/または薬物の分解を引き起こすことが少なくなる。

Description

【発明の詳細な説明】 超音波手段を用いる薬学的組成物の製造法 発明の分野 本発明は超音波加工を用いる薬学的組成物の製造法に関する。 発明の背景 マトリックス型の薬物送達システムは、長時間にわたる制御方式で、薬物を放 出することが可能であることがよく知られている。従来では、薬物を放出するマ トリックスは、射出成形、押出または圧縮成形などの一般的な高分子加工法を用 いて調製されていた。これらの方法は、しばしば活性物質および/または高分子 の顕著な分解を導くかまたは、時間がかかり、用いるのが面倒である。それらの 分解効果の原因となるおもな要因は、機械のスクリューまたは他の混合装置によ って生じる機械的な圧力に結びついた、長い加熱時間である。熱によって生じる 問題は、溶剤キャスティング(solvent casting)により回避することが可能で あるが、この方法によれば有害な溶剤残渣が結果として生じることがあり、ポリ グリコール酸(PGA)のような不溶性高分子には適当ではない。 発明の開示 本発明の目的は、前述の欠点を排除した、薬物を放出する組成物の製造法を提 供することである。本発明の目 的は、生体内分解性高分子マトリックス、および前記マトリックス中に混合およ び/または溶解する少なくとも1つの薬物からなる、薬物を放出する生体内分解 性組成物の製造法であって、超音波手段を用いることにより生体内分解性高分子 および薬物の混合物が少なくとも部分的に融解する点を特徴とする製造法により 達成される。 超音波を用いる技法は、熱可塑性成形と結びついた産業、たとえば自動車およ び織物産業において広く用いられている。ここで、超音波加工が高分子を用いる 薬物送達システムの可塑化および成形に首尾良く用いられうることが見出された 。従来用いられてきた方法と比較すると、超音波による成形法はより迅速である こと、より制御可能であること、および高分子と薬物とを実質的にほとんど破壊 しないことを利点として有する。 発明を実施するための最良の形態 超音波成形は、主供給源からのエネルギーが発電機によってUS域(通常20 kHz)の電気振動に変換され、さらに同一の振動数を有する機械的な振動に変 換される方法にもとづく。これらの機械的振動は増幅器(変換器)およびソノト ロード(sonotrode)を通じて被加工物へ伝えられる。材料における機械的振動 の吸収および反射ならびに断片もしくは接合面の境界面摩擦の結果として、成形 または接合される材料が加熱される。 超音波加工に必要とされる時間は、通常きわめて短く、好ましくは1.5秒よ り短い。この事実は、すべての適用、とくに大量生産される製品が問題となるば あいに影響を及ぼす。加熱時間が短いことは、高分子または 活性物質のいずれもが長時間にわたる温度上昇に耐えられない、薬物放出システ ムへの適用においてとくに重要である。 高分子/薬物組成物の超音波成形は、所望の大きさおよび幾何学的形状のマト リックス型製剤を製造するのに適するソノロードおよび鋳型を供給するのならば 、一般的な超音波溶接装置を用いて行われる。たとえば、錠剤または棒状マトリ ックス型製剤は、容易に生産されるだけでなく、より複雑な幾何学的形状にもま た調製することが可能である。 超音波加工される薬物放出マトリックスに適する高分子原料は、たとえばポリ オルトエステル類および生体内分解性ポリ−α−ヒドロキシ酸類、たとえばポリ グリコリド(PGA)、ポリラクチド(PLA)、ポリヒドロキシ酪酸塩(PH B)およびPHB/ポリヒドロキシ吉草酸塩(PHV)共重合体などが含まれる 。これらの原料の多くは、それらの融解温度が狭い範囲にあるので、これらを射 出成形または押出成形をすることはきわめて困難である。実際には、高分子が薬 物と混合されるばあいの加工は、制御することが困難であるといってもよく、原 料の粘度の急激な変化が、0.5℃の温度変化または時間とともに生じる可能性 があり、成分の融点の違いにより、1つまたはより多くの物質がしばしば、少な くとも部分的に分解する結果となる。超音波加工はほとんど即時であり、加工の パラメータ(parameter)(溶接時間、保圧(holding)時間、圧力、溶接のため のエネルギー、溶接距離、振幅、衝撃(impact)速度)がきわめて正確に測定さ れるので、超音波成形では、これらの問題 はほとんど回避することができる。 超音波加工に適した薬物の具体例は、たとえば抗生物質、ポリペプチド類およ びステロイドホルモン類である。長期間および/または局所的な送達が有益であ る、ほかの多くの種類の薬物が用いられることも可能である。 超音波加工により産生される薬物送達システムは、皮下に適用される長期間の 避妊システム、または骨髄炎の骨中に移植される抗生物質を充填した棒状製剤な どの顕微鏡を使わず(macroscopic)に移植可能な器具として用いられるのが最 良となりうる。これらの種類または他の種類の移植片の調製は、一般に薬物と高 分子とを混合すること、混合物を真空乾燥することおよび超音波で成形すること からなる。 高分子/薬物混合物の均質化は、たとえば微細に粉砕された粉末を機械的に混 合すること、薬物溶液中で高分子粉末を撹拌すること、両(すべての)物質を一 般的な溶媒中に溶解すること、または高分子に薬物溶液を含浸させることによっ て行うことが可能である。混合ののちに、原料を完全に真空乾燥することが、予 測可能な加工をすることおよび放出効果には好ましい。 原料の成形は、適切に設計されたソノトロードおよび所望の大きさと形状の鋳 型を装備する一般的な超音波溶接装置を用いて行うことが可能である。