JPH0849070A - Ito sintered compact and its production - Google Patents

Ito sintered compact and its production

Info

Publication number
JPH0849070A
JPH0849070A JP6202910A JP20291094A JPH0849070A JP H0849070 A JPH0849070 A JP H0849070A JP 6202910 A JP6202910 A JP 6202910A JP 20291094 A JP20291094 A JP 20291094A JP H0849070 A JPH0849070 A JP H0849070A
Authority
JP
Japan
Prior art keywords
powder
particle size
sintered body
tin
ito
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6202910A
Other languages
Japanese (ja)
Other versions
JP3269272B2 (en
Inventor
Shoji Takanashi
昌二 高梨
Toshito Kishi
俊人 岸
Tatsuo Nate
達夫 名手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP20291094A priority Critical patent/JP3269272B2/en
Publication of JPH0849070A publication Critical patent/JPH0849070A/en
Application granted granted Critical
Publication of JP3269272B2 publication Critical patent/JP3269272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce an ITO sintered compact excellent in thermal shock resistance, usable also as powder because it is easily crushed by hand, ensuring satisfactory work efficiency, excellent in utilization efficiency and capable of forming an ITO film having satisfactory specific resistance. CONSTITUTION:When powder consisting essentially of indium, tin and oxygen and so blended as to regulate the tin content of the resultant sintered compact to <20wt.% is compacted and sintered, grain size-regulating powder obtd. by heat-treating indium oxide powder and tin oxide powder is added to powdery starting material based on indium oxide powder and they are granulated, compacted and sintered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、透明導電膜をスパッタ
リングにより形成する際に蒸着材として使用するITO
焼結体およびその製造方法に関する。
The present invention relates to an ITO used as a vapor deposition material when forming a transparent conductive film by sputtering.
The present invention relates to a sintered body and a method for manufacturing the same.

【0002】[0002]

【従来の技術】ITO焼結体から蒸着、スパッタリン
グ、イオンプレーティング等により得られる透明導電膜
は、その比抵抗値の低さから有望な膜として注目されて
いる。たとえば、電子ビーム加熱(以下、EB蒸着とい
う)により適当な条件のもとでITO焼結体から成膜す
ることにより、透明性が高く、良好な膜のシート抵抗値
が得られている。
2. Description of the Related Art A transparent conductive film obtained from an ITO sintered body by vapor deposition, sputtering, ion plating or the like has been attracting attention as a promising film because of its low specific resistance value. For example, by forming a film from an ITO sintered body under appropriate conditions by electron beam heating (hereinafter referred to as EB vapor deposition), high transparency and a good sheet resistance value of the film are obtained.

【0003】このようなITO焼結体は次のようにして
製造されている。すなわち、所望の組成に配合された、
実質的にインジウム、錫および酸素からなる粉末を成形
した後、大気中もしくは真空中、酸素雰囲気中で150
0〜1600℃程度の温度で焼結する等の方法がとられ
ている。
Such an ITO sintered body is manufactured as follows. That is, blended in the desired composition,
After forming a powder consisting essentially of indium, tin, and oxygen, the powder is heated to 150 in air or in an oxygen atmosphere.
A method such as sintering at a temperature of about 0 to 1600 ° C. is used.

【0004】[0004]

【発明が解決しようとする課題】近年のカラー液晶ディ
スプレイを中心とする液晶業界の急速な発展に伴い、デ
ィスプレイの電極に用いられるITO薄膜の需要は拡大
している。それを受けて、ITO薄膜には、高い膜特性
の他に低コスト化が要求されている。また、焼結体の使
用効果を高める方法としては、焼結体に照射する電子線
の走査など成膜装置の改良が行われてきたが、電子線を
移動する距離に限界があったり、装置が高いなどの理由
により改良されるまでには至っていない。
With the rapid development of the liquid crystal industry centering on color liquid crystal displays in recent years, the demand for ITO thin films used for display electrodes is expanding. In response, ITO thin films are required to have low cost in addition to high film characteristics. Further, as a method for enhancing the effect of using the sintered body, the film forming apparatus has been improved by scanning the electron beam with which the sintered body is irradiated. It has not been improved because of high cost.

【0005】一方、ITO薄膜の原料となるITO焼結
体への要求も利用効率に優れたものが求められている。
On the other hand, there is also a demand for an ITO sintered body which is a raw material for an ITO thin film, which has excellent utilization efficiency.

【0006】前述の先行技術に開示されたITO焼結体
においては、基板加熱によるEB蒸着によれば比抵抗値
の低い膜は得られるが、集束させた電子線をITO焼結
体に照射し、ごく一部分を加熱蒸発させるために、IT
O焼結体の表面と内部に温度差が生じ、熱膨張の違いに
よりITO焼結体に割れ(熱衝撃による割れ)が発生す
る。特に、ITO焼結体に割れが発生すると放電状態が
不安定になったり、使用不可能になることが知られてい
る。
In the ITO sintered body disclosed in the above-mentioned prior art, although a film having a low specific resistance value can be obtained by EB vapor deposition by heating the substrate, the ITO sintered body is irradiated with a focused electron beam. , To heat and evaporate a small part of the IT
A temperature difference occurs between the surface and the inside of the O sintered body, and the ITO sintered body is cracked (cracked by thermal shock) due to the difference in thermal expansion. In particular, it is known that when the ITO sintered body is cracked, the discharge state becomes unstable or unusable.

【0007】再利用の問題を解決するために、EB蒸着
で使いきった後のITO焼結体を手粉砕にて粉末状にし
て再度EB蒸着に供する方法が提案されている。しか
し、従来公知の焼結体においては、使いきった後のIT
O焼結体自体が固いために粉砕による粉末化ができず、
ITO焼結体の利用効率は上がっていない。
In order to solve the problem of reuse, there has been proposed a method in which an ITO sintered body that has been used up by EB vapor deposition is powdered by hand pulverization and subjected to EB vapor deposition again. However, in the case of the conventionally known sintered body, the IT after being used up
Since the O sintered body itself is hard, it cannot be pulverized by crushing,
The utilization efficiency of the ITO sintered body has not improved.

【0008】したがって本発明は、比抵抗値の良好なI
TO膜が成膜できるばかりでなく、耐熱衝撃性に優れ、
かつ手による粉砕が容易であるために、最終的には粉末
としても使用でき、作業性がよく利用効率に優れたIT
O焼結体を提供することを目的とする。
Therefore, according to the present invention, I having a good specific resistance value is used.
Not only can a TO film be formed, but it also has excellent thermal shock resistance,
And since it can be easily crushed by hand, it can be used as a powder in the end, and it has good workability and excellent utilization efficiency.
The object is to provide an O sintered body.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明のITO焼結体の製造方法は、主としてイン
ジウム、錫および酸素からなる粉末を成形して焼結を行
うITO焼結体の製造方法において、酸化インジウム粉
末と酸化錫粉末を混合して熱処理することにより粒度調
整粉を得て、酸化インジウム粉末を主とする原料粉中に
前記粒度調整粉を添加して造粒粉末とし、該造粒粉末を
成形、焼結することを特徴とする。
In order to solve the above problems, the method for producing an ITO sintered body of the present invention is an ITO sintered body in which a powder mainly composed of indium, tin and oxygen is molded and sintered. In the manufacturing method, the indium oxide powder and the tin oxide powder are mixed and heat-treated to obtain a particle size adjusting powder, and the particle size adjusting powder is added to a raw material powder mainly containing indium oxide powder to obtain a granulated powder. It is characterized in that the granulated powder is molded and sintered.

【0010】一面からみれば、錫組成が1〜50重量%
となるように酸化インジウム粉末と酸化錫粉末とを混合
し熱処理して粒度調整粉を生成し、酸化インジウム粉末
を主とする原料粉中に前記粒度調整粉を添加し混合して
造粒粉末とし、該造粒粉末を成形、焼結する。
From one aspect, the tin composition is 1 to 50% by weight.
Indium oxide powder and tin oxide powder are mixed and heat treated to produce a particle size adjusting powder, and the particle size adjusting powder is added to a raw material powder mainly containing indium oxide powder and mixed to form a granulated powder. , Molding and sintering the granulated powder.

