JPH0849577A - Intake air controller of internal combustion engine - Google Patents

Intake air controller of internal combustion engine

Info

Publication number
JPH0849577A
JPH0849577A JP6182388A JP18238894A JPH0849577A JP H0849577 A JPH0849577 A JP H0849577A JP 6182388 A JP6182388 A JP 6182388A JP 18238894 A JP18238894 A JP 18238894A JP H0849577 A JPH0849577 A JP H0849577A
Authority
JP
Japan
Prior art keywords
intake
cylinder
valve
cylinders
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6182388A
Other languages
Japanese (ja)
Inventor
Isao Hattori
勲 服部
Yurio Nomura
由利夫 野村
Harumasa Obata
治征 小幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, NipponDenso Co Ltd filed Critical Toyota Motor Corp
Priority to JP6182388A priority Critical patent/JPH0849577A/en
Publication of JPH0849577A publication Critical patent/JPH0849577A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/08Modifying distribution valve timing for charging purposes
    • F02B29/083Cyclically operated valves disposed upstream of the cylinder intake valve, controlled by external means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To realize the output controller of an internal combustion engine capable of decreasing torque variation in the internal combustion engine in which exhaust gas reflut is carried out at the time of controlling the number of resting cylinders. CONSTITUTION:Four cylinders #1-#4 are provided in an engine 1, and fuel injection for cylinders #2, #3 out of these cylinders is stopped so as to control the number of resting cylinders for the purpose of stopping the cylinders #2. #3, and also exhaust gas reflut carried out is for the resting cylinders #2, #3. The mounting positions of intake air control valves 17a-d are yaried from each other depending upon resting cylinders #2, #3 or the operating cylinders #1, #4, especially in the case of this device. The mounting positions of the intake control valves 17a, d of the operating cylinders #1, #4 are arranged more upstream side than the mounting positions of the intake control valves 17b, c of the resting cylinders #2, #3, and then the volumes of dead spaces at the intake sides for all the cylinders #1-#4 are equalized so as to uniformalize an intake air quantity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、減筒制御の際に休止気
筒に対して排気の還流を行なって、減筒制御の場合に発
生する出力変動を低減する内燃機関の吸気制御装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake control device for an internal combustion engine which recirculates exhaust gas to idle cylinders during cylinder cut-off control to reduce output fluctuations that occur during cylinder cut-off control. Is.

【0002】[0002]

【従来の技術】従来より、内燃機関において燃費を改善
する低燃費技術として、複数気筒の場合に、負荷状態に
応じて任意の気筒を休止させて排気量を変化させる減筒
制御が知られている。
2. Description of the Related Art Conventionally, as a low fuel consumption technology for improving fuel consumption in an internal combustion engine, in the case of a plurality of cylinders, a cut-off cylinder control is known in which an arbitrary cylinder is deactivated in accordance with a load state to change a displacement. There is.

【0003】この種の減筒制御において、そのまま燃料
噴射を停止するだけでは、瞬間的に気筒の出力が「0」
まで低下するので、その際のトルク変動のために不快な
振動を生じる。そのため、近年では、吸気管の分岐路に
吸気制御弁を配置して、段階的に吸気を減少してゆくこ
とによって、トルク変動を低減する提案がなされている
(特開平3−70828号公報参照)。
In this type of cut-off cylinder control, if the fuel injection is stopped as it is, the output of the cylinder is instantly "0".
As a result, the torque fluctuation at that time causes an unpleasant vibration. Therefore, in recent years, it has been proposed to arrange an intake control valve in a branch passage of the intake pipe and gradually reduce the intake air to reduce the torque fluctuation (see Japanese Patent Laid-Open No. 3-70828). ).

【0004】また、それとは別の技術として、減筒制御
を行なって休止させる気筒(休止気筒)側の吸気通路に
設けた吸気制御弁と気筒の入口に設けた吸気弁との間
に、排気系と吸気系とを連通する還流路を設け、この還
流路を介して、排気側から休止気筒の吸気側に既燃ガス
(排気ガス)を還流させて、触媒の温度低下や、O2
ンサー部でのA/Fリーン化を防ぐ技術もよく知られて
いる。
As another technique, an exhaust gas is provided between an intake control valve provided in the intake passage on the cylinder (rest cylinder) side for performing the cut-off cylinder control to be stopped and an intake valve provided at the inlet of the cylinder. A recirculation passage that connects the system and the intake system is provided. Through this recirculation passage, burnt gas (exhaust gas) is recirculated from the exhaust side to the intake side of the deactivated cylinder to reduce the temperature of the catalyst and the O 2 sensor. Techniques for preventing A / F leaning in parts are also well known.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、減筒制
御を行なう内燃機関において、休止気筒に既燃ガスを還
流(以後、排気還流;EGRと称す)させる構造を採用
する場合には、吸気制御弁と吸気弁との間(以後、デッ
ドスペースと称す)の容積が、休止しない気筒(作動気
筒)よりも休止気筒側の方が大きくなってしまうという
問題がある。
However, in the internal combustion engine for performing the cut-off cylinder control, when the structure for returning the burnt gas to the idle cylinder (hereinafter referred to as exhaust gas recirculation; referred to as EGR) is adopted, the intake control valve is used. There is a problem that the volume between the intake valve and the intake valve (hereinafter, referred to as a dead space) becomes larger on the idle cylinder side than on the cylinder that is not idle (operating cylinder).

【0006】例えば、図13に示す様に、内燃機関P1
の4つの気筒#1〜#4のうち気筒#2,#3を休止気
筒とする場合を考えると、休止気筒#2,#3側の(吸
気制御弁P2と吸気弁P3との間の)吸気通路P4には
排気還流を行なうための還流路P5が接続され、その還
流路P5には減筒制御時以外の時に既燃ガスをカットす
る還流制御弁(EGR弁)P6が設けられている。その
ため、EGR弁P6と吸気通路P4との間には所定の容
積の空間P7(図の斜線部分)が形成されるので、作動
気筒#1,#4よりも休止気筒#2,#3側の方がデッ
ドスペースP8の容積が大きくなってしまう。
For example, as shown in FIG. 13, an internal combustion engine P1
Considering the case where the cylinders # 2 and # 3 of the four cylinders # 1 to # 4 are set as the deactivated cylinders, the deactivated cylinders # 2 and # 3 are located (between the intake control valve P2 and the intake valve P3). A recirculation path P5 for performing exhaust gas recirculation is connected to the intake path P4, and a recirculation control valve (EGR valve) P6 that cuts the burned gas at times other than during the cut-off cylinder control is provided in the recirculation path P5. . Therefore, a space P7 having a predetermined volume (hatched portion in the drawing) is formed between the EGR valve P6 and the intake passage P4, so that the deactivated cylinders # 2 and # 3 are closer to the deactivated cylinders # 2 and # 3 than the working cylinders # 1 and # 4. The volume of the dead space P8 becomes larger.

【0007】その結果、休止気筒#2,#3側では、作
動気筒#1,#4側に比べて、減筒制御を行わない通常
制御時には吸入空気量が増大してしまうので、気筒#1
〜#4毎の出力がばらついてトルク変動が発生するとい
う問題がある。本発明は、前記課題を解決するためにな
されたものであり、休止気筒のデッドスペースの拡大に
着目し、減筒制御を行なう際に排気還流を行なう内燃機
関において、トルク変動を低減することができる内燃機
関の吸気制御装置を提供することを目的とする。
As a result, in the deactivated cylinders # 2, # 3 side, the intake air amount increases in the normal control without the cylinder reduction control, as compared with the operating cylinders # 1, # 4 side.
There is a problem that the output varies for each # 4 to cause torque fluctuation. The present invention has been made to solve the above problems, and pays attention to the expansion of dead space in idle cylinders, and can reduce torque fluctuations in an internal combustion engine that performs exhaust gas recirculation when performing cylinder cut-off control. An object of the present invention is to provide an intake control device for an internal combustion engine.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
の請求項1の発明は、内燃機関の複数の気筒を作動気筒
と休止気筒とに分けて制御する減筒制御を行なうととも
に、該休止気筒に対して排気の還流を行なう内燃機関の
吸気制御装置において、前記気筒の吸気孔を開閉する吸
気弁と、該吸気弁の上流側の吸気通路に配置されて、該
吸気通路を開閉制御する吸気制御弁と、前記休止気筒に
おける前記吸気制御弁と前記吸気弁との間の吸気通路に
接続されて、排気を排気系から吸気系に還流させる還流
路と、該還流路に設けられて、該還流路を開閉制御する
還流制御弁と、を備えるとともに、前記作動気筒側にて
前記吸気制御弁と前記吸気弁との間に形成される第1の
空間の容積と、前記休止気筒側にて前記吸気制御弁と前
記吸気弁と前記還流制御弁との間に形成される第2の空
間の容積とを等しく設定したことを特徴とする内燃機関
の吸気制御装置を要旨とする。
According to a first aspect of the present invention for achieving the above object, a plurality of cylinders of an internal combustion engine are divided into an operating cylinder and a deactivated cylinder to be controlled, and the deactivated cylinder is deactivated. In an intake control device for an internal combustion engine that recirculates exhaust gas to a cylinder, an intake valve that opens and closes an intake hole of the cylinder and an intake passage upstream of the intake valve to control opening and closing of the intake passage. An intake control valve, a return passage connected to an intake passage between the intake control valve and the intake valve in the deactivated cylinder, for recirculating exhaust gas from the exhaust system to the intake system, and the return passage, And a volume of a first space formed between the intake control valve and the intake valve on the working cylinder side, and a recirculation control valve for controlling the opening and closing of the return path, and on the idle cylinder side. The intake control valve, the intake valve, and the return valve An intake control device for an internal combustion engine, characterized in that the same configuration and volume of the second space formed between the control valve and gist.