乾燥した 物質を鋳型に入れ、それらに超音波を適用する。0.25gのサンプルを可塑化 および形成するのに必要とされる加工時間は、用いられる圧力および振幅(増幅 器)と同じく、用いられる材料に依存して0.1〜1.0秒の間で 変動する。この大きさのサンプルに伝えられるエネルギーは、おおよそ50〜5 00Wsである。 射出成形および押出成形されたほとんどのマトリックス型製剤のばあいは、超 音波加工により調製されたサンプルより、in vitroにおける放出挙動が実質的に より悪く、より予測できないことが示されており、それは高分子類およびとくに 薬物に対するこれらの方法の分解効果のためであることがわかっている。超音波 成形されたサンプルからのin vitroにおける薬物放出は、圧縮成形されたサンプ ルからの薬物放出とおよそ等しい。しかしながら、結果のばらつきは圧縮成形さ れたサンプルの方がより大きく、これら自体の加工方法を比較すると、超音波成 形の方がより行いやすく、早く、また正確な方法であることがわかる。 本発明を、添付の図面を参照しながら以下に示す実施例によってさらに説明す る。 図面の簡単な説明 図中、図1は超音波加工されたPLLAマトリックス型製剤からのレボノルゲ ストレール(levonorgestrel)のin vitroにおける放出を示し、図2は圧縮成形 されたPLLAマトリックス型製剤からのレボノルゲストレールのin vitroにお ける放出を示し、図3は超音波成形されたPGAマトリックス型製剤からのシプ ロフロキサシン(ciprofloxacin)のin vitroにおける放出を示し、図4は超音 波成形されたPGAマトリックス型製剤からのシプロフロキサシンのin vitroに おける放出の累積を示し、図5は圧縮成形されたPGA棒状製剤からのシプロ フロキサシンのin vitroにおける放出を示し、図6は圧縮成形されたPGA棒状 製剤からのシプロフロキサシンのin vitroにおける放出の累積を示し、図7は超 音波成形されたPHB/PHV平板状製剤(7.5重量% 17−β−エストラ ジオール)からの17−β−エストラジオールのin vitroにおける放出を示し、 そして図8は超音波成形されたPHB/PHV平板状製剤(15重量% 17− β−エストラジオール)からの17−β−エストラジオールのin vitroでの放出 を示す。 実施例1 ポリ−L−ラクチド(poly-L-lactide)(PLLA)に対する射出成形および 超音波加工の効果 PLLA(分子量260,000)を、まず真空中で乾燥し、続いてチッ素雰 囲気中超音波加工または射出成形のいずれかを行った。超音波によって製造され たサンプルはφ11×2mmのボタン状であり、各サンプルに対する超音波適用 の継続時間は約0.3秒であった。ボタン状の成形物に対して伝えられたエネル ギーは200Wsであり、成形の間の圧力は1.3バールであった。射出成形は バッテンフェルド(Battenfeld) BA 230型装置を用いて行い、成形され たサンプルを種々の大きさの棒状に形成した。両方のタイプのサンプルを試験前 に研磨し、再度真空乾燥した。 加工により生じた、高分子の特性および構造における変化を、メルトフローイ ンデックス(MFI)の測定および示差走査熱量測定(DSC)によって評価し た。180〜195℃で行われたMFI測定により、すべての 温度においてMFIが顕著に増加するにつれて、射出成形はPLLAに対して目 立った分解効果を有することが示された。超音波加工によって生じるMFIの増 加は顕著というほどではなかった(表1)。DSC走査により、超音波加工によ るサンプルと同様に、射出成形によるサンプルの融点のわずかな低下が示された 。超音波適用後の急速な冷却によって、超音波加工により調製されたPLLAに より小さな結晶化度がもたらされる(表2)。 実施例2 超音波加工、圧縮成形および射出成形されたマトリックス型製剤中の活性成分 の総濃度 リンコ(Rinco)PCS超音波溶接装置を用いて、真空乾燥されたPLLA( 分子量260,000)/15重量%レボノルゲストレール混合物から超音波成 形されたサンプルを調製した。溶接時間0.秒、1.3バール33およびサンプ ルあたりのエネルギー約200Wsを用いてφ11×2mmのボタン状のサンプ ルを形成した。調製されたサンプルのいくつかをクロロホルムに溶解し、溶液中 の総レボノルゲストレール濃度をUV−分光光度的に240nmで測定した。サ ンプルのレボノルゲストレール含有量は、理論的に存在する薬物量の100%に 近いことがわかった。 同様に、PLLA/15重量%レボノルゲストレール混合物を、170〜17 5℃で5分間、φ20×2mmの平板状に圧縮成形した。加工中にサンプルに付 された圧力は10MPaであった。溶解した平板状製剤から測定されたレボノル ゲストレール含有量もまた、予期される含有量の100%に近かった。 射出成形されたPLLA/15重量%レボノルゲストレールサンプルは、ブラ ベンダー プラスチコード バッチミキサー(Brabender Plasticord batch mix er)中、190℃で、乾燥した材料を最初に溶解均質化(melt homogenization )し、つぎに195〜200℃で実験室規模のSP−2装置を用いて、φ20× 2mmの平板状に射出成形することにより調製された。これらのサンプルでは、 レボノルゲストレールは理論値の約24%しか加 工後の存在が認められず、このことは、これらの材料に対する射出成形/溶解均 質化の損傷効果を明確に示している。 