【0011】他の一面からみれば、錫組成が1〜50重
量%となるように酸化インジウムと酸化錫を配合し熱処
理した粒度調整粉末を酸化インジウムや酸化錫からなる
原料粉末中に混合し成形した後、大気中、真空中、もし
くは酸素雰囲気中にて焼結する。そして、これにより、
30〜80kg/cm2 以下の圧縮強度で粉砕可能なI
TO焼結体が得られる。本発明のITO焼結体は、In
23−SnO2 系で、実質的にインジウム、錫および酸
素からなり、ITO焼結体の錫組成は20重量%以下で
あることが望ましい。
From another aspect, indium oxide and tin oxide are mixed so as to have a tin composition of 1 to 50% by weight and heat-treated, and the particle size adjusting powder is mixed with a raw material powder made of indium oxide or tin oxide and molded. After that, sintering is performed in the air, a vacuum, or an oxygen atmosphere. And this
I that can be crushed with a compressive strength of 30 to 80 kg / cm 2 or less
A TO sintered body is obtained. The ITO sintered body of the present invention is
The 2 O 3 —SnO 2 system is substantially composed of indium, tin and oxygen, and the tin composition of the ITO sintered body is preferably 20% by weight or less.

【0012】さらに他の一面からみれば、実質的にイン
ジウム、錫、および酸素からなり、錫成分を所望の組成
および粒度分布に配合された粉末を成形し、大気中、真
空中もしくは酸素雰囲気中にて焼結しITO焼結体を製
造する。これにより、30〜80kg/cm2 以下の圧
縮強度で粉砕可能で、また600℃からの水中急冷にお
いて割れの生じることのないITO焼結体が得られる。
[0012] From still another aspect, a powder consisting essentially of indium, tin, and oxygen, in which a tin component is mixed in a desired composition and particle size distribution, is molded, and the powder is molded in the air, a vacuum, or an oxygen atmosphere. And sintered to produce an ITO sintered body. This makes it possible to obtain an ITO sintered body that can be crushed with a compressive strength of 30 to 80 kg / cm 2 or less and that does not crack when quenched in water from 600 ° C.

【0013】本発明によって得られたITO焼結体は、
耐熱衝撃性が高く、成膜中における割れが有効的に抑制
され、したがって良質なITO膜を安定して得られる。
また、手による粉砕が容易であるために、EB蒸着で使
いきった後のITO焼結体を最終的には粉末として再度
EB蒸着により成膜できる。
The ITO sintered body obtained according to the present invention is
The thermal shock resistance is high, cracking during film formation is effectively suppressed, and therefore a good quality ITO film can be stably obtained.
Further, since it is easy to pulverize by hand, the ITO sintered body that has been used up by EB evaporation can be finally formed into a film by EB evaporation again as a powder.

【0014】[0014]

【作用】前述のように、従来公知の方法で製造されたI
TO焼結体を用いてEB蒸着を行った場合に生じる割れ
は、集束させた電子線を焼結体に当て、ごく一部分を加
熱蒸着させるために、ITO焼結体の表面と内部に生じ
る温度差によって起こる熱膨張の違いが原因である。熱
膨張差が生じて割れる原因は、焼結が進行する際の粒同
士の結合具合の影響が大きく、強いては粒同士の密着度
に起因していると思われる。
As described above, I produced by a conventionally known method
The cracks that occur when EB vapor deposition is performed using a TO sintered body are the temperatures generated on the surface and inside of the ITO sintered body in order to apply a focused electron beam to the sintered body and heat-deposit only a small portion. This is due to the difference in thermal expansion caused by the difference. It is considered that the cause of the difference in thermal expansion and cracking is largely due to the degree of bonding between the particles during the progress of sintering, and is strongly due to the degree of adhesion between the particles.

【0015】本発明者は、粒同士の密着度を制御するこ
とにより、成膜中の割れを有効的に抑制するばかりでな
く、成膜後の手粉砕作業を容易にすることができること
に注目し、前述した製造条件により、粒同士の密着度を
制御することで、ITO焼結体の成膜中の割れ、成膜後
の粉砕具合を解決することに成功した。
The inventor of the present invention has noticed that not only can the cracks during film formation be effectively suppressed by controlling the degree of adhesion between the grains, but also the manual crushing work after film formation can be facilitated. Then, by controlling the degree of adhesion between the particles based on the above-mentioned manufacturing conditions, it has succeeded in solving cracks during film formation of the ITO sintered body and crushing conditions after film formation.

【0016】粒同士の密着度は、圧縮試験機によりIT
O焼結体の圧縮強度を測定することにより求められ、8
0kg/cm2 以下、好ましくは40〜60kg/cm
2 の範囲が手でも粉砕しやすく、また耐熱衝撃性に対し
ても効果が大きい。
The degree of adhesion between the particles is determined by IT using a compression tester.
The value obtained by measuring the compressive strength of the O sintered body was 8
0 kg / cm 2 or less, preferably 40 to 60 kg / cm
The range of 2 is easy to pulverize even by hand, and has a great effect on thermal shock resistance.

【0017】圧縮強度が80kg/cm2 を越える場
合、成膜のためにEB照射する時に局所的な加熱によっ
て起こる熱膨張差により、ITO焼結体は割れてしまう
ばかりでなく、手粉砕が容易でなくなるために粉末化作
業に手間取り、利用効率に優れたITO焼結体を提供す
ることは難しい。
When the compressive strength exceeds 80 kg / cm 2 , the ITO sintered body is not only cracked due to the difference in thermal expansion caused by local heating at the time of EB irradiation for film formation, but also easy to crush by hand. Therefore, it is difficult to provide an ITO sintered body which is time-consuming for powdering work and has excellent utilization efficiency.

【0018】逆に、圧縮強度が30kg/cm2 以下で
あると、粒同士の密着度が逆に弱くなりすぎるために、
EB照射直後にビームがITO焼結体を貫通してしまっ
たり、膜特性にも問題が生じたりする。
On the other hand, when the compressive strength is 30 kg / cm 2 or less, the adhesion between the grains becomes too weak, and
The beam may penetrate the ITO sintered body immediately after the EB irradiation, or a problem may occur in the film characteristics.

【0019】なお、耐熱衝撃性は、ITO焼結体を60
0℃にて1時間加熱後、水中に投入し割れ具合を調べる
ことにより求められる。
The thermal shock resistance of the ITO sintered body is 60
After heating for 1 hour at 0 ° C., it is placed in water and examined for cracks.

【0020】以下に、本発明に係わる他の各要素に基づ
いて説明する。
The following is a description based on each of the other elements relating to the present invention.

【0021】(原料粉末)原料粉末として用いる粉末は
酸化インジウム粉末の他に、酸化インジウム−酸化錫の
複合粉末、酸化インジウム−酸化錫複合粉末と酸化錫粉
末との混合粉末などを用いることもできる。
(Raw Material Powder) As the raw material powder, indium oxide powder, indium oxide-tin oxide composite powder, mixed powder of indium oxide-tin oxide composite powder and tin oxide powder, and the like can be used. .

【0022】(粒度調整粉) 粒度調整粉(A):酸化インジウム粉末中に酸化錫を所
望の組成に配合(好ましくは錫組成が1〜50重量%の
組成となるように酸化錫粉末を配合)し、混合した後、
該粉末をガスフロー型大気炉もしくは真空加熱炉により
大気中、真空中もしくは酸素雰囲気中にて、1300℃
以上(好ましくは1300〜1600℃)の温度で1〜
15時間の熱処理を行い、平均粒径を5〜30μmまで
粒成長させて粒度調整粉とする。
(Particle size adjusting powder) Particle size adjusting powder (A): Indium oxide powder is compounded with tin oxide in a desired composition (preferably tin oxide powder is compounded so that the tin composition is 1 to 50% by weight). ), And after mixing
The powder is heated to 1300 ° C. in an atmosphere, a vacuum or an oxygen atmosphere by a gas flow type atmospheric furnace or a vacuum heating furnace.
1 to above (preferably 1300 to 1600 ° C)
Heat treatment is carried out for 15 hours, and grains are grown to an average grain size of 5 to 30 μm to obtain grain size adjusting powder.