【0009】請求項2の発明は、前記作動気筒側の吸気
制御弁の取付位置を、前記第1の空間の容積と前記第2
の空間の容積とが等しくなる様に、並列して配置される
前記休止気筒側の吸気制御弁の取付位置と比較してより
上流側に設定したことを特徴とする前記請求項1記載の
内燃機関の吸気制御装置を要旨とする。
According to a second aspect of the present invention, the mounting position of the intake control valve on the working cylinder side is defined by the volume of the first space and the second space.
2. The internal combustion engine according to claim 1, wherein the volume is set to be more upstream than the mounting position of the intake control valves on the deactivated cylinder side that are arranged in parallel so that the volume of the space becomes equal. The gist is the intake control device of the engine.

【0010】請求項3の発明は、前記作動気筒側の吸気
制御弁と吸気弁との間の吸気通路を構成する吸気管に、
前記第1の空間の容積と前記第2の空間の容積とが等し
くなる様に、前記吸気通路の容積を増加させる容積増加
室を設けたことを特徴とする前記請求項1記載の内燃機
関の吸気制御装置を要旨とする。
According to a third aspect of the present invention, the intake pipe forming an intake passage between the intake control valve and the intake valve on the working cylinder side includes:
2. The internal combustion engine according to claim 1, wherein a volume increasing chamber for increasing the volume of the intake passage is provided so that the volume of the first space and the volume of the second space are equal. The gist is the intake control device.

【0011】請求項4の発明は、内燃機関の複数の気筒
を作動気筒と休止気筒とに分けて制御する減筒制御を行
なうとともに、該休止気筒に対して排気の還流を行なう
内燃機関の吸気制御装置において、前記気筒の吸気孔を
開閉する吸気弁と、該吸気弁の上流側の吸気通路に配置
されて、該吸気通路を開閉制御する吸気制御弁と、前記
休止気筒における前記吸気制御弁と前記吸気弁との間の
吸気通路に接続されて、排気を排気系から吸気系に還流
させる還流路と、該還流路に設けられて、該還流路を開
閉制御する還流制御弁と、を備え、前記内燃機関の作動
時に前記減筒制御を停止する場合には、前記作動気筒側
の吸気制御弁と前記休止気筒側の吸気制御弁との駆動タ
イミングを、吸入空気量を均一になる様に調節すること
を特徴とする内燃機関の吸気制御装置を要旨とする。
According to a fourth aspect of the present invention, the intake cylinder of the internal combustion engine is controlled so that a plurality of cylinders of the internal combustion engine are divided into operating cylinders and idle cylinders, and exhaust gas is recirculated to the idle cylinders. In the control device, an intake valve that opens and closes an intake hole of the cylinder, an intake control valve that is arranged in an intake passage upstream of the intake valve to open and close the intake passage, and the intake control valve in the idle cylinder. A recirculation passage connected to the intake passage between the exhaust valve and the intake valve to recirculate exhaust gas from the exhaust system to the intake system; and a recirculation control valve provided in the recirculation passage to control opening / closing of the recirculation passage. When stopping the cut-off cylinder control at the time of operating the internal combustion engine, the drive timings of the intake control valve on the operating cylinder side and the intake control valve on the idle cylinder side are set so that the intake air amount becomes uniform. Internal combustion characterized by adjusting to The intake control device of related to subject matter.

【0012】請求項5の発明は、図1に例示する様に、
前記減筒制御を行なう条件が満たされたか否かを判定す
る減筒条件判定手段と、該減筒条件判定手段によって減
筒制御の条件が満たされたと判断された場合には、所定
の基準タイミングで前記作動気筒側の吸気制御弁と前記
休止気筒側の吸気制御弁とを各々駆動して減筒制御を行
なう減筒制御実行手段と、前記減筒条件判定手段によっ
て減筒制御の条件が満たされないと判断された場合に
は、前記休止気筒側の吸気制御弁の閉タイミングを、前
記基準タイミングより早める非減筒制御実行手段と、を
備えたことを特徴とする前記請求項4記載の内燃機関の
吸気制御装置を要旨とする。
The invention of claim 5 is, as illustrated in FIG.
A cut-off cylinder condition determining means for determining whether or not a condition for performing the cut-out cylinder control, and a predetermined reference timing when the cut-out cylinder condition determining means determines that the cut-out cylinder control condition is satisfied. The cylinder cut-off control execution means for driving the intake control valve on the operating cylinder side and the intake control valve on the idle cylinder side to perform cylinder cut-off control, and the cylinder cut-off condition determination means satisfy the cylinder cut-off control condition. 5. The internal combustion engine according to claim 4, further comprising: non-reduced cylinder control execution means for advancing the closing timing of the intake control valve on the deactivated cylinder side with respect to the reference timing when it is determined not to do so. The gist is the intake control device of the engine.

【0013】[0013]

【作用】請求項1の発明では、内燃機関の複数の気筒を
作動気筒と休止気筒とに分けて減筒制御を行なうととも
に、排気の還流路を休止気筒の吸気側に接続して休止気
筒に対して排気の還流を行なっている。そして、特に本
発明では、作動気筒側にて吸気制御弁と吸気弁との間に
形成される第1の空間の容積と、休止気筒側にて吸気制
御弁と吸気弁と還流制御弁との間に形成される第2の空
間の容積とを等しくしているので、減筒制御を停止して
通常の内燃機関の作動を行った場合には、作動気筒側と
休止気筒側とにおける吸入空気量が均一化し、そのため
吸入空気量のばらつきによるトルク変動が低減される。
According to the first aspect of the present invention, a plurality of cylinders of the internal combustion engine are divided into operating cylinders and idle cylinders to perform cylinder reduction control, and the exhaust gas recirculation path is connected to the intake side of the idle cylinders to make them idle cylinders. In contrast, exhaust gas is being recirculated. Further, particularly in the present invention, the volume of the first space formed between the intake control valve and the intake valve on the operating cylinder side and the intake control valve, the intake valve, and the recirculation control valve on the idle cylinder side are Since the volume of the second space formed between them is made equal, when the cut-off cylinder control is stopped and the normal internal combustion engine is operated, the intake air on the operating cylinder side and the idle cylinder side is The amount is made uniform, so that torque fluctuation due to variation in intake air amount is reduced.

【0014】請求項2の発明では、第1の空間の容積と
第2の空間の容積とを等しくする対策として、作動気筒
側の吸気制御弁の取付位置を休止気筒側の吸気制御弁の
取付位置よりも上流側に設定している。このため容積調
節のための吸気通路の形状の変更等の必要がなく、本発
明の実現の手段が簡易化される。
According to the second aspect of the invention, as a measure for equalizing the volume of the first space and the volume of the second space, the mounting position of the intake control valve on the working cylinder side is set to the mounting position of the intake control valve on the idle cylinder side. It is set upstream from the position. Therefore, it is not necessary to change the shape of the intake passage for adjusting the volume, and the means for realizing the present invention is simplified.

【0015】請求項3の発明では、第1の空間の容積と
第2の空間の容積とを等しくする対策として、作動気筒
側の吸気制御弁と吸気弁との間の吸気通路を構成する吸
気管に、吸気通路の容積を増加させる容積増加室を設け
ている。従って、吸気制御弁の取付位置の変更の必要が
なく、例えば吸気通路の長さ等の制限のある場合に有効
である。
According to the third aspect of the present invention, as a measure for equalizing the volume of the first space and the volume of the second space, the intake air forming the intake passage between the intake control valve and the intake valve on the working cylinder side is formed. A volume increasing chamber that increases the volume of the intake passage is provided in the pipe. Therefore, it is not necessary to change the mounting position of the intake control valve, and it is effective when there is a restriction on the length of the intake passage, for example.

【0016】請求項4の発明では、内燃機関の複数の気
筒を作動気筒と休止気筒とに分けて減筒制御を行なうと
ともに、排気の還流路を休止気筒の吸気側に接続して休
止気筒に対して排気の還流を行なっている。そして、特
に本発明では、内燃機関の作動時に減筒制御を停止する
場合には、作動気筒側の吸気制御弁と休止気筒側の吸気
制御弁との駆動タイミングを、吸入空気量を均一になる
様に調節する。つまり、単に制御によって吸入空気量を
調節してトルク変動を低減できるので、吸気制御弁の取
付位置や吸気通路の形状の変更が不要となり、本発明の
目的の達成の手段が一層簡易化される。
According to a fourth aspect of the present invention, a plurality of cylinders of the internal combustion engine are divided into operating cylinders and idle cylinders to perform cylinder reduction control, and the exhaust gas recirculation path is connected to the intake side of the idle cylinders to form idle cylinders. In contrast, exhaust gas is being recirculated. In particular, in the present invention, when stopping the cut-off cylinder control at the time of operating the internal combustion engine, the drive timings of the intake control valve on the operating cylinder side and the intake control valve on the idle cylinder side are made uniform for the intake air amount. To adjust. That is, since it is possible to reduce the torque fluctuation by simply adjusting the intake air amount by control, there is no need to change the mounting position of the intake control valve or the shape of the intake passage, and the means for achieving the object of the present invention is further simplified. .