実施例3 超音波加工、圧縮成形および射出成形されたPLLAマトリックス型製剤から のレボノルゲストレールのin vitroにおける放出 すべてのサンプルのin vitroにおける加水分解実験をリン酸塩緩衝液(pH7 .4)中、37℃で行った。緩衝溶液を定期的に交換し、溶液中のレボノルゲス トレール濃度をHPLC(メルク(Merck)、日立(Hitachi)製)で測定した。 圧縮成形されたPLLA/15%レボノルゲストレールマトリックス型製剤は 、最初の崩壊後1日あたり10〜12μgのレボノルゲストレールを顕著な程度 に着実に放出した(図2)。放出は、マトリックスの特性に依存するよりもむし ろ、緩衝溶液中のステロイドの溶解性に強く依存する。しかしながら、加工の間 に分解された活性成分の痕跡は、検出されなかった。 超音波加工されたサンプルからの放出(図1)は、最初の崩壊後(約25日後 )、1日あたり6〜8μgである。180日後の総放出量は4.8%であった。 射出成形されたサンプルから放出されるレボノルゲストレールは、試験期間の ほとんどを通じて、かろうじて検出できるレベル(<<1μg/日)であった。 きわめてわずかな放出であるために、また急速にマトリックスを分解するために 、加水分解の2ヶ月後、実験は失敗で 中断すべきと考えた。 実験例4 超音波加工および圧縮成形されたポリグリコール酸(PGA)マトリックス型 製剤から放出されるin vitroでのシプロフロキサシン 局所適用が可能であり、骨髄炎の抗生物質による治療を制御することが可能で ある、PGAマトリックス型製剤に含まれたシプロフロキサシンを、シプロフロ キサシンを含浸したデキソン(Dexon)2“S”縫合糸から調製した。真空乾燥 された含浸(5重量%シプロフロキサシン)縫合糸をφ3.2×5mmの棒状に 圧縮成形するか、またはφ11×2mmの平板状に超音波成形した。圧縮成形は 、200〜205℃、0〜20MPaの圧力下で6〜7分間行われた。超音波加 工は、約1.5秒の溶接時間、1.2バールおよび270〜300Wsのエネル ギーを伝達することによって達成された。 超音波により調製されたサンプルからのシプロフロキサシンの放出は、184 9±93μg/日(X±標準偏差(SD)、N=8)で始まり、112日後には 0.8±0.3μg/日まで徐々に少なくなった(図3)。このときに、サンプ ルのすべてが完全に分解されたので、実験を中止した。加水分解の完了時におけ る抗生物質放出の百分率は、その理論値の55±5%まで達した(図4)。残り の約45%は、縫合糸への不完全な吸収のために加工の間に失われた。 圧縮成形されたサンプルの加水分解の結果を、図5および6に示す。サンプル からのシプロフロキサシン放出 は、とくにサンプルの大きさおよび形の違いを考慮すると、超音波加工されたサ ンプルから放出されるシプロフロキサシンと同等である。しかしながら、個々の サンプル間のばらつきは、圧縮成形された棒状製剤の方が著しくより大きい。ま た圧縮成形加工は1サンプルあたり20〜30分必要とするのに対し、超音波成 形は2秒より短い時間で行うことができる。 実施例5 超音波成形されたPHB/PHV/17−β−エストラジオールサンプル 微細化されたエストラジオールおよびPHB/PHV粉末(粉末の大きさ<3 50μm)を7.5:92.5および15:85の比率で機械的に混合した。均 質化された混合物を30℃で3日間、真空乾燥し、そののち、φ11×2mm平 板状に超音波成形した。加工のパラメータは、0.118〜0.128秒の溶接 時間、5.0秒の保圧時間、1.1バールの圧力および53Wsの溶接のための エネルギーであった。平板状製剤のいくつかを、クロロホルムに溶解し、サンプ ルの総エストラジオール含量を、パーキン エルマー ラムダ(Perkin Elmer L ambda)17型 UV/VIS分光光度計を用いて280nmで測定した。エス トラジオールの量は、理論値の100%に近いことがわかった。 in vitroでのPHB/PHV/17−β−エストラジオール平板型製剤の加水 分解実験は、リン酸塩緩衝液(pH7.4、37℃)中で行った。緩衝溶液を定 期的に交換し、溶液中のエストラジオール濃度をHPLC (メルク、日立製)を用いて評価した。結果は、ほとんどマトリックス型薬物送 達システムの典型である1次反応速度的放出を示した(図7および8)。 図7(混合比7.5:92.5)は、最初の崩壊後の放出が20〜70日間で は6〜11μg/日であったことを示している。120〜290日間では、放出 は約2〜4μg/日であった。290日後の総放出量は11.5%であった。 図8(混合比15:85)は、最初の崩壊後の放出が50〜100日間では1 0〜13μg/日であったことを示している。100〜230日間では、放出は 約4.5〜10μg/日であった。230日後の総放出量は10.5%であった 。
───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,DE, DK,ES,FR,GB,GR,IE,IT,LU,M C,NL,PT,SE),OA(BF,BJ,CF,CG ,CI,CM,GA,GN,ML,MR,NE,SN, TD,TG),AU,BB,BG,BR,BY,CA, CZ,FI,HU,JP,KP,KR,KZ,LK,L V,MG,MN,MW,NO,NZ,PL,RO,RU ,SD,SK,UA,US,UZ,VN (72)発明者 ミエチネン−レデ、サイラ スザンナ フィンランド共和国、フィン―33710 テ ムペレキルシカツ 27 セー