【0023】粒度調整粉(B):酸化インジウム粉末の
みをガスフロー型大気炉もしくは真空加熱炉により大気
中、真空中もしくは酸素雰囲気中にて、1300℃以上
(好ましくは1300〜1600℃)の温度で1〜15
時間の熱処理を行い、平均粒径を5〜30μmまで粒成
長させて粒度調整粉とする。
Particle size adjusting powder (B): Indium oxide powder alone is heated in a gas flow type atmospheric furnace or a vacuum heating furnace in the atmosphere, in a vacuum or in an oxygen atmosphere at a temperature of 1300 ° C. or higher (preferably 1300 to 1600 ° C.). 1 to 15
Heat treatment is performed for a period of time to grow the particles to an average particle size of 5 to 30 μm to obtain a particle size adjusting powder.

【0024】熱処理温度が1300℃未満の場合、不純
物ガスの抜けが不十分であったり、熱処理粉末中にSn
2 相が存在するなどのために、成膜時に良好な、すな
わちきれいなITO膜を得ることが難しくなる。さらに
熱処理温度が1600℃を越える場合、錫の粗大化によ
り錫分散性が低下し、成膜中の放電状態に支障を来す。
When the heat treatment temperature is lower than 1300 ° C., the escape of the impurity gas is insufficient, or Sn is contained in the heat treated powder.
Due to the presence of the O 2 phase, it is difficult to obtain a good ITO film, that is, a clean ITO film. Further, when the heat treatment temperature exceeds 1600 ° C., the tin dispersibility deteriorates due to the coarsening of tin, and the discharge state during film formation is hindered.

【0025】(造粒粉末)上記のようにして得た粒度調
整粉を原料粉末に配合した後、混合・粉砕を行い造粒粉
末とする。ただし、その配合量は、粒度調整粉(A)の
み、もしくは粒度調整粉(A)と酸化インジウム粉末の
みの粒度調整粉(B)の合計量を原料粉末に対し、40
重量%以上、好ましくは50〜70重量%とする。あら
かじめ熱処理により、平均粒径を5〜30μmにまで粒
成長させた粒度調整粉を原料粉末に対し50〜70重量
%添加することで粒度分布を広げ、成形し易くするばか
りでなく、焼結時に生じる粒同士の密着度を緩和させ、
成膜する際の割れを抑制することができる。
(Granulated powder) The particle size-adjusted powder obtained as described above is mixed with the raw material powder, and then mixed and pulverized to obtain a granulated powder. However, the compounding amount of the particle size adjusting powder (A) alone or the total amount of the particle size adjusting powder (A) and the particle size adjusting powder (B) of only indium oxide powder is 40% with respect to the raw material powder.
The amount is not less than wt%, preferably 50 to 70 wt%. 50% to 70% by weight of the raw material powder is added to the raw material powder by the heat treatment so that the average particle size is grown to 5 to 30 μm to broaden the particle size distribution and facilitate molding, and at the time of sintering. Relaxes the adhesion between the generated particles,
It is possible to suppress cracking during film formation.

【0026】(混合・粉砕)混合・粉砕を行う方法とし
ては、たとえばボールミル混合がある。ボールミル混合
を行う場合、混合時間は、好ましくは12時間以上、さ
らに好ましくは24時間以上である。パラフィンワック
ス、ポリビニルアルコールなどのバインダーは混合・粉
砕時などに1〜4重量%添加することができる。
(Mixing / Pulverizing) As a method for performing mixing / pulverization, there is, for example, ball mill mixing. When performing ball mill mixing, the mixing time is preferably 12 hours or longer, more preferably 24 hours or longer. A binder such as paraffin wax or polyvinyl alcohol can be added in an amount of 1 to 4% by weight when mixing and pulverizing.

【0027】(成形)造粒粉末の成形は、コールドプレ
スにて行う。この際、焼結による収縮はほとんどなくI
TO焼結体の寸法は成形時に決まってしまうため、IT
O焼結体の仕様を考えて成形しなければならない。たと
えばITO焼結体の相対密度を4.3g/cm3 にする
ためには1ton/cm2 前後の成形圧力が好ましい。
(Molding) The granulated powder is molded by cold pressing. At this time, there was almost no shrinkage due to sintering.
Since the dimensions of the TO sintered body are determined at the time of molding, IT
It must be formed by considering the specifications of the O sintered body. For example, a molding pressure of about 1 ton / cm 2 is preferable in order to make the relative density of the ITO sintered body 4.3 g / cm 3 .

【0028】(焼結−昇温速度)焼結は、ガスフロー型
大気炉もしくは真空加熱炉により、大気中、真空中もし
くは酸素雰囲気中にて行うが、大気中による方法が安価
にできて最も好ましい。昇温速度は脱バインダーが容易
に行える範囲とし、たとえば室温から脱バインダー終了
温度400℃までの昇温時間を13時間程度とする。
(Sintering-heating rate) Sintering is carried out in a gas flow type atmospheric furnace or a vacuum heating furnace in the air, in a vacuum or in an oxygen atmosphere, but the method in the air is the cheapest method. preferable. The temperature rising rate is set within a range where debinding can be easily performed, and for example, the heating time from room temperature to the debinding completion temperature of 400 ° C. is set to about 13 hours.

【0029】(焼結−焼結温度)焼結温度は、500℃
〜1100℃とする。500℃未満では、焼結が進行し
ないために非常に脆いITO焼結体となり作業性が低下
してしまう。1100℃を越えると、焼結が強固になり
すぎて、圧縮強度が60kg/cm2 以上になり、成膜
時にITO焼結体が割れてしまうばかりでなく、手粉砕
が困難となる。
(Sintering-Sintering temperature) The sintering temperature is 500.degree.
~ 1100 ° C. If the temperature is lower than 500 ° C., the sintering does not proceed, resulting in a very brittle ITO sintered body, which lowers the workability. If it exceeds 1100 ° C., the sintering becomes too strong and the compressive strength becomes 60 kg / cm 2 or more, so that not only the ITO sintered body is cracked during film formation but also hand grinding becomes difficult.

【0030】(焼結−保持時間)焼結温度に達した際に
保持する時間を制御してやることも重要である。焼結温
度に達した際に保持する時間は1〜5時間程度が好まし
い。保持期間が1時間未満であると、焼結炉内の均熱に
不具合が生じて安定した生産ができない。
(Sintering-holding time) It is also important to control the holding time when the sintering temperature is reached. The holding time when reaching the sintering temperature is preferably about 1 to 5 hours. If the holding period is less than 1 hour, a problem occurs in soaking in the sintering furnace and stable production cannot be performed.

【0031】[0031]

【実施例】以下に、実施例を用いて本発明を説明する。EXAMPLES The present invention will be described below with reference to examples.

【0032】(実施例1)平均粒径1μm以下の酸化イ
ンジウム粉末中に平均粒径3μmの酸化錫粉末を錫組成
が10重量%となるように配合し、3重量%の酢酸ビニ
ール系バインダーを添加した後、湿式ボールミル中で1
8時間混合し、乾燥および粉砕した。その後、大気中に
て1500℃で15時間の熱処理を行い、平均粒径30
μmの粒度調整粉(A)とした。
Example 1 Tin oxide powder having an average particle size of 3 μm was mixed in indium oxide powder having an average particle size of 1 μm or less so that the tin composition was 10% by weight, and 3% by weight of a vinyl acetate binder was added. 1 in the wet ball mill after addition
Mix for 8 hours, dry and grind. After that, heat treatment is performed in the air at 1500 ° C. for 15 hours to obtain an average particle size of 30
The particle size-adjusted powder (A) having a particle size of μm was used.

【0033】平均粒径1μm以下の酸化インジウム粉末
を主とする原料粉中に粒度調整粉(A)を50重量%添
加して混合した後、造粒粉末とした。さらに、造粒粉末
を所定の形状に成形した後、大気中で焼結を行った。焼
結工程は室温から400℃までを13時間にて昇温し、
600℃まで3時間にて温度上昇させた。そして600
℃にて3時間保持し25mmφ、厚さ15mmの大きさ
のITO焼結体を得た。粒度調整粉の熱処理条件、配合
率および焼結条件を表1に示す。
50% by weight of the particle size adjusting powder (A) was added to and mixed with a raw material powder mainly composed of indium oxide powder having an average particle size of 1 μm or less, to obtain a granulated powder. Further, the granulated powder was molded into a predetermined shape and then sintered in the atmosphere. In the sintering process, the temperature is raised from room temperature to 400 ° C in 13 hours,
The temperature was raised to 600 ° C. in 3 hours. And 600
The temperature was kept at 3 ° C. for 3 hours to obtain an ITO sintered body having a size of 25 mmφ and a thickness of 15 mm. Table 1 shows the heat treatment conditions, the compounding ratio, and the sintering conditions of the particle size adjusting powder.

