JPH0850182A - Optical snow depth measuring device - Google Patents

Optical snow depth measuring device

Info

Publication number
JPH0850182A
JPH0850182A JP20426094A JP20426094A JPH0850182A JP H0850182 A JPH0850182 A JP H0850182A JP 20426094 A JP20426094 A JP 20426094A JP 20426094 A JP20426094 A JP 20426094A JP H0850182 A JPH0850182 A JP H0850182A
Authority
JP
Japan
Prior art keywords
snow
light
image
snow depth
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20426094A
Other languages
Japanese (ja)
Inventor
Jiro Shibata
治郎 柴田
Mitsuteru Kimura
光照 木村
Shinzo Kasai
眞造 葛西
Hirao Ota
平雄 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYODO KUMIAI AKITA NEW FRONTIE
KYODO KUMIAI AKITA NEW FRONTIER
Nippon Giken Co Ltd
Original Assignee
KYODO KUMIAI AKITA NEW FRONTIE
KYODO KUMIAI AKITA NEW FRONTIER
Nippon Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYODO KUMIAI AKITA NEW FRONTIE, KYODO KUMIAI AKITA NEW FRONTIER, Nippon Giken Co Ltd filed Critical KYODO KUMIAI AKITA NEW FRONTIE
Priority to JP20426094A priority Critical patent/JPH0850182A/en
Publication of JPH0850182A publication Critical patent/JPH0850182A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To measure snow depth in many points at once by projecting a light to a snow surface by a projecting means in which the image of a light appeared on a plate orthogonal to an optical path surface is linear. CONSTITUTION:A laser beam L projects a slit light E in which the image of a light appeared on a plate orthogonal to the optical path surface beta is linear. A CCD camera C is provided in a position where its optical axis (a) is inclined to the optical path surface beta of the projected light E. A personal computer M numerically processes the signal from the camera C to remove a noise, and then calculates a snow depth. A plotter W draws the calculation result as the snow depth Z to a measuring point (p). Since the image including an image R appeared according to the snow depth is outputted from the camera C when the snow surface has swollen parts such as H3, H3, the computer M calculates the snow depth of a required position, for example, a part P1, P2, P3. Since the camera catches the scattered state of the inf-rared ray on the snow surface, it can be applied to the evaluation of snow quality.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、積雪面に投光した光の
像の位置から積雪深を計測する光学式積雪深計測装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical snow depth measuring device for measuring snow depth from the position of an image of light projected on a snow surface.

【0002】[0002]

【従来の技術】従来は、測定地点に円形状の光を投光し
て、積雪面に映った該光の像の位置を受光素子上で輝点
として捕らえ、該輝点の基準値からの変化分を計算して
測定地点の積雪深を求めていた。
2. Description of the Related Art Conventionally, a circular light is projected to a measurement point, the position of the image of the light reflected on the snow surface is captured as a bright spot on a light receiving element, and the light spot from a reference value is measured. The amount of change was calculated to obtain the snow depth at the measurement point.

【0003】[0003]

【発明が解決しようとする課題】従来の技術において
は、積雪面上における該光の像は直径50cm程度の円
形状になっており、計測される積雪深は該円形状の像を
平均化した一点の値として表わしており、積雪深の場所
分布などを計測することは不可能であった。従って、本
発明の目的は、投光した光の像を観測して多箇所の積雪
深を計測できる積雪深計測装置を提供することである。
In the prior art, the image of the light on the snow surface has a circular shape with a diameter of about 50 cm, and the measured snow depth is obtained by averaging the circular image. It is expressed as a single value, and it was impossible to measure the location distribution of snow depth. Therefore, an object of the present invention is to provide a snow depth measuring device that can measure snow depths at multiple locations by observing an image of projected light.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成させる
ために、光路面と直交する平面板に表れる光の像が直線
状になる投光手段を用いて積雪面に投光し、投光する光
の光路面に対してレンズの光軸が傾斜しているCCDカ
メラなどの観測手段を用いて積雪面上に映っている光の
像の部位を観測して、該部位から計算手段を用いて積雪
深を算出する。
In order to achieve the above object, light is projected onto a snow-covered surface by using a light projecting means for linearly forming an image of light appearing on a plane plate orthogonal to an optical path surface, and projecting the light. Using the observation means such as a CCD camera in which the optical axis of the lens is inclined with respect to the optical path surface of the light, the area of the light image reflected on the snow surface is observed, and the calculation means is used from that area. To calculate the snow depth.