Claims (1)

  1. 【特許請求の範囲】 1.生体内分解性高分子マトリックスおよび該マトリックス中に混合および/ま たは溶解される少なくとも1つの薬物からなる、薬物を放出する生体内分解性組 成物の製造法であって、超音波手段を用いることにより、生体内分解性高分子お よび薬物の混合物が少なくとも部分的に融解することを特徴とする、薬物を放出 する生体内分解性組成物の製造法。 2.生体内分解性高分子および薬物の混合物が、超音波による融解の前に真空乾 燥されることを特徴とする請求の範囲第1項記載の方法。 3.生体内分解性高分子マトリックスが、ポリオルトエステル、ポリラクチドま たはポリ−α−ヒドロキシ酸からなることを特徴とする請求の範囲第1〜2項の いずれかに記載の方法。 4.生体内分解性高分子マトリックスが、ポリグリコリド(PGA)、ポリ−L −ラクチド(PLLA)、ポリヒドロキシ酪酸塩(PHB)またはPHB/ポリ ヒドロキシ吉草酸塩(PHV)共重合体からなることを特徴とする請求の範囲第 3項記載の方法。 5.薬物が、抗生物質、ステロイドホルモンまたはポリペプチドであることを特 徴とする請求の範囲第1〜4項のいずれかに記載の方法。 6.薬物が、レボノルゲストレール、シプロフロキサシンまたは17−β−エス トラジオールであることを特徴とする請求の範囲第5項記載の方法。 7.生体内分解性高分子マトリックスおよび該マトリッ クス中に混合および/または溶解される少なくとも1つの薬物からなる、薬物を 放出する生体内分解性組成物であって、該組成物が請求の範囲第1〜6項記載の いずれかの方法により調製されることを特徴とする薬物を放出する生体内分解性 組成物。 8.組成物が、人または動物の体内に移植されることが可能であることを特徴と する請求の範囲第7項記載の組成物。
JP6515716A 1992-12-31 1993-12-31 超音波手段を用いる薬学的組成物の製造法 Pending JPH08505076A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB9227166A GB2273874A (en) 1992-12-31 1992-12-31 Preparation of pharmaceuticals in a polymer matrix
GB9227166.7 1992-12-31
PCT/FI1993/000575 WO1994015588A1 (en) 1992-12-31 1993-12-31 A method for preparing pharmaceutical compositions through ultrasonic means