【0034】このようにして得られたITO焼結体の相
対密度は4.4g/cm3 、化学分析による錫組成(平
均組成)は、4.8重量%であった。また、焼結体の圧
縮強度をRU型万能材料試験機にて求め、さらに熱衝撃
性は、焼結体を600℃にて1時間加熱後、水中に投入
し割れ具合を調べた。これらの結果を表2に示す。
The ITO sintered body thus obtained had a relative density of 4.4 g / cm 3 and a tin composition (average composition) by chemical analysis of 4.8% by weight. Further, the compressive strength of the sintered body was determined with a RU type universal material testing machine, and the thermal shock resistance was examined by heating the sintered body at 600 ° C. for 1 hour and then pouring it into water. Table 2 shows the results.

【0035】(実施例2)平均粒径1μm以下の酸化イ
ンジウム粉末中に平均粒径3μmの酸化錫粉末を錫組成
が10重量%となるように配合し、3重量%の酢酸ビニ
ール系バインダーを添加した後、湿式ボールミル中で1
8時間混合し、乾燥および粉砕した。その後、大気中に
て1500℃で10時間の熱処理を行い、平均粒径24
μmの粒度調整粉(A)とした。さらに、平均粒径1μ
mの酸化インジウム粉末および3重量%の酢酸ビニール
系バインダーを添加した後、湿式ボールミル中で18時
間混合し、乾燥および粉砕にて平均粒径を10μm以下
にして、大気中にて1500℃で3時間の熱処理を行
い、平均粒径15μmの粒度調整粉(B)とした。そし
て、平均粒径1μm以下の酸化インジウム粉末を主とす
る原料粉中に粒度調整粉(A)を50重量%、粒度調整
粉(B)を20重量%添加して混合した後、造粒粉末と
した。さらに、造粒粉末を所定の形状に成形した後、大
気中で焼結を行った。焼結工程は室温から400℃まで
を13時間にて昇温し、600℃まで3時間にて温度上
昇させた。そして600℃にて3時間保持し25mm
φ、厚さ15mmの大きさのITO焼結体を得た。粒度
調整粉の熱処理条件、配合率および焼結条件を表1に示
す。
Example 2 Tin oxide powder having an average particle size of 3 μm was mixed in indium oxide powder having an average particle size of 1 μm or less so that the tin composition would be 10% by weight, and 3% by weight of a vinyl acetate binder was added. 1 in the wet ball mill after addition
Mix for 8 hours, dry and grind. After that, heat treatment is performed in the air at 1500 ° C. for 10 hours to obtain an average particle size of 24
The particle size-adjusted powder (A) having a particle size of μm was used. Furthermore, average particle size 1μ
m indium oxide powder and 3% by weight of vinyl acetate binder were added, mixed in a wet ball mill for 18 hours, dried and pulverized to have an average particle size of 10 μm or less, and dried at 1500 ° C. in the atmosphere at 3 ° C. for 3 hours. Heat treatment was performed for a time to obtain a particle size-adjusted powder (B) having an average particle size of 15 μm. Then, 50% by weight of the particle size adjusting powder (A) and 20% by weight of the particle size adjusting powder (B) are added to and mixed with the raw material powder mainly composed of indium oxide powder having an average particle size of 1 μm or less, and then the granulated powder. And Further, the granulated powder was molded into a predetermined shape and then sintered in the atmosphere. In the sintering step, the temperature was raised from room temperature to 400 ° C in 13 hours, and the temperature was raised to 600 ° C in 3 hours. And hold at 600 ℃ for 3 hours 25mm
An ITO sintered body having a size of φ and a thickness of 15 mm was obtained. Table 1 shows the heat treatment conditions, the compounding ratio, and the sintering conditions of the particle size adjusting powder.

【0036】得られたITO焼結体を実施例1と同様な
評価を行い、結果を表2に示す。
The obtained ITO sintered body was evaluated in the same manner as in Example 1, and the results are shown in Table 2.

【0037】(実施例3)平均粒径1μm以下の酸化イ
ンジウム粉末中に平均粒径3μmの酸化錫粉末を錫組成
が50重量%となるように配合し、3重量%の酢酸ビニ
ール系バインダーを添加した後、湿式ボールミル中で1
8時間混合し、乾燥および粉砕した後、流量10リット
ル/分のO2 を流した酸素雰囲気中にて1500℃で1
0時間の熱処理を行い、平均粒径25μmの粒度調整粉
(A)とした。また、平均粒径1μm以下の酸化インジ
ウム粉末に3重量%の酢酸ビニール系バインダーを添加
した後、湿式ボールミル中で18時間混合し、乾燥およ
び粉砕にて平均粒径を10μm以下にして、大気中にて
1300℃で15時間の熱処理を行い、平均粒径15μ
mとした粒度調整粉(B)とした。そして、平均粒径1
μm以下の酸化インジウム粉末を主とする原料粉中に粒
度調整粉(A)を10重量%、粒度調整粉(B)を30
重量%添加して混合した後、造粒粉末とした。さらに、
造粒粉末を用いて成形した後、大気中で焼結を行った。
焼結工程は室温から400℃までを13時間にて昇温
し、600℃まで3時間にて温度上昇させた。そして、
500℃にて5時間保持し25mmφ、厚さ15mmの
大きさのITO焼結体を得た。粒度調整粉の熱処理条
件、配合率および焼結条件を表1に示す。
Example 3 Tin oxide powder having an average particle size of 3 μm was mixed in indium oxide powder having an average particle size of 1 μm or less so that the tin composition was 50% by weight, and 3% by weight of a vinyl acetate binder was added. 1 in the wet ball mill after addition
After mixing for 8 hours, drying and pulverizing, the mixture was dried at 1500 ° C. for 1 hour in an oxygen atmosphere containing O 2 at a flow rate of 10 l / min.
Heat treatment was performed for 0 hours to obtain a particle size-adjusted powder (A) having an average particle size of 25 μm. In addition, after adding 3% by weight of a vinyl acetate binder to indium oxide powder having an average particle size of 1 μm or less, mixing in a wet ball mill for 18 hours, drying and pulverizing to make the average particle size 10 μm or less, and then in air. Heat treatment at 1300 ℃ for 15 hours at
The particle size-adjusted powder (B) was set to m. And the average particle size 1
10% by weight of the particle size adjusting powder (A) and 30% by weight of the particle size adjusting powder (B) in the raw material powder mainly composed of indium oxide powder having a particle size of μm or less
After adding by weight% and mixing, a granulated powder was obtained. further,
After molding using the granulated powder, sintering was performed in the atmosphere.
In the sintering step, the temperature was raised from room temperature to 400 ° C in 13 hours, and the temperature was raised to 600 ° C in 3 hours. And
It was kept at 500 ° C. for 5 hours to obtain an ITO sintered body having a size of 25 mmφ and a thickness of 15 mm. Table 1 shows the heat treatment conditions, the compounding ratio, and the sintering conditions of the particle size adjusting powder.

【0038】得られたITO焼結体を実施例1と同様な
評価を行い、結果を表2に示す。
The obtained ITO sintered body was evaluated in the same manner as in Example 1, and the results are shown in Table 2.