【0005】[0005]

【作用】該直線状の光を積雪面に投光すると積雪面上に
は積雪深に応じた光の像が表れるので、この像の多箇所
の部位を該観測手段で観測して数値化できるようにな
る。また、該光路面と該観測手段との配置で定まる関係
式から計算手段を用いて多箇所の積雪深を計測すること
が可能となる。
When the linear light is projected onto the snow surface, an image of the light corresponding to the depth of the snow appears on the snow surface. Therefore, multiple parts of this image can be observed and digitized by the observation means. Like Further, it becomes possible to measure the snow depths at multiple locations using a calculating means from a relational expression determined by the arrangement of the optical path surface and the observing means.

【0006】[0006]

【実施例】図1の実施例は、本発明を説明する模式図で
ある。Lは投光手段の一例で波長が900nmの赤外線
の変調光を出射するレ−ザ光源であって、投光距離が1
0mの場所では水平方向に線長が10m、線幅が1cm
の直線状の光の像を垂直面に映すもの、Cは画像を捕ら
えることができるCCDカメラで、レンズの光軸aが投
光されるレ−ザ光Eの光路面βに対して傾斜した位置に
設けられている。このCCDカメラには900nmの干
渉フィルタfが付いていて、混入している余分な波長の
光を除き、該赤外線レ−ザによる積雪面上の像Rの部位
を捕らえて、これを電気的信号に変換して信号線Sから
出力できるようになっている。Mは計算手段の一例であ
るパ−ソナルコンピュ−タで、CCDカメラCからの信
号を数値処理して雑音を取り除いたあと、積雪深などを
算出するものである。Wは出力手段の一例のプロッタ
で、計算手段で得た結果を測定地点pに対して積雪深x
を描くものである。従って、積雪面がH2、H3のような
盛り上がりがある場合には、積雪深に応じて表れる像R
を含む画像デ−タがCCDカメラから出力されるので、
デジタルフィルタリングや同期加算などの数値処理をパ
−ソナルコンピュ−タに行わせると、該変調光による像
Rが現れて、所望の位置たとえば像Rの部位P1、P
2、P3の積雪深を、それぞれ、120cm、123c
m、128cmと算出するものである。また、CCDカ
メラは積雪面での赤外線の散乱状態を画像として捕らえ
るので、雪質の評価にも適用できるものである。Tは支
持柱で、レ−ザ光源などを固定するものである。
EXAMPLE The example of FIG. 1 is a schematic view for explaining the present invention. L is an example of a light projecting means, which is a laser light source that emits infrared modulated light having a wavelength of 900 nm, and the projection distance is 1
At 0m, the horizontal line length is 10m and the line width is 1cm.
C is a CCD camera capable of capturing an image, and the optical axis a of the lens is inclined with respect to the optical path surface β of the laser light E projected. It is provided in the position. This CCD camera has an interference filter f of 900 nm, removes the extra wavelength of the mixed light, captures the part of the image R on the snow-covered surface by the infrared laser, and outputs it as an electrical signal. It is possible to output the signal from the signal line S after being converted to. M is a personal computer, which is an example of a calculating means, for calculating the snow depth after numerically processing the signal from the CCD camera C to remove noise. W is a plotter which is an example of an output means, and the result obtained by the calculation means is the snow depth x at the measurement point p.
Is to draw. Therefore, when the snow surface has swells such as H 2 and H 3 , the image R that appears according to the snow depth
Since the image data including is output from the CCD camera,
When a personal computer is caused to perform numerical processing such as digital filtering or synchronous addition, an image R due to the modulated light appears, and a desired position, for example, parts P1 and P of the image R is displayed.
2, P3 snow depth, 120cm, 123c, respectively
It is calculated as m and 128 cm. Further, since the CCD camera captures an infrared scattered state on a snowy surface as an image, it can be applied to evaluation of snow quality. T is a support column for fixing a laser light source or the like.