Publications (1)

Publication Number Publication Date
JPH08505076A true JPH08505076A (ja) 1996-06-04

Family

ID=10727365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6515716A Pending JPH08505076A (ja) 1992-12-31 1993-12-31 超音波手段を用いる薬学的組成物の製造法

Country Status (8)

Country Link
US (1) US5620697A (ja)
EP (1) EP0676956B1 (ja)
JP (1) JPH08505076A (ja)
AU (1) AU5701794A (ja)
DE (1) DE69317306T2 (ja)
FI (1) FI953056A (ja)
GB (1) GB2273874A (ja)
WO (1) WO1994015588A1 (ja)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9161917B2 (en) 2008-05-09 2015-10-20 Grünenthal GmbH Process for the preparation of a solid dosage form, in particular a tablet, for pharmaceutical use and process for the preparation of a precursor for a solid dosage form, in particular a tablet
US9629807B2 (en) 2003-08-06 2017-04-25 Grünenthal GmbH Abuse-proofed dosage form
US9636303B2 (en) 2010-09-02 2017-05-02 Gruenenthal Gmbh Tamper resistant dosage form comprising an anionic polymer
US9655853B2 (en) 2012-02-28 2017-05-23 Grünenthal GmbH Tamper-resistant dosage form comprising pharmacologically active compound and anionic polymer
US9675610B2 (en) 2002-06-17 2017-06-13 Grünenthal GmbH Abuse-proofed dosage form
US9737490B2 (en) 2013-05-29 2017-08-22 Grünenthal GmbH Tamper resistant dosage form with bimodal release profile
US9750701B2 (en) 2008-01-25 2017-09-05 Grünenthal GmbH Pharmaceutical dosage form
US9855263B2 (en) 2015-04-24 2018-01-02 Grünenthal GmbH Tamper-resistant dosage form with immediate release and resistance against solvent extraction
US9872835B2 (en) 2014-05-26 2018-01-23 Grünenthal GmbH Multiparticles safeguarded against ethanolic dose-dumping
US9913814B2 (en) 2014-05-12 2018-03-13 Grünenthal GmbH Tamper resistant immediate release capsule formulation comprising tapentadol
US9925146B2 (en) 2009-07-22 2018-03-27 Grünenthal GmbH Oxidation-stabilized tamper-resistant dosage form
US10058548B2 (en) 2003-08-06 2018-08-28 Grünenthal GmbH Abuse-proofed dosage form
US10064945B2 (en) 2012-05-11 2018-09-04 Gruenenthal Gmbh Thermoformed, tamper-resistant pharmaceutical dosage form containing zinc
US10080721B2 (en) 2009-07-22 2018-09-25 Gruenenthal Gmbh Hot-melt extruded pharmaceutical dosage form
US10130591B2 (en) 2003-08-06 2018-11-20 Grünenthal GmbH Abuse-proofed dosage form
US10154966B2 (en) 2013-05-29 2018-12-18 Grünenthal GmbH Tamper-resistant dosage form containing one or more particles
US10201502B2 (en) 2011-07-29 2019-02-12 Gruenenthal Gmbh Tamper-resistant tablet providing immediate drug release
US10300141B2 (en) 2010-09-02 2019-05-28 Grünenthal GmbH Tamper resistant dosage form comprising inorganic salt
US10335373B2 (en) 2012-04-18 2019-07-02 Grunenthal Gmbh Tamper resistant and dose-dumping resistant pharmaceutical dosage form
US10449547B2 (en) 2013-11-26 2019-10-22 Grünenthal GmbH Preparation of a powdery pharmaceutical composition by means of cryo-milling
US10624862B2 (en) 2013-07-12 2020-04-21 Grünenthal GmbH Tamper-resistant dosage form containing ethylene-vinyl acetate polymer
US10695297B2 (en) 2011-07-29 2020-06-30 Grünenthal GmbH Tamper-resistant tablet providing immediate drug release
US10729658B2 (en) 2005-02-04 2020-08-04 Grünenthal GmbH Process for the production of an abuse-proofed dosage form
US10842750B2 (en) 2015-09-10 2020-11-24 Grünenthal GmbH Protecting oral overdose with abuse deterrent immediate release formulations
US11224576B2 (en) 2003-12-24 2022-01-18 Grünenthal GmbH Process for the production of an abuse-proofed dosage form
US11844865B2 (en) 2004-07-01 2023-12-19 Grünenthal GmbH Abuse-proofed oral dosage form