【0039】(実施例4)平均粒径1μm以下の酸化イ
ンジウム粉末中に平均粒径3μmの酸化錫粉末を錫組成
が20重量%となるように配合し、3重量%の酢酸ビニ
ール系バインダーを添加した後、湿式ボールミル中で1
8時間混合し、乾燥および粉砕した後、大気中にて14
00、1500、1600℃の温度で各1時間の熱処理
を行い、各々の平均粒径を5、8、14μmの粒度調整
粉(A)とした。また、平均粒径1μm以下の酸化イン
ジウム粉末に3重量%の酢酸ビニール系バインダーを添
加した後、湿式ボールミル中で18時間混合し、乾燥お
よび粉砕にて平均粒径を10μm以下にして、大気中に
て1500℃で3時間の熱処理を行い、平均粒径15μ
mとした粒度調整粉(B)とした。そして、平均粒径1
μm以下の酸化インジウム粉末を主とする原料粉中に粒
度調整粉(A)を25重量%、粒度調整粉(B)を20
重量%添加して混合した後、造粒粉末とした。さらに、
造粒粉末を用いて成形した後、大気中で焼結を行った。
焼結工程は室温から400℃までを13時間にて昇温
し、600℃まで3時間にて温度上昇させた。そして6
00℃にて3時間保持し25mmφ、厚さ15mmの大
きさのITO焼結体を得た。粒度調整粉の熱処理条件、
配合率および焼結条件を表1に示す(実施例4−1、4
−2、4−3)。
Example 4 Indium oxide powder having an average particle size of 1 μm or less was mixed with tin oxide powder having an average particle size of 3 μm so that the tin composition was 20% by weight, and 3% by weight of a vinyl acetate binder was added. 1 in the wet ball mill after addition
After mixing for 8 hours, drying and pulverizing,
Heat treatment was performed at a temperature of 00, 1500, 1600 ° C. for 1 hour each to obtain a particle size adjusting powder (A) having an average particle size of 5, 8, 14 μm. Further, after adding 3% by weight of a vinyl acetate-based binder to indium oxide powder having an average particle size of 1 μm or less, mixing in a wet ball mill for 18 hours, drying and pulverizing to make the average particle size 10 μm or less, and then in air. Heat treatment at 1500 ℃ for 3 hours, average particle size 15μ
The particle size-adjusted powder (B) was set to m. And the average particle size 1
25% by weight of the particle size adjusting powder (A) and 20% of the particle size adjusting powder (B) in the raw material powder mainly composed of indium oxide powder having a particle size of μm or less
After adding by weight% and mixing, a granulated powder was obtained. further,
After molding using the granulated powder, sintering was performed in the atmosphere.
In the sintering step, the temperature was raised from room temperature to 400 ° C in 13 hours, and the temperature was raised to 600 ° C in 3 hours. And 6
The temperature was maintained at 00 ° C. for 3 hours to obtain an ITO sintered body having a size of 25 mmφ and a thickness of 15 mm. Heat treatment conditions for the particle size adjusted powder,
The compounding ratio and sintering conditions are shown in Table 1 (Examples 4-1 and 4).
-2, 4-3).

【0040】得られたITO焼結体を実施例1と同様な
評価を行い、結果を表2に示す(実施例4−1、4−
2、4−3)。
The ITO sintered body thus obtained was evaluated in the same manner as in Example 1, and the results are shown in Table 2 (Examples 4-1 and 4-).
2, 4-3).

【0041】(実施例5)平均粒径1μm以下の酸化イ
ンジウム粉末中に平均粒径3μmの酸化錫粉末を錫組成
が50重量%となるように配合し、3重量%の酢酸ビニ
ール系バインダーを添加した後、湿式ボールミル中で1
8時間混合し、乾燥および粉砕した後、大気中にて15
00℃の温度で15時間の熱処理を行い、各々の平均粒
径を30μmとした粒度調整粉(A)とした。また、平
均粒径1μm以下の酸化インジウム粉末に3重量%の酢
酸ビニール系バインダーを添加した後、湿式ボールミル
中で18時間混合し、乾燥および粉砕にて平均粒径を1
0μm以下にして、大気中にて1400℃で3時間の熱
処理を行い、平均粒径7μmとした粒度調整粉(B)と
した。そして、平均粒径1μm以下の酸化インジウム粉
末を主とする原料粉中に粒度調整粉(A)を10重量
%、粒度調整粉(B)を40重量%添加して混合した
後、造粒粉末とした。さらに、造粒粉末を用いて成形し
た後、大気中で焼結を行った。焼結工程は室温から40
0℃までを13時間にて昇温し、600℃まで3時間に
て温度上昇させた。そして、600℃にて3時間保持し
25mmφ、厚さ15mmの大きさのITO焼結体を得
た。粒度調整粉の熱処理条件、配合率および焼結条件を
表1に示す。
Example 5 Tin oxide powder having an average particle size of 3 μm was mixed in indium oxide powder having an average particle size of 1 μm or less so that the tin composition was 50% by weight, and 3% by weight of a vinyl acetate binder was added. 1 in the wet ball mill after addition
After mixing for 8 hours, drying and crushing, 15 in the air
Heat treatment was carried out at a temperature of 00 ° C. for 15 hours to obtain a particle size adjusting powder (A) having an average particle size of 30 μm. In addition, after adding 3% by weight of a vinyl acetate binder to indium oxide powder having an average particle size of 1 μm or less, mixing in a wet ball mill for 18 hours, and drying and pulverizing to obtain an average particle size of 1
The particle size was adjusted to 0 μm or less and heat-treated in the atmosphere at 1400 ° C. for 3 hours to obtain a particle size adjusting powder (B) having an average particle size of 7 μm. Then, 10% by weight of the particle size adjusting powder (A) and 40% by weight of the particle size adjusting powder (B) are added to and mixed with the raw material powder mainly composed of indium oxide powder having an average particle size of 1 μm or less, and then the granulated powder. And Furthermore, after molding using the granulated powder, sintering was performed in the atmosphere. Sintering process from room temperature to 40
The temperature was raised to 0 ° C. in 13 hours, and was raised to 600 ° C. in 3 hours. And it hold | maintained at 600 degreeC for 3 hours, and obtained the ITO sintered compact of 25 mm (phi) and the thickness of 15 mm. Table 1 shows the heat treatment conditions, the compounding ratio, and the sintering conditions of the particle size adjusting powder.

【0042】得られたITO焼結体を実施例1と同様な
評価を行い、結果を表2に示す。
The obtained ITO sintered body was evaluated in the same manner as in Example 1, and the results are shown in Table 2.

【0043】(実施例6)平均粒径1μm以下の酸化イ
ンジウム粉末中に平均粒径3μmの酸化錫粉末を錫組成
が20重量%となるように配合し、3重量%の酢酸ビニ
ール系バインダーを添加した後、湿式ボールミル中で1
8時間混合し、乾燥および粉砕した後、大気中にて15
00℃で10時間の熱処理を行い、平均粒径24μmと
した粒度調整粉(A)とした。また、平均粒径1μm以
下の酸化インジウム粉末に3重量%の酢酸ビニール系バ
インダーを添加した後、湿式ボールミル中で18時間混
合し、乾燥および粉砕にて平均粒径を10μm以下にし
て、大気中にて1500℃で3時間の熱処理を行い、平
均粒径15μmとした粒度調整粉(B)とした。そし
て、平均粒径1μm以下の酸化インジウム粉末を主とす
る原料粉中に粒度調整粉(A)を50重量%、粒度調整
粉(B)を30重量%添加して混合した後、造粒粉末と
した。さらに、造粒粉末を用いて成形した後、大気中で
焼結を行った。焼結工程は室温から400℃までを13
時間にて昇温し、1100℃まで11時間にて温度上昇
させた。そして、1100℃にて1時間保持し25mm
φ、厚さ15mmの大きさのITO焼結体を得た。粒度
調整粉の熱処理条件、配合率および焼結条件を表1に示
す。
Example 6 Indium oxide powder having an average particle size of 1 μm or less was mixed with tin oxide powder having an average particle size of 3 μm so that the tin composition was 20% by weight, and 3% by weight of a vinyl acetate binder was added. 1 in the wet ball mill after addition
After mixing for 8 hours, drying and crushing, 15 in the air
Heat treatment was carried out at 00 ° C. for 10 hours to obtain a particle size adjusting powder (A) having an average particle size of 24 μm. In addition, after adding 3% by weight of a vinyl acetate binder to indium oxide powder having an average particle size of 1 μm or less, mixing in a wet ball mill for 18 hours, drying and pulverizing to make the average particle size 10 μm or less, and then in air. Was heat-treated at 1500 ° C. for 3 hours to obtain a particle size adjusting powder (B) having an average particle size of 15 μm. Then, 50% by weight of the particle size adjusting powder (A) and 30% by weight of the particle size adjusting powder (B) are added to and mixed with the raw material powder mainly composed of indium oxide powder having an average particle size of 1 μm or less, and then the granulated powder. And Furthermore, after molding using the granulated powder, sintering was performed in the atmosphere. 13 steps from room temperature to 400 ℃
The temperature was raised over time, and the temperature was raised to 1100 ° C. over 11 hours. Then, hold at 1100 ° C for 1 hour and 25 mm
An ITO sintered body having a size of φ and a thickness of 15 mm was obtained. Table 1 shows the heat treatment conditions, the compounding ratio, and the sintering conditions of the particle size adjusting powder.