【0017】請求項5の発明では、減筒条件判定手段に
よって減筒制御の条件が満たされたと判断された場合に
は、所定の基準タイミングで作動気筒側の吸気制御弁と
休止気筒側の吸気制御弁とを各々駆動して減筒制御を行
ない、減筒条件判定手段によって減筒制御の条件が満た
されないと判断された場合には、休止気筒側の吸気制御
弁の閉タイミングを基準タイミングより早める。これに
よって、減筒制御を停止している場合における作動気筒
側と休止気筒側での吸入空気量を均一化できるので、そ
の構成が簡易化されることになる。
According to the fifth aspect of the invention, when the cut-off cylinder condition determining means determines that the cut-off cylinder control condition is satisfied, the intake control valve on the operating cylinder side and the intake air on the idle cylinder side are set at predetermined reference timings. When the cut-off cylinder condition determination means determines that the conditions for the cut-off cylinder control are not satisfied by driving the control valve and the control valve, respectively, the closing timing of the intake control valve on the idle cylinder side is determined from the reference timing. Speed up. This makes it possible to equalize the intake air amounts on the operating cylinder side and the idle cylinder side when the cut-off cylinder control is stopped, so that the configuration is simplified.

【0018】[0018]

【実施例】以下、本発明における実施例である内燃機関
の吸気制御装置を、図面に基づいて説明する。 (実施例1)本実施例の吸気制御装置が搭載されるエン
ジンのシステム構成を図2に示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An intake control device for an internal combustion engine, which is an embodiment of the present invention, will be described below with reference to the drawings. (Embodiment 1) FIG. 2 shows a system configuration of an engine in which the intake control device of this embodiment is mounted.

【0019】図2に示す様に、本実施例のシステム構成
は、4気筒エンジン1と、このエンジン1の吸気系3及
び排気系5と、排気還流(EGR)系7と、これらを制
御する電子制御装置(以下単にECUという)9などか
ら、主として構成されている。以下各構成について詳細
に説明する。
As shown in FIG. 2, the system configuration of this embodiment controls a four-cylinder engine 1, an intake system 3 and an exhaust system 5 of the engine 1, an exhaust gas recirculation (EGR) system 7, and the like. It is mainly composed of an electronic control unit (hereinafter simply referred to as ECU) 9 and the like. Each configuration will be described in detail below.

【0020】前記エンジン1は、4個の気筒#1〜#
4を備えており、各気筒#1〜#4には、各々図示しな
いカムによって開閉されるインテークバルブ(吸気弁)
11a〜dと、エキゾーストバルブ(排気弁)12a〜
dとが設けられている。本実施例では、通常の全ての気
筒#1〜#4の駆動制御以外に、減筒制御として、4個
の気筒#1〜#4のうち2個の気筒#2,#3に対する
燃料噴射を停止して当該気筒#2,#3を適宜休止させ
る制御を行なう。
The engine 1 has four cylinders # 1 to #
4 and each cylinder # 1 to # 4 has an intake valve (intake valve) opened and closed by a cam (not shown).
11a-d and an exhaust valve (exhaust valve) 12a-
d and are provided. In the present embodiment, in addition to the normal drive control of all the cylinders # 1 to # 4, the fuel injection to the two cylinders # 2 and # 3 of the four cylinders # 1 to # 4 is performed as the cut-off cylinder control. Control is performed to stop the cylinders # 2 and # 3 as appropriate.

【0021】前記エンジン1の吸気系3には、圧力調
整弁としてのスロットルバルブ14が配設されており、
このスロットルバルブ14は、スロットルアクチュエー
タの駆動制御によりスロットル開度を変更する。また、
スロットルバルブ14の下流側には、1本の吸気通路か
ら4本に分岐する様にして各吸気ポート15a〜dが設
けられており、この各吸気ポート15a〜dは、各吸気
弁11a〜dを介して各気筒#1〜#4内部に連通す
る。
The intake system 3 of the engine 1 is provided with a throttle valve 14 as a pressure adjusting valve,
The throttle valve 14 changes the throttle opening by drive control of a throttle actuator. Also,
On the downstream side of the throttle valve 14, intake ports 15a to 15d are provided so as to branch from one intake passage into four intake ports 15a to 15d. Through the cylinders # 1 to # 4.

【0022】更に各吸気ポート15a〜dの内部には、
各々吸気制御弁17a〜dが設けられている。この吸気
制御弁17a〜dは、アクチュエータ19a〜dの駆動
制御により気筒#1〜#4毎に独立して吸気ポート15
a〜dの開度を変更するものであり、それによって、各
気筒#1〜#4に吸入される吸入空気量を調節して、燃
料噴射の実行/停止に伴うトルク変動を低減する。尚、
図示しない燃料噴射弁は、吸気制御弁17a〜dの上流
側に配置される。
Further, inside each of the intake ports 15a to 15d,
Intake control valves 17a to 17d are provided respectively. The intake control valves 17a to 17d independently control the intake ports 15 of the cylinders # 1 to # 4 by controlling the drive of the actuators 19a to 19d.
The opening degrees of a to d are changed, whereby the amount of intake air taken into each of the cylinders # 1 to # 4 is adjusted to reduce the torque fluctuation due to execution / stop of fuel injection. still,
The fuel injection valve (not shown) is arranged upstream of the intake control valves 17a to 17d.

【0023】前記エンジン1の排気系5には、各排気
弁12a〜dと連通する4本の排気ポート21a〜dが
設けられている。従って、排気弁12a〜dから排出さ
れた既燃焼ガスは、分岐した排気ポート21a〜dから
合流して、図示しない排ガス浄化触媒等を介して排出さ
れる。
The exhaust system 5 of the engine 1 is provided with four exhaust ports 21a to 21d which communicate with the exhaust valves 12a to 12d. Therefore, the burned gas discharged from the exhaust valves 12a to 12d merges from the branched exhaust ports 21a to 21d and is discharged via an exhaust gas purifying catalyst or the like (not shown).

【0024】またこれとは別に、吸気系3と排気系5
とを接続する様に、触媒の温度低下や、O2センサ部で
のA/Fリーン化を防ぐ手段として、既燃ガスを休止気
筒#2,#3に戻すいわゆる排気還流(EGR)の構造
を備えている。つまり、排気系5と休止気筒#2,#3
の吸気ポート15b,cとを連通して、既燃ガスの還流
を行なう還流路23が設けられており、この還流路23
には、還流路23の開閉制御を行なう還流制御弁(EG
R弁)25が設けられている。このEGR弁25は、減
筒制御の際には、排気系5から休止気筒#2,#3の吸
気ポート15b,cに還流させる既燃ガス量を調節する
ものであり、減筒制御を行わない場合には、その還流を
停止する。
Separately from this, the intake system 3 and the exhaust system 5
In order to prevent the catalyst temperature drop and the A 2 / F lean in the O 2 sensor part, the so-called exhaust gas recirculation (EGR) structure for returning burnt gas to the deactivated cylinders # 2, # 3 is connected. Is equipped with. That is, the exhaust system 5 and the idle cylinders # 2, # 3
Is connected to the intake ports 15b and 15c of the exhaust gas, and a return passage 23 for returning the burned gas is provided.
Is connected to the recirculation control valve (EG
R valve) 25 is provided. The EGR valve 25 adjusts the amount of burnt gas recirculated from the exhaust system 5 to the intake ports 15b and c of the deactivated cylinders # 2 and # 3 during the cut-off cylinder control, and performs the cut-off cylinder control. If not, stop the reflux.

【0025】更に、前記エンジン1には、減筒制御等
の各種の制御を行なうECU7が搭載されており、この
ECU7には、周知のCPU31,ROM33,RAM
34,入出力部32が設けられている。また、このEC
U7には、検出器として各種のセンサ類が接続されてい
る。例えば、各気筒#1〜#4のピストンが上死点(T
DC)に位置するときにパルス信号を出力するクランク
角センサ35、所定のクランク角度毎にパルス信号を出
力する回転速度センサ36、気筒毎にトルクあるいは燃
焼を検出するセンサ37(例えば筒内圧センサ、トルク
センサ、ノックセンサ)、負荷状態を検出する負荷検出
手段38(例えばスロットルセンサ、アクセルセン
サ)、騒音あるいは振動を検出する騒音・振動検出手段
39(例えばノックセンサ)、エミッションの状態を検
出するエミッション検出手段40(例えばO2センサ)
などがある。
Further, the engine 1 is equipped with an ECU 7 for performing various controls such as cylinder reduction control, and the ECU 7 has a well-known CPU 31, ROM 33, RAM.
34 and an input / output unit 32 are provided. Also, this EC
Various sensors are connected to U7 as detectors. For example, the pistons of cylinders # 1 to # 4 are at the top dead center (T
DC), a crank angle sensor 35 that outputs a pulse signal, a rotation speed sensor 36 that outputs a pulse signal at each predetermined crank angle, a sensor 37 that detects torque or combustion for each cylinder (for example, a cylinder pressure sensor, Torque sensor, knock sensor), load detecting means 38 (for example, throttle sensor, accelerator sensor) for detecting a load state, noise / vibration detecting means 39 (for example, knock sensor) for detecting noise or vibration, and emission for detecting emission state Detecting means 40 (for example, O 2 sensor)
and so on.