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9310030D0 (en) * 1993-05-15 1993-06-30 Scras Dry processed particles and process for the preparation of the same
US5968543A (en) * 1996-01-05 1999-10-19 Advanced Polymer Systems, Inc. Polymers with controlled physical state and bioerodibility
US7541049B1 (en) 1997-09-02 2009-06-02 Linvatec Biomaterials Oy Bioactive and biodegradable composites of polymers and ceramics or glasses and method to manufacture such composites
IN186245B (ja) 1997-09-19 2001-07-14 Ranbaxy Lab Ltd
KR19990065921A (ko) * 1998-01-19 1999-08-16 김충섭 항생제의서방성제제
US5939453A (en) * 1998-06-04 1999-08-17 Advanced Polymer Systems, Inc. PEG-POE, PEG-POE-PEG, and POE-PEG-POE block copolymers
US6350284B1 (en) 1998-09-14 2002-02-26 Bionx Implants, Oy Bioabsorbable, layered composite material for guided bone tissue regeneration
US6398814B1 (en) 1998-09-14 2002-06-04 Bionx Implants Oy Bioabsorbable two-dimensional multi-layer composite device and a method of manufacturing same
US6498153B1 (en) 1998-12-31 2002-12-24 Akzo Nobel N.V. Extended release growth promoting two component composition
CN100489160C (zh) * 2001-04-18 2009-05-20 拜奥资源公司 电荷阻挡层流通电容器
US6590059B2 (en) * 2001-05-11 2003-07-08 Ap Pharma, Inc. Bioerodible polyorthoesters from dioxolane-based diketene acetals
AU2002324447B2 (en) * 2001-06-22 2006-06-29 Durect Corporation Zero-order prolonged release coaxial implants
GB0116920D0 (en) * 2001-07-11 2001-09-05 Sulzer Vascutek Ltd Delivery system
US6524606B1 (en) 2001-11-16 2003-02-25 Ap Pharma, Inc. Bioerodible polyorthoesters containing amine groups
US7045589B2 (en) * 2002-11-15 2006-05-16 A.P. Pharma, Inc. Bioerodible poly(ortho esters) from dioxane-based di(ketene acetals), and block copolymers containing them
WO2004069138A2 (en) * 2003-02-03 2004-08-19 Novartis Ag Pharmaceutical formulation
ES2289542T3 (es) * 2003-08-06 2008-02-01 Grunenthal Gmbh Forma farmaceutica protegida contra un posible abuso.
US8075872B2 (en) 2003-08-06 2011-12-13 Gruenenthal Gmbh Abuse-proofed dosage form
DE102004032051A1 (de) * 2004-07-01 2006-01-19 Grünenthal GmbH Verfahren zur Herstellung einer gegen Missbrauch gesicherten, festen Darreichungsform
DE102004020220A1 (de) * 2004-04-22 2005-11-10 Grünenthal GmbH Verfahren zur Herstellung einer gegen Missbrauch gesicherten, festen Darreichungsform
US8551512B2 (en) * 2004-03-22 2013-10-08 Advanced Cardiovascular Systems, Inc. Polyethylene glycol/poly(butylene terephthalate) copolymer coated devices including EVEROLIMUS
DE102004032103A1 (de) * 2004-07-01 2006-01-19 Grünenthal GmbH Gegen Missbrauch gesicherte, orale Darreichungsform
ES2432556T3 (es) * 2004-08-04 2013-12-04 Evonik Corporation Métodos para fabricar dispositivos de suministro y sus dispositivos
US7862552B2 (en) 2005-05-09 2011-01-04 Boston Scientific Scimed, Inc. Medical devices for treating urological and uterine conditions
US8882747B2 (en) * 2005-11-09 2014-11-11 The Invention Science Fund I, Llc Substance delivery system
DE102007011485A1 (de) 2007-03-07 2008-09-11 Grünenthal GmbH Darreichungsform mit erschwertem Missbrauch
US8728528B2 (en) 2007-12-20 2014-05-20 Evonik Corporation Process for preparing microparticles having a low residual solvent volume
GB0921203D0 (en) * 2009-12-03 2010-01-20 Al Lamee Kadem G Drugs formulations for cardiovascular stents
CN102821757B (zh) * 2010-02-03 2016-01-20 格吕伦塔尔有限公司 通过挤出机制备粉末状药物组合物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4452747A (en) * 1982-03-22 1984-06-05 Klaus Gersonde Method of and arrangement for producing lipid vesicles
EP0190833B1 (en) * 1985-02-07 1991-03-27 Takeda Chemical Industries, Ltd. Method for producing microcapsule
JPS63122620A (ja) * 1986-11-12 1988-05-26 Sanraku Inc ポリ乳酸マイクロスフエア及びその製造方法
US5171148A (en) * 1989-06-30 1992-12-15 Ethicon, Inc. Dental inserts for treatment of periodontal disease
US5268179A (en) * 1992-02-14 1993-12-07 Ciba-Geigy Corporation Ultrasonically sealed transdermal drug delivery systems