【0044】得られたITO焼結体を実施例1と同様な
評価を行い、結果を表2に示す。
The obtained ITO sintered body was evaluated in the same manner as in Example 1, and the results are shown in Table 2.

【0045】(実施例7)平均粒径1μm以下の酸化イ
ンジウム粉末中に平均粒径3μmの酸化錫粉末を錫組成
が20重量%となるように配合し、3重量%の酢酸ビニ
ール系バインダーを添加した後、湿式ボールミル中で1
8時間混合し、乾燥および粉砕した後、大気中にて13
00℃で15時間の熱処理を行い、平均粒径12μmと
した粒度調整粉(A)とした。また、平均粒径1μm以
下の酸化インジウム粉末に3重量%の酢酸ビニール系バ
インダーを添加した後、湿式ボールミル中で18時間混
合し、乾燥および粉砕にて平均粒径を10μm以下にし
て、大気中にて1500℃で3時間の熱処理を行い、平
均粒径15μmとした粒度調整粉(B)とした。そし
て、平均粒径1μm以下の酸化インジウム粉末を主とす
る原料粉中に粒度調整粉(A)を50重量%、粒度調整
粉(B)を20重量%添加して混合した後、造粒粉末と
した。さらに、造粒粉末を用いて成形した後、大気中で
焼結を行った。焼結工程は室温から400℃までを13
時間にて昇温し、600℃まで3時間にて温度上昇させ
た。そして、600℃にて3時間保持し25mmφ、厚
さ15mmの大きさのITO焼結体を得た。粒度調整粉
の熱処理条件、配合率および焼結条件を表1に示す。
Example 7 Indium oxide powder having an average particle size of 1 μm or less was mixed with tin oxide powder having an average particle size of 3 μm so that the tin composition was 20% by weight, and 3% by weight of a vinyl acetate binder was added. 1 in the wet ball mill after addition
After mixing for 8 hours, drying and crushing, 13 in the air
Heat treatment was carried out at 00 ° C. for 15 hours to obtain a particle size adjusting powder (A) having an average particle size of 12 μm. Further, after adding 3% by weight of a vinyl acetate-based binder to indium oxide powder having an average particle size of 1 μm or less, mixing in a wet ball mill for 18 hours, drying and pulverizing to make the average particle size 10 μm or less, and then in air. Was heat-treated at 1500 ° C. for 3 hours to obtain a particle size adjusting powder (B) having an average particle size of 15 μm. Then, 50% by weight of the particle size adjusting powder (A) and 20% by weight of the particle size adjusting powder (B) are added to and mixed with the raw material powder mainly composed of indium oxide powder having an average particle size of 1 μm or less, and then the granulated powder. And Furthermore, after molding using the granulated powder, sintering was performed in the atmosphere. 13 steps from room temperature to 400 ℃
The temperature was raised over time, and the temperature was raised to 600 ° C. over 3 hours. And it hold | maintained at 600 degreeC for 3 hours, and obtained the ITO sintered compact of 25 mm (phi) and the thickness of 15 mm. Table 1 shows the heat treatment conditions, the compounding ratio, and the sintering conditions of the particle size adjusting powder.

【0046】得られたITO焼結体を実施例1と同様な
評価を行い、結果を表1に示す。
The obtained ITO sintered body was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

【0047】(比較例1)平均粒径1μm以下の酸化イ
ンジウム粉末中に平均粒径3μmの酸化錫粉末を錫組成
が5重量%となるように配合し、3重量%の酢酸ビニー
ル系バインダーを添加した後、湿式ボールミル中で18
時間混合し、乾燥および粉砕して造粒粉末とした。さら
に、造粒粉末を用いて成形した後、大気中で焼結を行っ
た。焼結工程は室温から400℃までを13時間にて昇
温し、600℃まで3時間にて温度上昇させた。そし
て、600、800、1000℃にて3時間保持し25
mmφ、厚さ15mmの大きさのITO焼結体を得た。
焼結条件を表1に示す(比較例1−1、1−2、1−
3)。
(Comparative Example 1) Tin oxide powder having an average particle diameter of 3 μm was mixed in indium oxide powder having an average particle diameter of 1 μm or less so that the tin composition was 5% by weight, and 3% by weight of a vinyl acetate binder was added. 18 in a wet ball mill after addition
It was mixed for time, dried and pulverized to obtain a granulated powder. Furthermore, after molding using the granulated powder, sintering was performed in the atmosphere. In the sintering step, the temperature was raised from room temperature to 400 ° C in 13 hours, and the temperature was raised to 600 ° C in 3 hours. Then, hold at 600, 800, 1000 ° C. for 3 hours to obtain 25
An ITO sintered body having a size of mmφ and a thickness of 15 mm was obtained.
The sintering conditions are shown in Table 1 (Comparative Examples 1-1, 1-2, 1-
3).

【0048】得られたITO焼結体を実施例1と同様な
評価を行い、結果を表2に示す(比較例1−1、1−
2、1−3)。
The obtained ITO sintered body was evaluated in the same manner as in Example 1, and the results are shown in Table 2 (Comparative Examples 1-1, 1-
2, 1-3).

【0049】(比較例2)平均粒径1μm以下の酸化イ
ンジウム粉末中に平均粒径3μmの酸化錫粉末を錫組成
が10重量%となるように配合し、3重量%の酢酸ビニ
ール系バインダーを添加した後、湿式ボールミル中で1
8時間混合し、乾燥および粉砕した後、大気中にて12
00℃で3時間の熱処理を行い、平均粒径4μmの粒度
調整粉とした。この粒度調整粉を平均粒径1μm以下の
酸化インジウム粉末を主とする原料粉中に30重量%添
加して混合した後、造粒粉末とした。さらに、造粒粉末
を用いて成形した後、大気中で焼結を行った。焼結工程
は室温から400℃までを13時間にて昇温し、600
℃まで3時間にて温度上昇させた。そして、600℃に
て3時間保持し25mmφ、厚さ15mmの大きさのI
TO焼結体を得た。粒度調整粉の熱処理条件、配合率お
よび焼結条件を表1に示す。
Comparative Example 2 Indium oxide powder having an average particle size of 1 μm or less was mixed with tin oxide powder having an average particle size of 3 μm so that the tin composition was 10% by weight, and 3% by weight of a vinyl acetate binder was added. 1 in the wet ball mill after addition
After mixing for 8 hours, drying and crushing, 12 in the air
Heat treatment was performed at 00 ° C. for 3 hours to obtain a particle size-adjusted powder having an average particle size of 4 μm. 30% by weight of this particle size adjusting powder was added to and mixed with a raw material powder mainly containing indium oxide powder having an average particle size of 1 μm or less, and then a granulated powder was obtained. Furthermore, after molding using the granulated powder, sintering was performed in the atmosphere. In the sintering process, the temperature is raised from room temperature to 400 ° C in 13 hours, and 600
The temperature was raised to 3 ° C. in 3 hours. Then, it was held at 600 ° C. for 3 hours, and the size of I of 25 mmφ and thickness of 15 mm was used.
A TO sintered body was obtained. Table 1 shows the heat treatment conditions, the compounding ratio, and the sintering conditions of the particle size adjusting powder.

【0050】得られたITO焼結体を実施例1と同様な
評価を行い、結果を表2に示す。
The obtained ITO sintered body was evaluated in the same manner as in Example 1, and the results are shown in Table 2.