【0007】図2は従来の光学式積雪深計測装置の一例
で、レ−ザ光源Lから赤外線レ−ザ光Eを投光し、積雪
面に映った直径50cm程度の円形状の像Rの位置を受
光カメラUで輝点として捕らえて、該輝点の基準からの
変化値から測定点の積雪深を算出するものである。従
来、積雪面における円形状の像Rすなわち投光面積をあ
まり小さく絞り込まない理由は、レ−ザ光が降雪片で遮
光されて積雪面に届かなかったり、積雪面の凹凸を局所
的に捕らえて所定の積雪深として表されるすミスを避け
るためである。この例で示されるように、従来の光学式
積雪深装置では、基本的に凹凸の積雪面を1ケ所の積雪
深として計測するもので、多箇所の積雪深を計測する場
合は、複数の測定装置を設けるか、レ−ザ光源などを走
査できる手段を備える必要がある。
FIG. 2 shows an example of a conventional optical snow depth measuring apparatus, in which an infrared laser light E is projected from a laser light source L to form a circular image R of about 50 cm in diameter reflected on the snow surface. The position is captured by the light-receiving camera U as a bright spot, and the snow depth at the measurement point is calculated from the change value of the bright spot from the reference. Conventionally, the reason why the circular image R on the snow surface, that is, the projected area is not narrowed down so much is that the laser light is blocked by snowflakes and does not reach the snow surface, or unevenness of the snow surface is locally caught This is to avoid a mistake represented as a predetermined snow depth. As shown in this example, in the conventional optical snow depth measuring device, basically, the uneven snow surface is measured as the snow depth of one place, and when measuring the snow depth of multiple places, a plurality of measurements are taken. It is necessary to provide a device or a means capable of scanning a laser light source or the like.

【0008】図3は積雪面にレ−ザ光線rを投光して、
傾いている光軸qの方向から積雪面Zに映ったポイント
sをカメラCで見たときに、積雪深xがどのように観測
されるかを説明する模式図である。ここで、カメラCの
レンズeは地面からHの高さにあり、積雪面上のポイン
トsをレンズからaの距離にある撮像面uに像を写して
いる。Oは積雪ゼロのときにレ−ザ光線rが投光される
基準の点で、レンズeの光軸qとレ−ザ光線rの光軸の
交点でもある。lは積雪面Zに直交する線で、レ−ザ光
線rの光軸とはθ1、 カメラCの光軸qとはθ2 の傾き
角度がある。φはθ1 とθ2 との角度の差である。
In FIG. 3, a laser beam r is projected onto the snow surface,
It is a schematic diagram explaining how the snow depth x is observed when the point s reflected in the snow surface Z from the direction of the inclined optical axis q is viewed by the camera C. Here, the lens e of the camera C is at a height H from the ground, and an image of the point s on the snow surface is imaged on the imaging surface u at a distance a from the lens. O is a reference point at which the laser ray r is projected when the snowfall is zero, and is also the intersection of the optical axis q of the lens e and the optical axis of the laser ray r. 1 is a line orthogonal to the snow surface Z and has an inclination angle of θ 1 with respect to the optical axis of the laser beam r and θ 2 with respect to the optical axis q of the camera C. φ is the difference in angle between θ 1 and θ 2 .

【0009】上記の関係から、撮像面uの座標をyとす
ると、積雪深xは数1で表せるので、カメラCで観測で
きる座標yから、積雪深xを算出できることがわかる。
図3では点座標xについて記したが、図1の実施例に示
す像の部位に関しても同様に考えることができる。
From the above relationship, it can be seen that the snow depth x can be calculated from the coordinate y that can be observed by the camera C since the snow depth x can be expressed by Equation 1 where y is the coordinate of the imaging surface u.
Although the point coordinate x is described in FIG. 3, the same can be considered for the part of the image shown in the embodiment of FIG.

【0010】[0010]

【数1】 [Equation 1]

【0011】図4は本発明の実施例で、路面Aと路肩B
の積雪深の差Dを計測する場合において、段差の上方向
から直線状のレ−ザ光Eを投光し、光路面βに対して斜
めの方向からCCDカメラCで像Rを捕らえて、対応す
る段差からMのコンピュ−タを用いて実際の積雪深の段
差Dを算出するものである。
FIG. 4 shows an embodiment of the present invention, which is a road surface A and a road shoulder B.
In the case of measuring the difference D in snow depth, the linear laser light E is projected from above the step, and the image R is captured by the CCD camera C from a direction oblique to the optical path surface β, The step D of the actual snow depth is calculated from the corresponding step using the computer of M.

【0012】図5は本発明の実施例で、レ−ザ光源Lに
付いているビ−ムスプリッタを通った直線状の2本の赤
外線レ−ザ光Eが積雪面Zへ向けて放射状に投光される
と、像Rが積雪面に平行に映る。積雪深によってその間
隔が変化する平行な像Rは、受光カメラUに付いている
円筒形レンズvで集光され、ラインセンサσ上で2つの
輝点となって表れ、間隔が測定できるようになってい
る。この間隔からコンピュ−タMを使って積雪深を計算
し、積雪深xが時間経過tによってどのように推移する
かをMのコンピュ−タ画面で見ることができる。
FIG. 5 shows an embodiment of the present invention. Two linear infrared laser lights E passing through the beam splitter attached to the laser light source L are radially directed toward the snow surface Z. When projected, the image R appears parallel to the snow surface. The parallel image R whose interval changes depending on the snow depth is condensed by the cylindrical lens v attached to the light receiving camera U and appears as two bright spots on the line sensor σ so that the interval can be measured. Has become. From this interval, the computer M can be used to calculate the snow depth, and how the snow depth x changes with time t can be seen on the computer screen of M.

【0013】図6は図5の実施例において、積雪深と平
行な像Rの間隔との関係を説明する図である。レ−ザ光
源Lから、方向がθ3 異なるレ−ザ光線r1、r2が積雪
ゼロの地面上でO1、O2、積雪深xの積雪面上でs1
2 に投光されるとき、積雪深xは、O1とO2、s1
2の間隔K1、K2および光源の高さHにより数2で表
される。
FIG. 6 is a diagram for explaining the relationship between the snow depth and the interval between the parallel images R in the embodiment of FIG. From the laser light source L, laser rays r 1 and r 2 whose directions are different from each other by θ 3 are O 1 and O 2 on the ground surface where the snow is zero, and s 1 is on the snow surface of the snow depth x.
When the light is projected onto s 2 , the snow depth x is represented by Equation 2 by the intervals K 1 and K 2 between O 1 and O 2 , s 1 and s 2 , and the height H of the light source.

【0014】[0014]

【数2】 [Equation 2]

【0015】2点の間隔を測定することで積雪深が計測
できるので、従来の装置のように、測定点の基準位置か
らの移動距離を正確に測定するための堅牢な構造や電気
的な安定回路などに関する問題が大幅に軽減される。ま
た、図5からわかるとおり、像の間隔を測定する場合、
従来の装置と異なって、投光装置とカメラの位置を近付
けて一体化することも可能なので、装置の小型化が図れ
る。さらに、集光用の円筒形レンズと輝点を測るライン
センサの位置合わせが容易であり、画像装置と違って画
像の部位を測定する複雑な電子回路などからなる座標読
み取り装置なども不必要であって、計測装置が簡単にな
る。本実施例は多箇所の積雪深を個別に計測することは
できないが、凹凸の有無などは、ラインセンサで捕らえ
た光強度の分布から推定できる。
Since the snow depth can be measured by measuring the distance between two points, a robust structure and electrical stability for accurately measuring the moving distance of the measuring point from the reference position, as in the conventional device. Problems related to circuits are greatly reduced. Also, as can be seen from FIG. 5, when measuring the image interval,
Unlike the conventional device, it is also possible to bring the light projecting device and the camera close to each other and integrate them, so that the device can be downsized. Furthermore, it is easy to align the cylindrical lens for condensing and the line sensor for measuring the bright spot, and unlike the image device, a coordinate reading device consisting of a complicated electronic circuit for measuring the image part is unnecessary. This makes the measuring device simple. In this embodiment, it is not possible to individually measure the snow depths at multiple locations, but the presence or absence of irregularities can be estimated from the distribution of the light intensity captured by the line sensor.

【0016】[0016]

【発明の効果】本発明を用いると直線状の光が積雪面に
投光されるので、積雪面上に映った像を画像装置で観測
し、コンピュ−タで解析することによって、一度に多箇
所の積雪深などを計測することができて、測定場所の凹
凸なども数値で見ることが可能になる。また、実施例の
ように、円筒形レンズとランンセンサを観測装置に付け
ることによって、積雪深の段差などが簡単に計測でき
る。さらに、広がり角度を持って積雪面に投光した2本
の直線状の光の像の間隔を測定して積雪深を計測する実
施例では、装置が簡単で小型にできることがわかる。以
上の実施例でわかるとおり、光学式積雪深計測装置にお
いて、投光する光を従来用いているスポット状の光では
なく直線状の光を用いると、積雪面上の情報が点でなく
線として取り入れることができるようになるので、多箇
所の積雪面上のデ−タが得られるようになる。従って、
測定デ−タの信頼性向上、装置の小型化、低廉化などが
図れる。本発明の適用は、本実施例の積雪深計測に限定
されるものではない。
According to the present invention, since linear light is projected on the snow surface, the image reflected on the snow surface can be observed by an image device and analyzed by a computer, so that a large amount can be obtained at a time. It is possible to measure the snow depth at a location and to see the irregularities at the measurement location numerically. Further, as in the embodiment, by attaching the cylindrical lens and the runn sensor to the observation device, it is possible to easily measure the step of the snow depth and the like. Further, in the embodiment in which the snow depth is measured by measuring the interval between two linear light images projected on the snow surface with a spread angle, it can be seen that the device can be simple and compact. As can be seen from the above examples, in the optical snow depth measuring device, when the light to be projected is not a spot-like light which is conventionally used but a linear light, the information on the snow surface is not a point but a line. Since it becomes possible to incorporate the data, it becomes possible to obtain the data on the snow-covered surface in many places. Therefore,
It is possible to improve the reliability of measurement data, downsize the device, and reduce the cost. The application of the present invention is not limited to the snow depth measurement of this embodiment.

【図面の簡単な説明】[Brief description of drawings]

【図1】直線状の赤外線レ−ザ光を用いた本発明の説明
図である。
FIG. 1 is an explanatory view of the present invention using a linear infrared laser beam.

【図2】本発明を使用しない従来の計測装置の説明図で
ある。
FIG. 2 is an explanatory diagram of a conventional measuring device that does not use the present invention.

【図3】本発明の原理となる数1の説明図である。FIG. 3 is an explanatory diagram of Equation 1 which is the principle of the present invention.

【図4】本発明の装置による段差測定の説明図である。FIG. 4 is an explanatory diagram of step measurement by the device of the present invention.

【図5】直線状の赤外線レ−ザを2本用いた本発明の説
明図である。
FIG. 5 is an explanatory view of the present invention using two linear infrared lasers.

【図6】数2を説明する説明図である。FIG. 6 is an explanatory diagram illustrating Equation 2.

【符号の説明】[Explanation of symbols]

L レ−ザ光源 C CCDカメラ E レ−ザ光 a レンズの光軸 f 干渉フィルタ R 積雪面上の光の像 S 信号線 M パ−ソナルコンピュ−タ W プロッタ p 測定地点 x 積雪深 H2 積雪面の盛り上がり H3 積雪面の盛り上がり P1 像Rの部位 P2 像Rの部位 P3 像Rの部位 T 支持柱 U 受光カメラ r レ−ザ光線の光軸 q カメラの光軸 Z 積雪面 s 投光されるポイント x 積雪深 e レンズ H カメラの高さ a レンズから撮像面までの距離 u 撮像面 O 基準点 l Zに直交する線 θ1 rとlとの傾き角度 θ2 qとlとの傾き角度 φ θ1とθ2の角度の差 y 撮像面uの座標 A 路面 B 路肩 D 積雪深の段差 E レ−ザ光 β 光路面 v 円筒形レンズ σ ラインセンサ t 時間経過 r1 レ−ザ光線 r2 レ−ザ光線 θ31 とr2 との傾き角度 O1 基準点 O2 基準点 s1 投光されるポイント s2 投光されるポイント K11 とs2 の間隔 K21 とO2 の間隔L Laser light source C CCD camera E Laser light a Optical axis of lens f Interference filter R Image of light on snow surface S Signal line M Personal computer W plotter p Measurement point x Snow depth H 2 Snow cover surface of the raised H 3 snow surface mounds P1 image R site P2 image R site P3 image R site T support column U receiving camera r Re of the - is the optical axis Z snow surface s projection optical axis q camera the rays Point x snow depth e lens H camera height a distance from lens to imaging surface u imaging surface O reference point l line orthogonal to Z Z angle of inclination θ 1 r and angle of inclination θ 2 angle of inclination between q and l Angle difference between φ θ 1 and θ 2 y Coordinate of imaging surface u A Road surface B Road shoulder D Snow depth difference E Laser light β Optical road surface v Cylindrical lens σ Line sensor t Time lapse r 1 Laser light ray r 2 Laser beam θ 3 r 1 and r 2 tilt angle O 1 reference Point O 2 Reference point s 1 Projected point s 2 Projected point K 1 Distance between s 1 and s 2 Distance between K 2 O 1 and O 2

───────────────────────────────────────────────────── フロントページの続き (72)発明者 太田 平雄 宮城県若林区上飯田2丁目8−78 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hirao Ota 2-8-78 Kamiida, Wakabayashi-ku, Miyagi

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 積雪面に投光する投光手段と、投光する
光の光路面に対して受光レンズの光軸が傾斜している位
置に設けて該積雪面に表れている該光の像を観測する観
測手段と、該光の像の部位から積雪深を計算する計算手
段と、積雪深の計算結果を出力する出力手段とを有する
光学式積雪深計測装置において、該光の光路面と直交す
る平面板に表れる光の像が直線状になる投光手段を備え
ていることを特徴とする光学式積雪深計測装置
1. A light projecting means for projecting light onto a snowy surface, and a light projecting means provided at a position where an optical axis of a light receiving lens is inclined with respect to an optical path surface of the light projected onto the snowy surface. An optical snow depth measuring device having an observing means for observing an image, a calculating means for calculating a snow depth from a portion of an image of the light, and an outputting means for outputting a calculation result of the snow depth, An optical snow depth measuring device characterized in that it is equipped with a light projecting means for linearly forming an image of light appearing on a plane plate orthogonal to
【請求項2】 積雪面に表れている該光の像を観測する
観測手段において、集光用の円筒形レンズとラインセン
サを備えていることを特徴とする請求項1の光学式積雪
深計測装置
2. The optical snow depth measurement according to claim 1, wherein the observation means for observing the image of the light appearing on the snow cover surface is provided with a cylindrical lens for condensing and a line sensor. apparatus
【請求項3】 光路面が互いに角度を有している平行な
2本の該直線状になる投光手段を備えていることを特徴
とする請求項1の光学式積雪深計測装置
3. The optical snow depth measuring apparatus according to claim 1, further comprising two parallel light projecting means whose optical path surfaces have an angle with each other and which are in parallel with each other.
JP20426094A 1994-08-05 1994-08-05 Optical snow depth measuring device Pending JPH0850182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20426094A JPH0850182A (en) 1994-08-05 1994-08-05 Optical snow depth measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20426094A JPH0850182A (en) 1994-08-05 1994-08-05 Optical snow depth measuring device

Publications (1)

Publication Number Publication Date
JPH0850182A true JPH0850182A (en) 1996-02-20

Family

ID=16487523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20426094A Pending JPH0850182A (en) 1994-08-05 1994-08-05 Optical snow depth measuring device

Country Status (1)

Country Link
JP (1) JPH0850182A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241459A (en) * 2007-03-27 2008-10-09 Institute Of National Colleges Of Technology Japan Method and apparatus for measuring road surface condition
JP2009198342A (en) * 2008-02-22 2009-09-03 Kobe Steel Ltd Apparatus and method for measuring surface profile
FR2986094A1 (en) * 2012-01-24 2013-07-26 Apical Technologies Device for monitoring snowpack, has grabbing unit for grabbing set of images of snowpack with different depths, and control unit that is utilized for remote controlling of data characteristic of images
KR101419407B1 (en) * 2007-12-21 2014-07-16 재단법인 포항산업과학연구원 System and method for measuring snowfall using optical device
KR101461425B1 (en) * 2008-12-22 2014-11-14 재단법인 포항산업과학연구원 Snow-depth Guage Using Laser Light Source
CN104330048A (en) * 2014-11-28 2015-02-04 南京理工大学 Image-based railway snow depth measurement device and method
CN104613892A (en) * 2014-12-31 2015-05-13 中国铁路总公司 Video detection technology and laser ranging technology integrated compound snow depth monitoring system
JP2015152544A (en) * 2014-02-19 2015-08-24 横浜ゴム株式会社 Apparatus and method for measuring hardness of snow surface
CN107084679A (en) * 2017-03-28 2017-08-22 无锡信大气象传感网科技有限公司 The method of measurement snow depth based on laser imaging
JP2017191044A (en) * 2016-04-14 2017-10-19 株式会社鈴木エンタープライズ Snow coverage detection device and snow coverage detection system
WO2018054968A1 (en) * 2016-09-22 2018-03-29 Philips Lighting Holding B.V. Flooding localization and signalling via intelligent lighting
JP2021117230A (en) * 2020-01-28 2021-08-10 株式会社アール・アンド・イー Snowfall determination method, snowfall determination device, and snowfall determination computer program
EP3869097A1 (en) * 2020-02-24 2021-08-25 Tridonic GmbH & Co. KG Determination of street condition by distance measurement

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241459A (en) * 2007-03-27 2008-10-09 Institute Of National Colleges Of Technology Japan Method and apparatus for measuring road surface condition
KR101419407B1 (en) * 2007-12-21 2014-07-16 재단법인 포항산업과학연구원 System and method for measuring snowfall using optical device
JP2009198342A (en) * 2008-02-22 2009-09-03 Kobe Steel Ltd Apparatus and method for measuring surface profile
KR101461425B1 (en) * 2008-12-22 2014-11-14 재단법인 포항산업과학연구원 Snow-depth Guage Using Laser Light Source
FR2986094A1 (en) * 2012-01-24 2013-07-26 Apical Technologies Device for monitoring snowpack, has grabbing unit for grabbing set of images of snowpack with different depths, and control unit that is utilized for remote controlling of data characteristic of images
JP2015152544A (en) * 2014-02-19 2015-08-24 横浜ゴム株式会社 Apparatus and method for measuring hardness of snow surface
CN104330048A (en) * 2014-11-28 2015-02-04 南京理工大学 Image-based railway snow depth measurement device and method
CN104613892A (en) * 2014-12-31 2015-05-13 中国铁路总公司 Video detection technology and laser ranging technology integrated compound snow depth monitoring system
JP2017191044A (en) * 2016-04-14 2017-10-19 株式会社鈴木エンタープライズ Snow coverage detection device and snow coverage detection system
WO2018054968A1 (en) * 2016-09-22 2018-03-29 Philips Lighting Holding B.V. Flooding localization and signalling via intelligent lighting
US11064591B2 (en) 2016-09-22 2021-07-13 Signify Holding B.V. Flooding localization and signalling via intelligent lighting
CN107084679A (en) * 2017-03-28 2017-08-22 无锡信大气象传感网科技有限公司 The method of measurement snow depth based on laser imaging
JP2021117230A (en) * 2020-01-28 2021-08-10 株式会社アール・アンド・イー Snowfall determination method, snowfall determination device, and snowfall determination computer program
EP3869097A1 (en) * 2020-02-24 2021-08-25 Tridonic GmbH & Co. KG Determination of street condition by distance measurement

Similar Documents

Publication Publication Date Title
US4796997A (en) Method and system for high-speed, 3-D imaging of an object at a vision station
USRE39978E1 (en) Scanning phase measuring method and system for an object at a vision station
US6483536B2 (en) Distance measuring apparatus and method employing two image taking devices having different measurement accuracy
US6683675B2 (en) Distance measuring apparatus and distance measuring method
JPH0850182A (en) Optical snow depth measuring device
JPS61281915A (en) Vehicle device for measuring properties of road surface
EP0215948A1 (en) Vehicle for evaluating properties of road surfaces
JP2023029441A (en) Measuring device, measuring system, and vehicle
JP3327068B2 (en) Road surface measurement device
US5283642A (en) Scratch measurement apparatus and method
US6388743B1 (en) Video laser beam analyzer
JP3324809B2 (en) Measurement point indicator for 3D measurement
JP2021527217A (en) Alignment method for the beam alignment unit of the interference measuring device and the measuring device for performing the interference measurement using laser irradiation.
KR20030018183A (en) The Apparatus and Method for measuring Width of Steel Sheet with Laser and High Resolution Area Scan CCD Camera
JPH06251284A (en) Automatic measuring instrument for various vehicle elements
EP1202074B1 (en) Distance measuring apparatus and distance measuring method
JPH0443204B2 (en)
GB2204947A (en) Method and system for high speed, 3-D imaging of an object at a vision station
WO2013051624A1 (en) Velocity measurement device
JPH0949706A (en) Method for measuring moving amount of object to be measured in front/rear direction with using laser light
JP3381420B2 (en) Projection detection device
JP4141627B2 (en) Information acquisition method, image capturing apparatus, and image processing apparatus
JP4266286B2 (en) Distance information acquisition device and distance information acquisition method
JP2872481B2 (en) How to measure groove dimensions
JPH0599623A (en) Displacement measuring apparatus