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9675610B2 (en) 2002-06-17 2017-06-13 Grünenthal GmbH Abuse-proofed dosage form
US10369109B2 (en) 2002-06-17 2019-08-06 Grünenthal GmbH Abuse-proofed dosage form
US10058548B2 (en) 2003-08-06 2018-08-28 Grünenthal GmbH Abuse-proofed dosage form
US9629807B2 (en) 2003-08-06 2017-04-25 Grünenthal GmbH Abuse-proofed dosage form
US10130591B2 (en) 2003-08-06 2018-11-20 Grünenthal GmbH Abuse-proofed dosage form
US11224576B2 (en) 2003-12-24 2022-01-18 Grünenthal GmbH Process for the production of an abuse-proofed dosage form
US11844865B2 (en) 2004-07-01 2023-12-19 Grünenthal GmbH Abuse-proofed oral dosage form
US10729658B2 (en) 2005-02-04 2020-08-04 Grünenthal GmbH Process for the production of an abuse-proofed dosage form
US10675278B2 (en) 2005-02-04 2020-06-09 Grünenthal GmbH Crush resistant delayed-release dosage forms
US9750701B2 (en) 2008-01-25 2017-09-05 Grünenthal GmbH Pharmaceutical dosage form
US9161917B2 (en) 2008-05-09 2015-10-20 Grünenthal GmbH Process for the preparation of a solid dosage form, in particular a tablet, for pharmaceutical use and process for the preparation of a precursor for a solid dosage form, in particular a tablet
US10493033B2 (en) 2009-07-22 2019-12-03 Grünenthal GmbH Oxidation-stabilized tamper-resistant dosage form
US10080721B2 (en) 2009-07-22 2018-09-25 Gruenenthal Gmbh Hot-melt extruded pharmaceutical dosage form
US9925146B2 (en) 2009-07-22 2018-03-27 Grünenthal GmbH Oxidation-stabilized tamper-resistant dosage form
US10300141B2 (en) 2010-09-02 2019-05-28 Grünenthal GmbH Tamper resistant dosage form comprising inorganic salt
US9636303B2 (en) 2010-09-02 2017-05-02 Gruenenthal Gmbh Tamper resistant dosage form comprising an anionic polymer
US10695297B2 (en) 2011-07-29 2020-06-30 Grünenthal GmbH Tamper-resistant tablet providing immediate drug release
US10201502B2 (en) 2011-07-29 2019-02-12 Gruenenthal Gmbh Tamper-resistant tablet providing immediate drug release
US10864164B2 (en) 2011-07-29 2020-12-15 Grünenthal GmbH Tamper-resistant tablet providing immediate drug release
US9655853B2 (en) 2012-02-28 2017-05-23 Grünenthal GmbH Tamper-resistant dosage form comprising pharmacologically active compound and anionic polymer
US10335373B2 (en) 2012-04-18 2019-07-02 Grunenthal Gmbh Tamper resistant and dose-dumping resistant pharmaceutical dosage form
US10064945B2 (en) 2012-05-11 2018-09-04 Gruenenthal Gmbh Thermoformed, tamper-resistant pharmaceutical dosage form containing zinc
US9737490B2 (en) 2013-05-29 2017-08-22 Grünenthal GmbH Tamper resistant dosage form with bimodal release profile
US10154966B2 (en) 2013-05-29 2018-12-18 Grünenthal GmbH Tamper-resistant dosage form containing one or more particles
US10624862B2 (en) 2013-07-12 2020-04-21 Grünenthal GmbH Tamper-resistant dosage form containing ethylene-vinyl acetate polymer
US10449547B2 (en) 2013-11-26 2019-10-22 Grünenthal GmbH Preparation of a powdery pharmaceutical composition by means of cryo-milling
US9913814B2 (en) 2014-05-12 2018-03-13 Grünenthal GmbH Tamper resistant immediate release capsule formulation comprising tapentadol
US9872835B2 (en) 2014-05-26 2018-01-23 Grünenthal GmbH Multiparticles safeguarded against ethanolic dose-dumping
US9855263B2 (en) 2015-04-24 2018-01-02 Grünenthal GmbH Tamper-resistant dosage form with immediate release and resistance against solvent extraction
US10842750B2 (en) 2015-09-10 2020-11-24 Grünenthal GmbH Protecting oral overdose with abuse deterrent immediate release formulations

Also Published As

Publication number Publication date
FI953056A0 (fi) 1995-06-20
GB9227166D0 (en) 1993-02-24
DE69317306T2 (de) 1998-10-29
AU5701794A (en) 1994-08-15
DE69317306D1 (de) 1998-04-09
GB2273874A (en) 1994-07-06
US5620697A (en) 1997-04-15
FI953056A (fi) 1995-06-20
EP0676956B1 (en) 1998-03-04
WO1994015588A1 (en) 1994-07-21
EP0676956A1 (en) 1995-10-18

Similar Documents

Publication Publication Date Title
JPH08505076A (ja) 超音波手段を用いる薬学的組成物の製造法
DE69332210T2 (de) Biologisch abbaubares, schmelzgesponnenes abgabesystem zur kontrollierten freisetzung
AU777673B2 (en) Enhanced intra vaginal devices
US5439688A (en) Process for preparing a pharmaceutical composition
JP2023159157A (ja) 薬物送達組成物
JP4323954B2 (ja) 吸収性ポリマ合成物、インプラント、およびインプラント製造方法
HU180019B (en) Process for producing shaped material of collagene base,absorbing in the body
JP3233929B2 (ja) 活性物質徐放性を有する溶剤フリーの経口投与すべき医薬製剤およびその製造方法
CN111051381A (zh) 用于增材制造的生物相容聚合物粉末
KR20200040776A (ko) 약물 전달 조성물을 제조하기 위한 방법
JP2002511075A (ja) 薬学的活性成分の制御放出のためのインプラント及びその製造方法
JP7312757B2 (ja) 溶媒の組合せを使用する生体高分子の加工方法
JPS5879915A (ja) 棒状薬剤の製造方法
Tamaddon et al. Thermoanalytical characterization of clindamycin-loaded intravitreal implants prepared by hot melt extrusion
JPH04217914A (ja) 徐放性製剤の製造方法
Maniruzzaman et al. Hot-melt extrusion (HME): from process to pharmaceutical applications
CN106074393B (zh) 一种注射用多肽类药物的缓释微球的制备
KR20080094805A (ko) 폴리머 임플란트 및 폴리머 임플란트의 제조방법
SE506448C2 (sv) Förfarande för framställning av en farmaceutisk komposition innehållande en peptid
JP2013533880A (ja) 熱的に不安定な及び他の生物活性剤のためのインプラント処理法及びそれから製造されたインプラント
CN107049995A (zh) 一种制备温敏性药物释放复合材料的方法
JP7250029B2 (ja) 固体分散体を調製するための方法および装置
JPS63203610A (ja) 複数成分からなるインプラント用の持効性医薬製剤
JPH02212436A (ja) 徐放性基剤
Araújo Biphasic Controlled Release of Active Pharmaceutical Ingredients from Biodegradable Implants