【0026】特に本実施例においては、前記吸気制御弁
17a〜dの取付位置を、休止気筒#2,#3と作動気
筒#1,#4とで違えている。つまり、作動気筒#1,
#4の吸気制御弁17a,dの取付位置を休止気筒#
2,#3の吸気制御弁17b,cの取付位置より、(並
列して配置された各吸気ポート15a〜dにおける位置
を比較して)上流側に配設することによって、全ての気
筒#1〜#4における各吸気制御弁17a〜dから吸気
弁11a〜dの間にて形成される連続した空間であるデ
ッドスペースの容積を等しくして、吸入空気量を均一化
している。
Particularly in this embodiment, the mounting positions of the intake control valves 17a to 17d are different between the deactivated cylinders # 2 and # 3 and the operating cylinders # 1 and # 4. That is, working cylinder # 1,
The installation position of the intake control valves 17a, 17d of # 4 is set to the idle cylinder #
By disposing the intake control valves 17b, c of Nos. 2 and # 3 on the upstream side (comparing the positions of the intake ports 15a to 15d arranged in parallel) with respect to the mounting positions of all the cylinders # 1. The volume of the dead space, which is a continuous space formed between the intake control valves 17a to 17d to the intake valves 11a to 11d in # 4, is made equal to make the intake air amount uniform.

【0027】具体的に説明すると、例えば気筒#1の吸
気制御弁17aから吸気弁11aまでの容積をV1、同
様に気筒#2の吸気制御弁17bから吸気弁11bまで
の容積をV2、気筒#3の吸気制御弁17cから吸気弁
11cまでの容積をV3、気筒#4の吸気制御弁17d
から吸気弁11dまでの容積をV4、また還流路23の
EGR弁25より吸気系3側である配管部50(図の斜
線部分)の容積をV5とすると、本実施例では、V1=V
4=V2+V3+V5となる様に、各吸気制御弁17a〜d
が配置されている。即ち、配管部50の容積のV5分だ
け作動気筒#1,#4の吸気制御弁17a,dが上流側
に配設されていることによって、デッドスペースの容積
の均一化が図られている。
More specifically, for example, the volume from the intake control valve 17a of the cylinder # 1 to the intake valve 11a is V 1 , and similarly the volume from the intake control valve 17b of the cylinder # 2 to the intake valve 11b is V 2 . The volume from the intake control valve 17c of the cylinder # 3 to the intake valve 11c is V 3 , and the intake control valve 17d of the cylinder # 4 is
Assuming that the volume from the intake valve 11d to the intake valve 11d is V 4 , and the volume of the pipe portion 50 (hatched portion in the figure) on the intake system 3 side of the EGR valve 25 of the return passage 23 is V 5 , V 1 in the present embodiment. = V
4 = V 2 + V 3 + V to 5 and comprising as each intake control valve 17a~d
Is arranged. That is, since the intake control valves 17a and 17d of the working cylinders # 1 and # 4 are disposed on the upstream side by V 5 of the volume of the pipe portion 50, the volume of the dead space is made uniform. .

【0028】次に、上述した構成を有する吸気制御装置
の動作について説明する。まず、比較のために、前記図
13の従来のシステムで、通常の全気筒運転をした場合
を説明する。ここでは、図3の様な部分負荷域での吸気
制御弁の早閉じ制御を行った場合における、A点から下
死点(BDC)の吸気行程の様子を図4に表す。尚、図
4(a)が作動気筒#1,#4を、図4(b)が休止気
筒#2,#3を示すが、各図の左側にA点、右側にBD
Cのシリンダの状態を示す。また、ハード構成の各部材
の番号の添え字は省略した。
Next, the operation of the intake control device having the above structure will be described. First, for comparison, a case where the conventional system shown in FIG. Here, FIG. 4 shows the state of the intake stroke from the point A to the bottom dead center (BDC) when the early closing control of the intake control valve in the partial load range as shown in FIG. 3 is performed. 4A shows the operating cylinders # 1 and # 4, and FIG. 4B shows the deactivated cylinders # 2 and # 3. In each figure, the point A is on the left side and the BD is on the right side.
The state of the cylinder of C is shown. Further, the subscripts of the numbers of the respective members of the hardware configuration are omitted.

【0029】図4に示す様に、A点は吸気制御弁17が
閉になった瞬間であり、その時の体積を各々VS,V
L(但し、VS<VLとする)、空気の密度はともにρ0
する。この時ピストン51は下降中である為に、シリン
ダ容積が+△Vとなるまで単純膨張となる。シリンダ容
積が+△Vとなった時に吸気弁11が閉じた場合、シリ
ンダに取り込まれた空気量は下記式(1),(2)の様
に表すことができる。
As shown in FIG. 4, point A is the moment when the intake control valve 17 is closed, and the volumes at that time are V S and V respectively.
L (provided that V S <V L ) and the density of air are both ρ 0 . At this time, since the piston 51 is descending, the piston 51 simply expands until the cylinder volume reaches + ΔV. When the intake valve 11 is closed when the cylinder volume becomes + ΔV, the amount of air taken into the cylinder can be expressed by the following equations (1) and (2).

【0030】[0030]

【数1】 [Equation 1]

【0031】[0031]

【数2】 [Equation 2]

【0032】(但しVは吸気弁が閉となった時のシリン
ダ容積) したがってVρS<VρLとなり、吸気制御弁17と吸気
弁11との間の容積が異なる場合、吸気制御弁17を同
じタイミングで制御した時の吸入空気量が変わってしま
う。
(Where V is the cylinder volume when the intake valve is closed) Therefore, Vρ S <Vρ L , and when the volume between the intake control valve 17 and the intake valve 11 is different, the intake control valve 17 is the same. The intake air amount changes when controlled with timing.

【0033】そこで、本実施例では、V1=V4=V2
3+V5となる様に各吸気制御弁17を配置することに
よって、全ての気筒#1〜#4における吸入空気量を均
一化している。例えば、作動気筒#1と休止気筒#2を
例にとって示すと、下記式(3),(4)の様になる。
Therefore, in this embodiment, V 1 = V 4 = V 2 +
By arranging the intake control valves 17 so that V 3 + V 5 , the intake air amounts in all the cylinders # 1 to # 4 are made uniform. For example, when the working cylinder # 1 and the idle cylinder # 2 are taken as an example, the following expressions (3) and (4) are obtained.

【0034】[0034]

【数3】 (Equation 3)

【0035】[0035]

【数4】 [Equation 4]

【0036】つまり、本実施例では、V1=V2+V3
5であるから、VρS=VρLとなり、吸入吸気量が均
一化していることが分かる。次に、本実施例の吸気制御
装置にて行われる制御動作を、図5のフローチャート及
び図6のマップに基づいて説明する。
That is, in this embodiment, V 1 = V 2 + V 3 +
Since it is V 5 , it can be seen that V ρ S = V ρ L and the intake and intake air amounts are made uniform. Next, the control operation performed by the intake air control device of the present embodiment will be described based on the flowchart of FIG. 5 and the map of FIG.

【0037】図5に示す様に、ステップ101にて、各
センサ類からの信号に基づいて、エンジン運転状態を
(負荷を示す)アクセル踏込量θ及び回転数NEとして
読み込む。続くステップ102にて、図6に示すマップ
より減筒領域であるか否かを判定する。尚、この図6
は、アクセル踏込量θ及び回転数NEと減筒制御領域と
の関係を示すマップであり、図の斜線で示す領域が減筒
制御領域である。
As shown in FIG. 5, in step 101, the engine operating state is read as the accelerator depression amount θ (indicating the load) and the rotation speed NE based on the signals from the respective sensors. In the following step 102, it is determined from the map shown in FIG. 6 whether or not it is the reduced cylinder region. In addition, this FIG.
Is a map showing the relationship between the accelerator pedal depression amount θ, the rotational speed NE, and the reduced cylinder control region, and the shaded region in the figure is the reduced cylinder control region.

【0038】ここで、減筒領域でないと判断されると、
ステップ103にて通常の吸気制御を行ない、一旦本処
理を終了する。一方、減筒領域であると判断されると、
ステップ104にて、休止気筒#2,#3に対する燃料
噴射の停止等の減筒制御を行う。それとともに、この減
筒制御時には、休止気筒#2,#3に対する既燃ガスの
還流を実行するために、同時にEGR弁25がONされ
る。尚、このEGR弁25の制御は、例えば開弁開度の
調節やデューティ比制御によって行なうことができる
が、最低限ON/OFF機能のあるもので成立する。ま
た、絞り機能は無くても良い。
If it is determined that the region is not the reduced cylinder region,
In step 103, normal intake control is performed, and this processing is once terminated. On the other hand, if it is determined that it is the reduced cylinder region,
In step 104, the cut-off cylinder control such as stopping the fuel injection to the deactivated cylinders # 2 and # 3 is performed. At the same time, during the cut-off cylinder control, the EGR valve 25 is simultaneously turned on in order to recirculate the burnt gas to the deactivated cylinders # 2 and # 3. The control of the EGR valve 25 can be performed by, for example, adjusting the opening degree of the valve or controlling the duty ratio, but it is realized by having a minimum ON / OFF function. Further, the diaphragm function may be omitted.