【0051】[0051]

【表1】 [粒度調整粉(A)] 熱処理温度 時間 平均粒径 配合割合 雰囲気 (℃) (hr) (μm) (%) 実施例1 1500 15 30 50 air 実施例2 1500 10 24 50 air 実施例3 1500 10 25 10 O2 実施例4−1 1400 1 5 25 air 実施例4−2 1500 1 8 25 air 実施例4−3 1600 1 14 25 air 実施例5 1500 15 30 10 air 実施例6 1500 10 24 50 air 実施例7 1300 15 12 50 air 比較例1 − − − − − 比較例1−2 − − − − − 比較例1−3 − − − − − 比較例2 1200 3 4 30 air [粒度調整粉(B)] 熱処理温度 時間 平均粒径 配合割合 雰囲気 (℃) (hr) (μm) (%) 実施例1 − − − − air 実施例2 1500 3 15 20 air 実施例3 1300 15 21 30 air 実施例4−1 1500 3 15 20 air 実施例4−2 1500 3 15 20 air 実施例4−3 1500 3 15 20 air 実施例5 1400 3 7 40 air 実施例6 1500 3 15 30 air 実施例7 1500 3 15 20 air 比較例1−1 − − − − − 比較例1−2 − − − − − 比較例1−3 − − − − − 比較例2 − − − − − [Table 1] [Particle size control powder (A)] Heat treatment temperature Time Average particle size Blending ratio Atmosphere (° C) (hr) (μm) (%) Example 1 1500 15 30 50 50 air Example 2 1500 10 24 50 air Example 3 1500 10 25 10 O 2 Example 4-1 1400 1 525 25 air Example 4-2 1500 1 8 25 air Example 4-3 1600 1 14 25 air Example 5 1500 1500 15 30 10 air Example 6 1500 10 24 50 air Example 7 1300 15 12 50 air Comparative example 1 --- --- Comparative example 1-2 --- --- Comparative example 1-3 --- --- Comparative example 2 1200 3 4 30 air [Particle size Conditioning powder (B)] Heat treatment temperature Time Average particle size Blending ratio Atmosphere (° C) (hr) (μm) (%) Example 1 ----- air Example 2 1500 3 15 20 air Example 3 1300 15 21 30 air Example 4-1 1500 3 15 20 air Example 4-2 1500 3 15 20 air Example 4-3 1500 3 15 20 air Example 5 1400 3 7 40 air Example 6 1500 3 15 30 30 air Example 7 1500 3 15 20 20 air Comparative example 1-1 − − − − − Comparative example 1-2 − − − − − Comparative example 1-3 − − − − − Comparative Example 2 − − − − −

【0052】[0052]

【表2】 相対密度 錫平均組成 圧縮強度 熱衝撃性 (g/cm3 ) (重量%) (kg/cm2) (目視観察) 実施例1 4.4 4.8 64 ○ 実施例2 4.2 5.0 45 ○ 実施例3 3.8 4.9 57 ○ 実施例4−1 4.6 5.1 76 ○ 実施例4−2 4.5 4.8 63 ○ 実施例4−3 4.2 4.8 52 ○ 実施例5 4.3 4.9 47 ○ 実施例6 4.0 9.8 56 ○ 実施例7 4.0 9.7 32 ○ 比較例1−1 4.8 9.8 81 × 比較例1−2 5.1 9.9 97 × 比較例1−3 5.4 9.8 112 × 比較例2 4.3 9.8 86 ×[Table 2] Relative density Tin average composition Compressive strength Thermal shock resistance (g / cm 3 ) (wt%) (kg / cm 2 ) (Visual observation) Example 1 4.4 4.8 64 ○ Example 2 4. 2 5.0 45 ○ Example 3 3.8 4.9 57 ○ Example 4-1 4.6 5.1 5.1 76 ○ Example 4-2 4.5 4.8 63 ○ Example 4-3 4. 2 4.8 52 ○ Example 5 4.3 4.9 47 ○ Example 6 4.0 9.8 56 ○ Example 7 4.0 9.7 32 ○ Comparative example 1-1 4.8 9.8 81 x Comparative example 1-2 5.1 9.9 97 x Comparative example 1-3 5.4 9.8 112 x Comparative example 2 4.3 9.8 86 x

【0053】表2中、熱衝撃性の○は割れが観察されな
かったことを、また×は割れが観察されたことを示す。
In Table 2, ◯ of thermal shock resistance indicates that no crack was observed, and x indicates that crack was observed.

【0054】[0054]