【0039】この様に、本実施例では、減筒制御の際の
休止気筒#2,#3に対して排気還流を行なうエンジン
1において、吸気制御弁17a〜dの取付位置を休止気
筒#2,#3と作動気筒#1,#4とで違えることによ
って、即ち、作動気筒#1,#4の吸気制御弁17a,
dの取付位置を休止気筒#2,#3の吸気制御弁17
b,cより上流側に配置することによって、全ての気筒
#1〜#4におけるデッドスペースの容積を合致させて
吸入空気量を均一化している。そのため、減筒しないエ
ンジン1の通常の運転を行なう場合には、エンジン1の
トルク変動を低減できるという顕著な効果を奏する。 (実施例2)次に、実施例2について図7に基づいて説
明する。
As described above, in the present embodiment, in the engine 1 that recirculates exhaust gas to the deactivated cylinders # 2 and # 3 during the cut-off cylinder control, the intake control valves 17a to 17d are attached to the deactivated cylinder # 2. , # 3 and working cylinders # 1, # 4 are different, that is, the intake control valves 17a of the working cylinders # 1, # 4,
The installation position of d is set to the intake control valve 17 of the deactivated cylinders # 2 and # 3.
By arranging them on the upstream side of b and c, the volumes of the dead spaces in all the cylinders # 1 to # 4 are matched and the intake air amount is made uniform. Therefore, when performing the normal operation of the engine 1 without reducing the cylinder, the remarkable effect that the torque fluctuation of the engine 1 can be reduced is achieved. (Second Embodiment) Next, a second embodiment will be described with reference to FIG.

【0040】本実施例の吸気制御装置は、制御方法等は
前記実施例1とほぼ同様であり、ハード構成のみが大き
く異なるので、異なる点を詳細に説明する。尚、以下の
説明では前記実施例1と同じハード構成には同じ番号を
付した。図7に示す様に、エンジン1は、4個の気筒#
1〜#4を備えており、各気筒#1〜#4には、各々吸
気弁11a〜dと排気弁12a〜dとが設けられてい
る。本実施例では、2個の気筒#2,#3を休止させる
減筒制御を行なう。
The intake control device of the present embodiment is substantially the same as that of the first embodiment in the control method and the like, and is largely different only in the hardware configuration. Therefore, the different points will be described in detail. In the following description, the same hardware configurations as those in the first embodiment are designated by the same reference numerals. As shown in FIG. 7, the engine 1 has four cylinders #
1 to # 4, and each cylinder # 1 to # 4 is provided with an intake valve 11a to d and an exhaust valve 12a to 12d. In the present embodiment, the cut-off cylinder control is performed in which the two cylinders # 2 and # 3 are deactivated.

【0041】前記エンジン1の吸気系3のスロットルバ
ルブ14の下流には、各吸気ポート15a〜dが設けら
れ、各吸気ポート15a〜dの内部には各々吸気制御弁
17a〜dが設けられている。一方、前記排気系5に
は、排気ポート21a〜dが設けられている。また、排
気系5と休止気筒#2,#3の吸気ポート15b,cと
を連通して還流路23が設けられており、還流路23に
はEGR弁25が設けられている。
Intake ports 15a to 15d are provided downstream of the throttle valve 14 of the intake system 3 of the engine 1, and intake control valves 17a to 17d are provided inside the intake ports 15a to 15d. There is. On the other hand, the exhaust system 5 is provided with exhaust ports 21a to 21d. Further, the exhaust system 5 and the intake ports 15b, c of the deactivated cylinders # 2, # 3 are provided with a return passage 23, and the return passage 23 is provided with an EGR valve 25.

【0042】特に本実施例においては、作動気筒#1,
#4における各々の吸気制御弁17a,dと吸気弁11
a,dとの間の吸気ポート15a,d部分(デッドスペ
ース)に、吸気管の形状を変更して、デッドスペースの
容積を増加させる容積増加室Za,d(容積Vz)が各
々設けられている。
Particularly in this embodiment, the working cylinders # 1,
Intake control valves 17a and 17d and intake valve 11 in # 4
Volume increasing chambers Za and d (volume V z ) for changing the shape of the intake pipe and increasing the volume of the dead space are provided in the intake ports 15a and 15d (dead space) between a and d, respectively. ing.

【0043】つまり、作動気筒#1,#4側のデッドス
ペースを構成する吸気管の形状を、あらかじめ、V1
4=V2+V3+Vz(但し、V1〜V4の添字は気筒番号
に一致する)となるように、容積増加室Za,dのよう
なボリュームを設けることで、吸入空気量のばらつきを
抑えることができる。
That is, the shape of the intake pipe forming the dead space on the side of the working cylinders # 1 and # 4 is previously set to V 1 =
By providing a volume such as the volume increasing chambers Za and d so that V 4 = V 2 + V 3 + V z (however, the subscripts of V 1 to V 4 correspond to the cylinder number), the intake air amount Variation can be suppressed.

【0044】この様に、本実施例では、デッドスペース
の容積を所定容積の容積増加室Za,dを設けることで
増加させることにより、前記実施例1と同様な効果を奏
するとともに、例えば吸気制御弁17a〜dの取付位置
に制限がある場合等に有効であるという利点がある。 (実施例3)次に、実施例3について図8に基づいて説
明する。
As described above, in this embodiment, by increasing the volume of the dead space by providing the volume increasing chambers Za and d of a predetermined volume, the same effect as that of the first embodiment can be obtained and, for example, the intake control can be performed. There is an advantage that it is effective when the mounting positions of the valves 17a to 17d are limited. (Third Embodiment) Next, a third embodiment will be described with reference to FIG.

【0045】本実施例の吸気制御装置は、前記実施例1
とはハード構成が大きく異なるので、異なる点を詳細に
説明する。図8に示す様に、エンジン1は、6個の気筒
#1〜#6を備えており、各気筒#1〜#6には、各々
吸気弁11a〜fと排気弁12a〜fとが設けられてい
る。本実施例では、3個の気筒#1〜#3を休止させる
減筒制御を行なう。
The intake air control system of this embodiment is the same as that of the first embodiment.
Since the hardware configuration is significantly different from, the different points will be described in detail. As shown in FIG. 8, the engine 1 includes six cylinders # 1 to # 6, and each cylinder # 1 to # 6 is provided with an intake valve 11a to f and an exhaust valve 12a to f, respectively. Has been. In the present embodiment, the cut-off cylinder control is performed to suspend the three cylinders # 1 to # 3.

【0046】前記エンジン1の吸気系3のスロットルバ
ルブ14の下流には、各吸気ポート15a〜fが設けら
れて、各吸気ポート15a〜fの内部には各々吸気制御
弁17a〜fが設けられている。一方、前記排気系5に
は、排気ポート21a〜fが設けられている。また、排
気系5と休止気筒#1〜#3の吸気ポート15a〜cと
を連通して還流路23が設けられており、還流路23に
はEGR弁25が設けられている。
The intake ports 15a to 15f are provided downstream of the throttle valve 14 of the intake system 3 of the engine 1, and the intake control valves 17a to 17f are provided inside the intake ports 15a to 15f. ing. On the other hand, the exhaust system 5 is provided with exhaust ports 21a to 21f. Further, the exhaust system 5 and the intake ports 15a to 15c of the deactivated cylinders # 1 to # 3 are communicated with each other, and a return passage 23 is provided, and the return passage 23 is provided with an EGR valve 25.

【0047】特に本実施例においては、作動気筒#4〜
#6の吸気制御弁17d〜fの取付位置を、休止気筒#
1〜#3の吸気制御弁17a〜cの取付位置より(並列
に配置された取付位置にて比較すると)上流側に配設す
ることによって、全ての気筒#1〜#6における吸入空
気量を均一化している。
Particularly in the present embodiment, the operating cylinders # 4 to # 4.
The mounting positions of the intake control valves 17d to 17f of # 6 are set to the deactivated cylinder #.
By disposing the intake control valves 17a to 17c of 1 to # 3 on the upstream side (compared with the mounting positions arranged in parallel), the intake air amounts in all the cylinders # 1 to # 6 can be reduced. It is uniform.

【0048】つまり、本実施例では、各気筒#1〜#6
の吸気制御弁17a〜fから吸気弁11a〜fまでの容
積を各々V1〜V6とし、配管部50(図の斜線部分)の
容積をV50とすると、V4=V5=V6=V1+V2+V3
50となる様に各吸気制御弁17a〜fが配置されてい
る。即ち、配管部50の容積のV50分だけ作動気筒#4
〜#6の吸気制御弁17d〜fが上流側に配設されてい
る。
That is, in the present embodiment, each cylinder # 1 to # 6.
Assuming that the volumes from the intake control valves 17a to 17f to the intake valves 11a to 11f are V 1 to V 6 and the volume of the pipe portion 50 (the hatched portion in the figure) is V 50 , V 4 = V 5 = V 6 = V 1 + V 2 + V 3 +
The intake control valves 17a to 17f are arranged so as to be V 50 . That is, only V 50 minutes of the volume of the pipe unit 50 operates the cylinder # 4
Up to # 6 intake control valves 17d to f are arranged on the upstream side.

【0049】この様に、本実施例では、6気筒のエンジ
ン1においても、作動気筒#4〜#6の吸気制御弁17
d〜fの取付位置を変更するだけで、前記実施例1と同
様な効果を奏する。 (実施例4)次に、実施例4について図9〜図12に基
づいて説明する。
As described above, in this embodiment, the intake control valves 17 of the operating cylinders # 4 to # 6 are also included in the six-cylinder engine 1.
The same effect as that of the first embodiment is obtained only by changing the mounting positions of d to f. (Fourth Embodiment) Next, a fourth embodiment will be described with reference to FIGS.

【0050】本実施例の吸気制御装置は、ハード構成は
従来と同様であるが、その制御方法が大きく異なるの
で、異なる点を詳細に説明する。図9に示す様に、エン
ジン1は、4個の気筒#1〜#4を備えており、各気筒
#1〜#4には、各々吸気弁11a〜dと排気弁12a
〜dとが設けられている。本実施例では、2個の気筒#
2,#3を休止させる減筒制御を行なう。
The intake air control system of the present embodiment has the same hardware construction as the conventional one, but the control method is greatly different, and the different points will be described in detail. As shown in FIG. 9, the engine 1 includes four cylinders # 1 to # 4, and each of the cylinders # 1 to # 4 has an intake valve 11a to d and an exhaust valve 12a.
~ D are provided. In this example, two cylinders #
Cylinder reduction control for suspending Nos. 2 and 3 is performed.

【0051】前記エンジン1の吸気系3のスロットルバ
ルブ14の下流には、各吸気ポート15a〜dが設けら
れて、各吸気ポート15a〜dの内部には各々吸気制御
弁17a〜dが設けられている。一方、前記排気系5に
は、排気ポート21a〜dが設けられている。また、排
気系5と休止気筒#2,#3の吸気ポート15b,cと
を連通して還流路23が設けられており、還流路23に
はEGR弁25が設けられている。
The intake ports 15a to 15d are provided downstream of the throttle valve 14 of the intake system 3 of the engine 1, and the intake control valves 17a to 17d are provided inside the intake ports 15a to 15d. ing. On the other hand, the exhaust system 5 is provided with exhaust ports 21a to 21d. Further, the exhaust system 5 and the intake ports 15b, c of the deactivated cylinders # 2, # 3 are provided with a return passage 23, and the return passage 23 is provided with an EGR valve 25.

【0052】更に、本実施例の制御を行なうための周知
のECU9や、それらに接続されたセンサ類が設けられ
ている。尚、本実施例においては、各吸気制御弁17a
〜dの位置の変更や吸気管の形状の変更等は特に行われ
ていないので、休止気筒#2,#3のデッドスペースの
容積は、作動気筒#1,#4のデッドスペースの容積よ
りも大きいままである。
Further, a well-known ECU 9 for performing the control of this embodiment and sensors connected to them are provided. In this embodiment, each intake control valve 17a
Since the positions of ~ d and the shape of the intake pipe have not been changed, the dead space volume of the deactivated cylinders # 2, # 3 is larger than the dead space volume of the working cylinders # 1, # 4. It remains big.

【0053】次に、本実施例の吸気制御装置の制御の特
徴について、図10に基づいて説明する。この図10
は、各気筒#1〜#4毎のクランク角度に応じた吸気弁
11a〜d,排気弁12a〜d,吸気制御弁17a〜d
の動作の様子を示したものである。
Next, the control characteristics of the intake air control system of this embodiment will be described with reference to FIG. This FIG.
Are intake valves 11a to 11d, exhaust valves 12a to 12d, and intake control valves 17a to 17d according to the crank angle of each cylinder # 1 to # 4.
It shows the state of the operation of.

【0054】図10に示す様に、本実施例では、休止気
筒#2,#3における(太い実線で示す)閉タイミング
を、(1点鎖線で示す)基準タイミングより早く設定し
ている。つまり、休止気筒#2,#3の吸気制御弁17
b,cの閉タイミングを早くすることによって、デッド
スペースが大きな休止気筒#2,#3における吸入空気
量を少なくして、作動気筒#1,#4と休止気筒#2,
#3との吸入空気量を均一にしている。尚、図10にお
いて、斜線部分は、180℃A毎の基準タイミングから
吸気制御弁17a〜dが閉じられるまでの空気の吸入状
態を示したものである。
As shown in FIG. 10, in this embodiment, the closing timing (indicated by the thick solid line) in the deactivated cylinders # 2, # 3 is set earlier than the reference timing (indicated by the one-dot chain line). That is, the intake control valves 17 of the deactivated cylinders # 2, # 3
By advancing the closing timing of b and c, the intake air amount in the deactivated cylinders # 2 and # 3 having a large dead space is reduced, and the working cylinders # 1 and # 4 and the deactivated cylinders # 2 and # 2.
The intake air amount with # 3 is made uniform. In addition, in FIG. 10, the shaded portion shows the intake state of air from the reference timing for each 180 ° C. until the intake control valves 17a to 17d are closed.

【0055】次に、本実施例の出力装置の動作につい
て、図11のフローチャート及び図12のマップに基づ
いて説明する。図11に示す様に、ステップ201に
て、各センサ類からの信号に基づいて、エンジン運転状
態を(負荷を示す)アクセル踏込量θ及び回転数NEと
して読み込む。
Next, the operation of the output device of this embodiment will be described based on the flowchart of FIG. 11 and the map of FIG. As shown in FIG. 11, in step 201, the engine operating state is read as the accelerator depression amount θ (representing the load) and the rotation speed NE based on the signals from the sensors.

【0056】続くステップ202にて、前記実施例1で
説明した図6に示すマップより減筒領域であるか否かを
判定する。ここで、減筒領域であると判断されると、ス
テップ203にて、休止気筒#2,#3に対する燃料噴
射の停止等の減筒制御を行う。それとともに、この減筒
制御時には、休止気筒#2,#3に対する既燃ガスの還
流を実行するために、同時にEGR弁25がONされ
る。
In the following step 202, it is judged from the map shown in FIG. 6 described in the first embodiment whether or not it is the reduced cylinder region. If it is determined that the cylinder is in the reduced cylinder region, in step 203, the reduced cylinder control such as stopping the fuel injection to the deactivated cylinders # 2 and # 3 is performed. At the same time, during the cut-off cylinder control, the EGR valve 25 is simultaneously turned on in order to recirculate the burnt gas to the deactivated cylinders # 2 and # 3.

【0057】一方、減筒領域でないと判断されると、ス
テップ210にて、減筒制御でない通常の吸気制御を行
なう。具体的には、ステップ211にて、図12に示す
マップBより、負荷とエンジン回転数NEとに基づい
て、休止気筒#2,#3における吸気制御弁17b,c
の閉時期(閉タイミング)を求め、この閉時期から開時
間を算出する。また、ステップ212にて、図12に示
すマップCより、負荷とエンジン回転数NEとに基づい
て、作動気筒#1,#4における吸気制御弁17a,d
の閉時期を求め、この閉時期から開時間を算出し、一旦
本処理を終了する。
On the other hand, if it is determined that the cylinder is not in the reduced cylinder region, in step 210, normal intake control that is not the reduced cylinder control is performed. Specifically, in step 211, the intake control valves 17b, c in the deactivated cylinders # 2, # 3 are determined from the map B shown in FIG. 12 based on the load and the engine speed NE.
The closing time (closing timing) is calculated, and the opening time is calculated from this closing timing. Further, in step 212, the intake control valves 17a, 17d in the working cylinders # 1, # 4 are calculated based on the load and the engine speed NE from the map C shown in FIG.
The closing time is calculated, the opening time is calculated from this closing time, and this processing is once ended.

【0058】そして、この算出した各気筒#1〜#4に
おける吸気制御弁17a〜dの各々の開時間に基づい
て、吸気制御弁17a〜dを所定の基準タイミングで開
弁してから前記開時間後に閉弁する。この様に、本実施
例では、ハード構成は従来と同様であるが、休止気筒#
2,#3の吸気制御弁17b,cの閉タイミングを調節
することによって、休止気筒#2,#3と作動気筒#
1,#4における吸入空気量を均一にすることができる
ので、前記実施例1と同様な効果を奏する。特に本実施
例では、ハード構成は従来のものを変更しないで使用で
きるので、一層容易に本発明の目的であるトルク変動を
低減できるという利点がある。
Based on the calculated opening time of each of the intake control valves 17a to 17d in each of the cylinders # 1 to # 4, the intake control valves 17a to 17d are opened at a predetermined reference timing before the opening. It will close after an hour. As described above, in this embodiment, the hardware configuration is the same as the conventional one, but the idle cylinder #
By adjusting the closing timing of the intake control valves 17b, c of the second and the third # 3, the deactivated cylinders # 2, # 3 and the operating cylinders #
Since the intake air amounts in 1 and # 4 can be made uniform, the same effect as in the first embodiment can be obtained. In particular, in this embodiment, since the hardware configuration can be used without changing the conventional one, there is an advantage that the torque fluctuation which is the object of the present invention can be reduced more easily.

【0059】尚、本発明は、2気筒を休止させるものに
限らず、1気筒もしくは2気筒以上を休止させるものに
も適用でき、直列多気筒エンジンに限らず、V型等各種
のエンジンに適用できる。尚、本発明は前記実施例にな
んら限定されるものではなく、本発明の要旨を逸脱しな
い範囲において種々の態様で実施しうることはいうまで
もない。
The present invention can be applied not only to those in which two cylinders are deactivated, but also to those in which one cylinder or two or more cylinders are deactivated, and is not limited to in-line multi-cylinder engines, but also to various engines such as V type. it can. Needless to say, the present invention is not limited to the above-mentioned embodiments, and can be carried out in various modes without departing from the scope of the present invention.

【0060】[0060]

【発明の効果】以上詳述した様に、請求項1の発明で
は、作動気筒側にて吸気制御弁と吸気弁との間に形成さ
れる第1の空間の容積と、休止気筒側にて吸気制御弁と
吸気弁と還流制御弁との間に形成される第2の空間の容
積とを等しくしているので、減筒制御を停止して通常の
内燃機関の作動を行った場合には、作動気筒側と休止気
筒側とにおける吸入空気量が均一化する。その結果、吸
入空気量の各気筒間のばらつきによるトルク変動が低減
され、不快な振動が減少するという顕著な効果を奏す
る。
As described above in detail, according to the invention of claim 1, the volume of the first space formed between the intake control valve and the intake valve on the working cylinder side and the idle cylinder side. Since the volume of the second space formed between the intake control valve and the intake valve and the recirculation control valve is made equal, when the cut-off cylinder control is stopped and the normal internal combustion engine is operated, , The intake air amounts on the operating cylinder side and the idle cylinder side are equalized. As a result, the torque fluctuation due to the variation in the intake air amount among the cylinders is reduced, and an unpleasant vibration is significantly reduced.

【0061】請求項2の発明では、第1の空間の容積と
第2の空間の容積とを等しくする対策として、作動気筒
側の吸気制御弁の取付位置を休止気筒側の吸気制御弁の
取付位置よりも上流側に設定している。この結果、容積
調節のための吸気通路の形状の変更等の必要がなくな
り、トルク変動低減の手段が簡易化されるという利点が
ある。
According to the second aspect of the present invention, as a measure for equalizing the volume of the first space and the volume of the second space, the mounting position of the intake control valve on the working cylinder side is set to the mounting position of the intake control valve on the idle cylinder side. It is set upstream from the position. As a result, there is no need to change the shape of the intake passage for adjusting the volume, and there is an advantage that means for reducing torque fluctuation is simplified.

【0062】請求項3の発明では、第1の空間の容積と
第2の空間の容積とを等しくする対策として、作動気筒
側の吸気制御弁と吸気弁との間の吸気通路を構成する吸
気管に、吸気通路の容積を増加させる容積増加室を設け
ている。従って、吸気制御弁の取付位置の変更の必要が
なくなるので、例えば吸気通路の長さ等の制限のある場
合に有効であるという利点がある。
In the third aspect of the present invention, as a measure for equalizing the volume of the first space and the volume of the second space, the intake air forming the intake passage between the intake control valve and the intake valve on the working cylinder side is formed. A volume increasing chamber that increases the volume of the intake passage is provided in the pipe. Therefore, since it is not necessary to change the mounting position of the intake control valve, there is an advantage that it is effective when the length of the intake passage is limited.

【0063】請求項4の発明では、内燃機関の作動時に
減筒制御を停止する場合には、作動気筒側の吸気制御弁
と休止気筒側の吸気制御弁との駆動タイミングを、吸入
空気量を均一になる様に調節している。つまり、単に制
御によって吸入空気量を調節するだけで、トルク変動を
低減できるので、吸気制御弁の取付位置や吸気通路の形
状の変更が不要となり、一層容易にトルク変動を低減す
ることができる。
According to the fourth aspect of the present invention, when the cut-off cylinder control is stopped when the internal combustion engine is operating, the drive timings of the intake control valve on the operating cylinder side and the intake control valve on the idle cylinder side are set to the intake air amount. It is adjusted to be uniform. That is, the torque fluctuation can be reduced by simply adjusting the intake air amount by control, so that it is not necessary to change the mounting position of the intake control valve or the shape of the intake passage, and the torque fluctuation can be reduced more easily.

【0064】請求項5の発明では、減筒制御の条件が満
たされたと判断された場合には、所定の基準タイミング
で作動気筒側の吸気制御弁と休止気筒側の吸気制御弁と
を各々駆動して減筒制御を行ない、一方、減筒制御の条
件が満たされないと判断された場合には、休止気筒側の
吸気制御弁の閉タイミングを基準タイミングより早めて
いる。これによって、減筒制御を停止している場合にお
ける作動気筒側と休止気筒側での吸入空気量を均一化で
きるので、簡易な構成でトルク変動を低減できるという
利点がある。
According to the fifth aspect of the present invention, when it is determined that the conditions for the reduced cylinder control are satisfied, the intake control valve on the operating cylinder side and the intake control valve on the idle cylinder side are driven at predetermined reference timings. Then, the cylinder cut-off control is performed, and when it is determined that the condition for the cylinder cut-off control is not satisfied, the closing timing of the intake control valve on the deactivated cylinder side is advanced from the reference timing. This makes it possible to equalize the intake air amounts on the operating cylinder side and the deactivated cylinder side when the cut-off cylinder control is stopped, so there is an advantage that torque fluctuation can be reduced with a simple configuration.

【図面の簡単な説明】[Brief description of drawings]

【図1】 請求項5の発明を例示する概略構成図であ
る。
FIG. 1 is a schematic configuration diagram illustrating the invention of claim 5;

【図2】 実施例1の吸気制御装置を装備したエンジン
の全体構成図である。
FIG. 2 is an overall configuration diagram of an engine equipped with the intake control device of the first embodiment.

【図3】 吸気制御弁の動作を示す説明図である。FIG. 3 is an explanatory diagram showing the operation of the intake control valve.

【図4】 吸入空気量の算出手順を示す説明図である。FIG. 4 is an explanatory diagram showing a procedure for calculating an intake air amount.

【図5】 実施例1の吸気制御処理を示すフローチャー
トである。
FIG. 5 is a flowchart showing an intake control process of the first embodiment.

【図6】 実施例1の減筒制御領域の設定を示すマップ
である。
FIG. 6 is a map showing a setting of a reduced cylinder control region according to the first embodiment.

【図7】 実施例2の吸気制御装置を装備したエンジン
の全体構成図である。
FIG. 7 is an overall configuration diagram of an engine equipped with an intake air control device according to a second embodiment.

【図8】 実施例3の吸気制御装置を装備したエンジン
の全体構成図である。
FIG. 8 is an overall configuration diagram of an engine equipped with an intake air control device according to a third embodiment.

【図9】 実施例4の吸気制御装置を装備したエンジン
の全体構成図である。
FIG. 9 is an overall configuration diagram of an engine equipped with an intake control device according to a fourth embodiment.

【図10】 実施例4の吸気制御弁の動作を示す説明図
である。
FIG. 10 is an explanatory diagram showing the operation of the intake control valve of the fourth embodiment.

【図11】 実施例4の吸気制御処理を示すフローチャ
ートである。
FIG. 11 is a flowchart showing an intake control process of the fourth embodiment.

【図12】 実施例4の吸気制御弁の閉時期の設定を示
すマップである。
FIG. 12 is a map showing the setting of the closing timing of the intake control valve of the fourth embodiment.

【図13】 従来の吸気制御装置の説明図である。FIG. 13 is an explanatory diagram of a conventional intake air control device.

【符号の説明】[Explanation of symbols]

1…エンジン、 3…吸気系、5…排
気系、 7…排気還流系(EGR
系)、9…電子制御装置(ECU)、 11a〜f…
吸気弁、12a〜f…排気弁、 15a〜f
…吸気ポート、17a〜f…吸気制御弁、 23
…還流路、25…還流制御弁(EGR弁)、 50…配
管、Za,Zd…容積増加室、 #1〜#6…気
1 ... Engine, 3 ... Intake system, 5 ... Exhaust system, 7 ... Exhaust gas recirculation system (EGR
System), 9 ... Electronic control unit (ECU), 11a-f ...
Intake valve, 12a-f ... Exhaust valve, 15a-f
... intake port, 17a-f ... intake control valve, 23
... Return path, 25 ... Return control valve (EGR valve), 50 ... Piping, Za, Zd ... Volume increasing chamber, # 1 to # 6 ... Cylinder

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02M 25/07 580 B (72)発明者 小幡 治征 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location F02M 25/07 580 B (72) Inventor Haruyuki Obata 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Automobile Within the corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の複数の気筒を作動気筒と休止
気筒とに分けて制御する減筒制御を行なうとともに、該
休止気筒に対して排気の還流を行なう内燃機関の吸気制
御装置において、 前記気筒の吸気孔を開閉する吸気弁と、 該吸気弁の上流側の吸気通路に配置されて、該吸気通路
を開閉制御する吸気制御弁と、 前記休止気筒における前記吸気制御弁と前記吸気弁との
間の吸気通路に接続されて、排気を排気系から吸気系に
還流させる還流路と、 該還流路に設けられて、該還流路を開閉制御する還流制
御弁と、 を備えるとともに、 前記作動気筒側にて前記吸気制御弁と前記吸気弁との間
に形成される第1の空間の容積と、前記休止気筒側にて
前記吸気制御弁と前記吸気弁と前記還流制御弁との間に
形成される第2の空間の容積とを等しく設定したことを
特徴とする内燃機関の吸気制御装置。
1. An intake control device for an internal combustion engine, which performs a reduced-cylinder control for controlling a plurality of cylinders of an internal combustion engine separately into an operating cylinder and a deactivated cylinder, and which recirculates exhaust gas to the deactivated cylinder, An intake valve that opens and closes an intake hole of a cylinder, an intake control valve that is disposed in an intake passage upstream of the intake valve and that controls the opening and closing of the intake passage, and the intake control valve and the intake valve in the idle cylinder. A recirculation passage connected to the intake passage between the exhaust system and the recirculation of exhaust gas from the exhaust system to the intake system; and a recirculation control valve provided in the recirculation passage for controlling the opening and closing of the recirculation passage. The volume of the first space formed between the intake control valve and the intake valve on the cylinder side, and between the intake control valve and the intake valve and the recirculation control valve on the idle cylinder side. The volume of the second space formed is set equal to An intake control device for an internal combustion engine, characterized in that
【請求項2】 前記作動気筒側の吸気制御弁の取付位置
を、前記第1の空間の容積と前記第2の空間の容積とが
等しくなる様に、並列して配置される前記休止気筒側の
吸気制御弁の取付位置と比較してより上流側に設定した
ことを特徴とする前記請求項1記載の内燃機関の吸気制
御装置。
2. The idle cylinder side in which the mounting position of the intake control valve on the working cylinder side is arranged in parallel so that the volume of the first space and the volume of the second space are equal. The intake control device for an internal combustion engine according to claim 1, wherein the intake control valve is set on an upstream side as compared with a mounting position of the intake control valve.
【請求項3】 前記作動気筒側の吸気制御弁と吸気弁と
の間の吸気通路を構成する吸気管に、前記第1の空間の
容積と前記第2の空間の容積とが等しくなる様に、前記
吸気通路の容積を増加させる容積増加室を設けたことを
特徴とする前記請求項1記載の内燃機関の吸気制御装
置。
3. The volume of the first space and the volume of the second space are equal to each other in an intake pipe forming an intake passage between the intake control valve and the intake valve on the operating cylinder side. The intake control device for an internal combustion engine according to claim 1, further comprising a volume increasing chamber for increasing a volume of the intake passage.
【請求項4】 内燃機関の複数の気筒を作動気筒と休止
気筒とに分けて制御する減筒制御を行なうとともに、該
休止気筒に対して排気の還流を行なう内燃機関の吸気制
御装置において、 前記気筒の吸気孔を開閉する吸気弁と、 該吸気弁の上流側の吸気通路に配置されて、該吸気通路
を開閉制御する吸気制御弁と、 前記休止気筒における前記吸気制御弁と前記吸気弁との
間の吸気通路に接続されて、排気を排気系から吸気系に
還流させる還流路と、 該還流路に設けられて、該還流路を開閉制御する還流制
御弁と、 を備え、 前記内燃機関の作動時に前記減筒制御を停止する場合に
は、前記作動気筒側の吸気制御弁と前記休止気筒側の吸
気制御弁との駆動タイミングを、吸入空気量を均一にな
る様に調節することを特徴とする内燃機関の吸気制御装
置。
4. An intake control device for an internal combustion engine, which performs reduced-cylinder control for controlling a plurality of cylinders of an internal combustion engine separately into operating cylinders and idle cylinders, and which recirculates exhaust gas to the idle cylinders. An intake valve that opens and closes an intake hole of a cylinder, an intake control valve that is disposed in an intake passage upstream of the intake valve and that controls the opening and closing of the intake passage, and the intake control valve and the intake valve in the idle cylinder. A recirculation passage that is connected to the intake passage between the exhaust system and recirculates the exhaust gas from the exhaust system to the intake system; and a recirculation control valve that is provided in the recirculation passage and that controls the opening and closing of the recirculation passage. When stopping the cut-off cylinder control at the time of operation, it is necessary to adjust the drive timing of the intake control valve on the operating cylinder side and the intake control valve on the idle cylinder side so that the intake air amount becomes uniform. Intake control of internal combustion engine apparatus.
【請求項5】 前記減筒制御を行なう条件が満たされた
か否かを判定する減筒条件判定手段と、 該減筒条件判定手段によって減筒制御の条件が満たされ
たと判断された場合には、所定の基準タイミングで前記
作動気筒側の吸気制御弁と前記休止気筒側の吸気制御弁
とを各々駆動して減筒制御を行なう減筒制御実行手段
と、 前記減筒条件判定手段によって減筒制御の条件が満たさ
れないと判断された場合には、前記休止気筒側の吸気制
御弁の閉タイミングを、前記基準タイミングより早める
非減筒制御実行手段と、 を備えたことを特徴とする前記請求項4記載の内燃機関
の吸気制御装置。
5. A cylinder-reduction condition determining means for determining whether or not a condition for performing the cylinder-reduction control, and a case where the cylinder-reduction condition is satisfied by the cylinder-reduction condition determining means. A cylinder cut-off control executing means for driving the intake control valve on the operating cylinder side and the intake control valve on the idle cylinder side to execute cylinder cut-off control at a predetermined reference timing; When it is determined that the control condition is not satisfied, the non-reduced cylinder control execution means for advancing the closing timing of the intake control valve on the deactivated cylinder side with respect to the reference timing is provided. Item 4. An intake control device for an internal combustion engine according to item 4.
JP6182388A 1994-08-03 1994-08-03 Intake air controller of internal combustion engine Pending JPH0849577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6182388A JPH0849577A (en) 1994-08-03 1994-08-03 Intake air controller of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6182388A JPH0849577A (en) 1994-08-03 1994-08-03 Intake air controller of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0849577A true JPH0849577A (en) 1996-02-20

Family

ID=16117447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6182388A Pending JPH0849577A (en) 1994-08-03 1994-08-03 Intake air controller of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0849577A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002520536A (en) * 1998-07-08 2002-07-09 ノノックス ビー.ヴィー. Air supply control device for piston reciprocating internal combustion engine and method for controlling operation of piston reciprocating internal combustion engine
JP2008150969A (en) * 2006-12-14 2008-07-03 Yamaha Motor Co Ltd Internal combustion engine
JP2009250046A (en) * 2008-04-01 2009-10-29 Toyota Motor Corp Internal combustion engine
WO2014188097A1 (en) * 2013-05-23 2014-11-27 Peugeot Citroen Automobiles Sa Device for the variable recirculation of exhaust gases
CN106246380A (en) * 2015-06-09 2016-12-21 通用汽车环球科技运作有限责任公司 Air single cylinder determines system and method
WO2018173989A1 (en) * 2017-03-23 2018-09-27 マツダ株式会社 Engine control device
JP2020020332A (en) * 2018-08-03 2020-02-06 株式会社Subaru Internal combustion engine

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002520536A (en) * 1998-07-08 2002-07-09 ノノックス ビー.ヴィー. Air supply control device for piston reciprocating internal combustion engine and method for controlling operation of piston reciprocating internal combustion engine
JP2008150969A (en) * 2006-12-14 2008-07-03 Yamaha Motor Co Ltd Internal combustion engine
JP2009250046A (en) * 2008-04-01 2009-10-29 Toyota Motor Corp Internal combustion engine
WO2014188097A1 (en) * 2013-05-23 2014-11-27 Peugeot Citroen Automobiles Sa Device for the variable recirculation of exhaust gases
FR3006005A1 (en) * 2013-05-23 2014-11-28 Peugeot Citroen Automobiles Sa VARIABLE RECIRCULATION DEVICE FOR EXHAUST GAS
CN106246380B (en) * 2015-06-09 2019-07-12 通用汽车环球科技运作有限责任公司 Air single cylinder determines system and method
CN106246380A (en) * 2015-06-09 2016-12-21 通用汽车环球科技运作有限责任公司 Air single cylinder determines system and method
US10337441B2 (en) 2015-06-09 2019-07-02 GM Global Technology Operations LLC Air per cylinder determination systems and methods
WO2018173989A1 (en) * 2017-03-23 2018-09-27 マツダ株式会社 Engine control device
CN110382844A (en) * 2017-03-23 2019-10-25 马自达汽车株式会社 The control device of engine
JPWO2018173989A1 (en) * 2017-03-23 2019-11-07 マツダ株式会社 Engine control device
US10934947B2 (en) 2017-03-23 2021-03-02 Mazda Motor Corporation Control device for engine
JP2020020332A (en) * 2018-08-03 2020-02-06 株式会社Subaru Internal combustion engine

Similar Documents

Publication Publication Date Title
US6779508B2 (en) Control system of internal combustion engine
JP4650321B2 (en) Control device
US8607544B2 (en) Methods and systems for variable displacement engine control
JP2005307847A (en) Air amount calculation device for internal combustion engine
US20200173378A1 (en) Internal combustion engine system
CN111788378B (en) Internal combustion engine and control method thereof
EP2211044B1 (en) EGR controller and EGR control method for internal combustion engine
JPH0849577A (en) Intake air controller of internal combustion engine
US10865730B2 (en) Fuel supply system for engine, fuel injection control device for engine, and fuel supply method for engine
JP3491791B2 (en) Engine exhaust recirculation control device
JP5212552B2 (en) Control device for internal combustion engine
JP4044625B2 (en) Combustion control device for internal combustion engine
JP4019866B2 (en) Control device for internal combustion engine
JP2019060244A (en) Control device for engine
JP6641405B2 (en) Engine control device
JP3975868B2 (en) Control device for internal combustion engine
JP4710729B2 (en) Control device for internal combustion engine
JP2007278208A (en) Control device for internal combustion engine
JP4389771B2 (en) Control device for internal combustion engine
CN111630264B (en) Method for controlling internal combustion engine and control device for internal combustion engine
JP2008101513A (en) Control device of internal combustion engine
JP4021384B2 (en) Control method for internal combustion engine
JP2009052505A (en) Internal combustion engine
JP3161248B2 (en) Air-fuel ratio control device for internal combustion engine with EGR device
JP3953991B2 (en) Intake air amount control device for internal combustion engine