【発明の効果】本発明のITO焼結体は以上のように構
成させているので、耐熱衝撃性が高いことで、EB蒸着
中における焼結体の割れが有効的に抑制され、良質なI
TO膜を安定して得られる。また手による粉砕が容易で
あるために、EB蒸着で使いきった後の焼結体を最終的
には粉末として再度EB蒸着により使用できる利用効率
に優れ、安価に製造可能なITO焼結体を提供すること
ができる。
EFFECTS OF THE INVENTION Since the ITO sintered body of the present invention is configured as described above, it has high thermal shock resistance, so that cracking of the sintered body during EB vapor deposition is effectively suppressed, and good quality I
A TO film can be obtained stably. In addition, since it is easy to pulverize by hand, the sintered body that has been used up by EB vapor deposition can be finally used as a powder again by EB vapor deposition, and an ITO sintered body that has excellent utilization efficiency and can be manufactured at low cost can be obtained. Can be provided.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 主としてインジウム、錫および酸素から
なる粉末を成形して焼結を行うITO焼結体の製造方法
において、酸化インジウム粉末と酸化錫粉末を混合して
熱処理することにより粒度調整粉を得て、酸化インジウ
ム粉末を主とする原料粉中に前記粒度調整粉を添加して
造粒粉末とし、該造粒粉末を成形、焼結するITO焼結
体の製造方法。
1. A method for producing an ITO sintered body, which comprises forming a powder of mainly indium, tin and oxygen and sintering the mixture, wherein the indium oxide powder and the tin oxide powder are mixed and heat-treated to obtain a particle size adjusting powder. A method for producing an ITO sintered body, comprising the step of adding the particle size adjusting powder to a raw material powder mainly composed of indium oxide powder to obtain a granulated powder, and molding and sintering the granulated powder.
【請求項2】 主としてインジウム、錫および酸素から
なる粉末を成形して焼結を行うITO焼結体の製造方法
において、錫組成が1〜50重量%となるように酸化イ
ンジウム粉末と酸化錫粉末とを混合し熱処理して粒度調
整粉を生成し、酸化インジウム粉末を主とする原料粉中
に前記粒度調整粉を添加し混合して造粒粉末とし、該造
粒粉末を成形、焼結するITO焼結体の製造方法。
2. An indium oxide powder and a tin oxide powder having a tin composition of 1 to 50% by weight in a method for producing an ITO sintered body, which comprises forming a powder of mainly indium, tin and oxygen and sintering the powder. Are mixed and heat-treated to generate a particle size adjusting powder, and the particle size adjusting powder is added to and mixed with a raw material powder mainly containing indium oxide powder to form a granulated powder, and the granulated powder is molded and sintered. Manufacturing method of ITO sintered body.
【請求項3】 主としてインジウム、錫および酸素から
なる粉末を成形して焼結を行うITO焼結体の製造方法
において、錫組成が1〜50重量%となるように酸化イ
ンジウム粉末と酸化錫粉末とを混合し熱処理して第1の
粒度調整粉を生成し、さらに酸化インジウム粉のみを熱
処理して第2の粒度調整粉を生成し、酸化インジウム粉
末を主とする原料粉中に前記第1の粒度調整粉と第2の
粒度調整粉とを添加し混合して造粒粉末とし、該造粒粉
末を成形、焼結するITO焼結体の製造方法。
3. A method for producing an ITO sintered body, which comprises forming a powder of mainly indium, tin and oxygen and sintering the powder, wherein the indium oxide powder and the tin oxide powder have a tin composition of 1 to 50% by weight. Are mixed and heat-treated to generate a first particle size adjusting powder, and further only the indium oxide powder is heat-treated to generate a second particle size adjusting powder, and the first powder is mainly added to the raw material powder mainly containing indium oxide powder. 2. A method for producing an ITO sintered body, comprising adding the particle size-adjusted powder and the second particle size-adjusted powder to a mixture to form a granulated powder, and molding and sintering the granulated powder.
【請求項4】 請求項1〜3のいずれかに記載の粒度調
整粉の平均一次粒子径が5〜30μmからなるITO焼
結体の製造方法。
4. A method for producing an ITO sintered body, wherein the particle size-adjusted powder according to claim 1 has an average primary particle diameter of 5 to 30 μm.
【請求項5】 請求項1〜3のいずれかに記載の原料粉
中に添加する粒度調整粉の総量が原料粉に対し、40重
量%以上であるITO焼結体の製造方法。
5. A method for producing an ITO sintered body, wherein the total amount of the grain size adjusting powder added to the raw material powder according to claim 1 is 40% by weight or more based on the raw material powder.
【請求項6】 請求項1〜3のいずれかに記載の粒度調
整粉の平均一次粒子径を5〜30μmとするため、13
00〜1600℃の温度で1〜15時間の熱処理するI
TO焼結体の製造方法。
6. The average primary particle diameter of the particle size adjusting powder according to claim 1, which is 5 to 30 μm,
Heat treatment at a temperature of 00 to 1600 ° C. for 1 to 15 hours I
Method of manufacturing TO sintered body.
【請求項7】 請求項1〜3のいずれかに記載の粒度調
整粉の平均一次粒子径を5〜30μmとするため、13
00〜1600℃の温度で1〜15時間の熱処理し、か
つ原料粉中に添加する粒度調整粉の総量が原料粉に対
し、40重量%以上であるITO焼結体の製造方法。
7. The average primary particle diameter of the particle size-adjusted powder according to claim 1 is set to 5 to 30 μm.
A method for producing an ITO sintered body, wherein heat treatment is performed at a temperature of 00 to 1600 ° C. for 1 to 15 hours, and the total amount of grain size adjusting powder added to the raw material powder is 40% by weight or more based on the raw material powder.
【請求項8】 請求項1〜3のいずれかに記載の造粒粉
末を成形した後、500〜1100℃の温度で1〜5時
間の焼結を行うITO焼結体の製造方法。
8. A method for producing an ITO sintered body, which comprises molding the granulated powder according to any one of claims 1 to 3 and then sintering at a temperature of 500 to 1100 ° C. for 1 to 5 hours.
【請求項9】 原料粉末が、酸化インジウム粉末、酸化
インジウム−酸化錫の複合粉末、または酸化インジウム
−酸化錫の複合粉末と酸化錫粉末との混合粉末からなる
請求項1〜3のいずれかに記載のITO焼結体の製造方
法。
9. The method according to claim 1, wherein the raw material powder is indium oxide powder, indium oxide-tin oxide composite powder, or a mixed powder of indium oxide-tin oxide composite powder and tin oxide powder. A method for producing an ITO sintered body as described above.
【請求項10】 錫組成が20重量%以下で、30〜8
0kg/cm2 の圧縮強度で粉砕可能な、請求項1〜9
に記載の製造方法で作られた焼結体からなるITO蒸着
材。
10. A tin composition of 20% by weight or less and 30 to 8
Grinding with a compressive strength of 0 kg / cm 2 is possible.
An ITO vapor deposition material comprising a sintered body produced by the production method described in 1.
【請求項11】 錫組成が20重量%以下で、600℃
からの水中急冷でも割れの生じることのない、請求項1
〜9に記載の製造方法で作られた焼結体からなるITO
蒸着材。
11. A tin composition of 20% by weight or less at 600 ° C.
Claim 1 which does not cause a crack even if it is rapidly cooled in water.
To ITO made of a sintered body manufactured by the manufacturing method described in
Evaporation material.
【請求項12】 錫組成が20重量%以下で、焼結体密
度が3.8〜4.6g/cm3 である、請求項1〜9に
記載の製造方法で作られた焼結体からなるITO蒸着
材。
12. A sintered body produced by the manufacturing method according to claim 1, which has a tin composition of 20% by weight or less and a sintered body density of 3.8 to 4.6 g / cm 3. ITO vapor deposition material.
JP20291094A 1994-08-05 1994-08-05 ITO sintered body and method of manufacturing the same Expired - Fee Related JP3269272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20291094A JP3269272B2 (en) 1994-08-05 1994-08-05 ITO sintered body and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20291094A JP3269272B2 (en) 1994-08-05 1994-08-05 ITO sintered body and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0849070A true JPH0849070A (en) 1996-02-20
JP3269272B2 JP3269272B2 (en) 2002-03-25

Family

ID=16465206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20291094A Expired - Fee Related JP3269272B2 (en) 1994-08-05 1994-08-05 ITO sintered body and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3269272B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037197A (en) * 2009-09-25 2010-02-18 Murata Mfg Co Ltd Method for producing glass ceramic substrate
JP2013184840A (en) * 2012-03-06 2013-09-19 Sumitomo Metal Mining Co Ltd Tablet for vapor deposition and method for producing the same
JP2014141375A (en) * 2013-01-24 2014-08-07 Ulvac Japan Ltd Method for producing sintered compact powder, sintered compact powder, sputtering target, method for producing sputtering target and apparatus for producing sintered compact powder
CN104507888A (en) * 2012-07-31 2015-04-08 住友金属矿山株式会社 Oxide sintered body and tablet obtained by processing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007077781A1 (en) * 2005-12-28 2007-07-12 Mitsui Mining & Smelting Co., Ltd. Indium oxide powder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037197A (en) * 2009-09-25 2010-02-18 Murata Mfg Co Ltd Method for producing glass ceramic substrate
JP2013184840A (en) * 2012-03-06 2013-09-19 Sumitomo Metal Mining Co Ltd Tablet for vapor deposition and method for producing the same
CN104507888A (en) * 2012-07-31 2015-04-08 住友金属矿山株式会社 Oxide sintered body and tablet obtained by processing same
EP2881379A4 (en) * 2012-07-31 2016-03-02 Sumitomo Metal Mining Co Oxide sintered body and tablet obtained by processing same
JP2014141375A (en) * 2013-01-24 2014-08-07 Ulvac Japan Ltd Method for producing sintered compact powder, sintered compact powder, sputtering target, method for producing sputtering target and apparatus for producing sintered compact powder

Also Published As

Publication number Publication date
JP3269272B2 (en) 2002-03-25

Similar Documents

Publication Publication Date Title
TW524843B (en) Cerium based abrasive material, raw material thereof and method for their preparation
JPH11302835A (en) Production of zinc oxide base sintered compact
JPH11322332A (en) Zno-based sintered product and its production
TWI594970B (en) ITO sputtering target and manufacturing method thereof, and manufacturing method of ITO transparent conductive film and ITO transparent conductive film
JP2007250369A (en) Transparent conductive film and its manufacturing method
JPH0849070A (en) Ito sintered compact and its production
JP5369444B2 (en) GZO sintered body manufacturing method
JP4092764B2 (en) ZnO-based sintered body
JPH11171539A (en) Zno-base sintered compact and its production
JP2009097090A (en) ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE
JP4508079B2 (en) Manufacturing method of sputtering target
JP2008214169A (en) ITiO SINTERED COMPACT FOR VACUUM VAPOR DEPOSITION AND ITS PRODUCTION METHOD
JP4396130B2 (en) Target for producing ITO thin film and manufacturing method thereof
JP2009096713A (en) Zno vapor deposition material, its production method, and zno film and the like formed therefrom
JPH10297962A (en) Zno-ga2o3-based sintered compact for sputtering target and production of the sintered compact
JP2004175616A (en) Zinc oxide-type sintered compact and its manufacturing method
JPH10147861A (en) Production of indium oxide-tin oxide sintered body
JPH11158607A (en) Zno sintered compact and its production
TW593718B (en) Sputtering target for forming optical recording protective film and manufacturing method for the same
JPH10147862A (en) Indium oxide-tin oxide sintered body
JPH11100660A (en) Ito pellet for vapor deposition and its production
JP3468136B2 (en) Sputtering target for forming optical recording medium protective film
JPH06316760A (en) Porous ito sintered compact and its production
JP2006069811A (en) Single crystal magnesium oxide sintered compact and protective film for plasma display panel
JPH10297963A (en) Zno-ga2o3-based sintered compact for sputtering target and production of the sintered compact

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100118

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees