JPH0849045A - Grain-oriented silicon steel sheet low in core loss and its production - Google Patents

Grain-oriented silicon steel sheet low in core loss and its production

Info

Publication number
JPH0849045A
JPH0849045A JP18566494A JP18566494A JPH0849045A JP H0849045 A JPH0849045 A JP H0849045A JP 18566494 A JP18566494 A JP 18566494A JP 18566494 A JP18566494 A JP 18566494A JP H0849045 A JPH0849045 A JP H0849045A
Authority
JP
Japan
Prior art keywords
steel sheet
magnetic flux
flux density
annealing
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18566494A
Other languages
Japanese (ja)
Other versions
JP3914270B2 (en
Inventor
Kunihiro Senda
邦浩 千田
Masayoshi Ishida
昌義 石田
Keiji Sato
圭司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP18566494A priority Critical patent/JP3914270B2/en
Publication of JPH0849045A publication Critical patent/JPH0849045A/en
Application granted granted Critical
Publication of JP3914270B2 publication Critical patent/JP3914270B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To produce a grain-oriented silicon steel sheet low in core loss, in the production of a silicon-contg. steel sheet, by specifying the conditions of secondary recrystallization annealing and specifying the ratio of the standard deviation of the local magnetic flux density of the steel sheet to the exciting magnetic flux density. CONSTITUTION:A silicon-contg. steel sheet slab is subjected to hot rolling, is subjected to cold rolling including process annealing and is thereafter subjected to carburizing, primary recrystallization annealing, secondary recrystallization annealing and purification annealing to produce a grain-oriented silicon steel sheet. In this process, uniform strains of 3 to 10% are introduced into the steel sheet before the secondary recrystallization, and after that, the secondary recrystallization annealing under the condition that the temp. gradient over the sheet width direction is regulated to >=10 deg.C/cm. Thus, the grain-oriented silicon steel sheet low in core loss and uniformly distributed in such a manner the ratio (r) of the standard deviation of the local magnetic flux density of the steel sheet to the exciting magnetic flux density decided by the formula is regulated to <=0.15 can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、変圧器やその他の電気
機器の鉄心に用いて好適な低鉄損方向性電磁鋼板に関す
るるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low iron loss grain oriented electrical steel sheet suitable for use in an iron core of a transformer or other electric equipment.

【0002】[0002]

【従来の技術】方向性電磁鋼板は変圧器やその他の電気
機器用鉄心として利用され、磁気特性に優れること、中
でも鉄損の低いことが要求される。この鉄損は概ねヒス
テリシス損と渦電流損の和で表すことができ、ヒステリ
シス損は強い抑制力をもつインヒビターを用いることに
より、結晶方向をゴス方位、すなわち(110 )<001 >
方位に高度に集積させること、磁化したとき磁壁移動の
際のピンニング因子の生成原因となる不純物元素を低減
させること、等により大幅に低減されてきた。一方、渦
電流損については、Si含有量を増加して電気抵抗を増大
させること、鋼板板厚を薄くすること、鋼板地鉄表面に
地鉄と熱膨張係数の異なる皮膜を形成して地鉄に張力を
付与すること、結晶粒の微細化により磁区幅を低減する
こと、等によって低減が図られてきた。
2. Description of the Related Art Grain-oriented electrical steel sheets are used as iron cores for transformers and other electric equipment, and are required to have excellent magnetic properties, and particularly to have low iron loss. This iron loss can be roughly expressed by the sum of hysteresis loss and eddy current loss. Hysteresis loss is determined by using an inhibitor with a strong inhibitory force so that the crystal direction is the Goss orientation, that is, (110) <001>.
It has been drastically reduced by highly accumulating in the azimuth direction and reducing the impurity element that causes the pinning factor when the domain wall moves when magnetized. On the other hand, regarding eddy current loss, increasing the Si content to increase electrical resistance, reducing the steel plate thickness, and forming a film with a coefficient of thermal expansion different from that of the base steel on the surface of the steel plate It has been attempted to reduce the magnetic domain width by applying tension to the magnetic field and by reducing the crystal grain size.

【0003】さらに渦電流損を低減すべく鋼板の圧延方
向とほぼ垂直な方向に磁極を導入し、180 度磁区を細分
化する方法が開発されており、非耐熱型磁区細分化法と
してレーザー光(特公昭57−2252号公報)、プラズマ炎
(特開昭62−96617 号公報)等を照射する方法、耐熱型
磁区細分化法としては、2次再結晶後の鋼板に機械的加
工により溝を形成する方法(特公昭50−35679 号公
報)、仕上焼鈍前に圧延方向と直角な方向に線状の刻み
目を導入する方法(特公平3−69968 号公報)などがそ
れぞれ開示されている。
Further, in order to reduce the eddy current loss, a method has been developed in which a magnetic pole is introduced in a direction substantially perpendicular to the rolling direction of the steel sheet to subdivide the 180 degree magnetic domain. (Japanese Patent Publication No. 57-2252), a method of irradiating a plasma flame (Japanese Patent Laid-Open No. 62-96617), and a heat-resistant magnetic domain subdivision method, a steel plate after secondary recrystallization is machined to form grooves. Japanese Patent Publication No. 50-35679) and a method of introducing linear notches in the direction perpendicular to the rolling direction before finish annealing (Japanese Patent Publication No. 3-9968).

【0004】また、特開昭54−40223 号公報には結晶の
〔001 〕方位の圧延面からの傾斜角を適正に制御するこ
とで渦電流損を低減する方法が開示されている。
Further, Japanese Patent Application Laid-Open No. 54-40223 discloses a method for reducing eddy current loss by appropriately controlling the inclination angle of the [001] orientation of the crystal from the rolling surface.

【0005】[0005]

【発明が解決しようとする課題】このように従来は、ヒ
ステリシス損低減のためには結晶方位のゴス方位への集
積が、渦電流損の低減のためには圧延方向の磁区幅の低
減が主に図られてきたが、これらの方法のみによっては
今まで以上の大幅な鉄損の改善は期待できない。方向性
電磁鋼板は多数の結晶粒から成る多結晶体であり、鋼板
内では部分ごとにその磁気特性が異なっているが、これ
まで局所的な磁気特性の変化については問題とされてこ
なかった。
As described above, conventionally, the main focus has been to integrate the crystal orientation in the Goss orientation to reduce the hysteresis loss, and to reduce the magnetic domain width in the rolling direction to reduce the eddy current loss. However, it is not possible to expect a greater improvement in iron loss than before by only these methods. The grain-oriented electrical steel sheet is a polycrystalline body composed of a large number of crystal grains, and the magnetic characteristics differ from portion to portion within the steel sheet, but so far no local change in magnetic characteristics has been a problem.

【0006】本発明は、このような鋼板内の局所的な磁
気特性(特に磁束密度)の分布状態を改善し、従来にも
増して鉄損の低い方向性電磁鋼板およびその製造方法を
提供することを目的とするものである。
The present invention provides a grain-oriented electrical steel sheet having improved local magnetic properties (especially magnetic flux density) distribution in the steel sheet and having a lower iron loss than ever before, and a method for producing the same. That is the purpose.

【0007】[0007]

【課題を解決するための手段】本発明は、最終仕上げ焼
鈍を経た含けい素鋼板において、下記の式(1)にて定
める鋼板の局所磁束密度標準偏差の励磁磁束密度に対す
る比率rが0.15以下に均一に分布したことを特徴とする
鉄損の低い方向性電磁鋼板であり、記
According to the present invention, in a silicon-containing steel sheet that has undergone final finish annealing, the ratio r of the local magnetic flux density standard deviation of the steel sheet defined by the following formula (1) to the exciting magnetic flux density is 0.15 or less. It is a grain-oriented electrical steel sheet with low iron loss characterized by being uniformly distributed in

【0008】[0008]

【数3】 (Equation 3)

【0009】また、本発明は、含けい素鋼板スラブを熱
間圧延し、ついで1回または中間焼鈍を挟む2回以上の
冷間圧延を施して最終板厚したのち、脱炭、1次再結晶
焼鈍を施し、しかるのちに2次再結晶焼鈍、ついで純化
焼鈍を施す一連の工程によって、一方向性けい素鋼板を
製造するに当たり、2次再結晶前の鋼板に3〜10%の均
一な歪を導入したのち、板幅方向にわたる温度勾配を10
℃/cm以上とする条件で2次再結晶焼鈍を行うことによ
って、下記の式(1)で定めたrが0.15以下となること
を特徴とする鉄損の低い方向性電磁鋼板の製造方法であ
る。
In the present invention, the slab of silicon steel sheet is hot-rolled, and then cold-rolled once or twice or more with intermediate annealing to obtain a final plate thickness, followed by decarburization and primary re-rolling. When a unidirectional silicon steel sheet is manufactured by a series of steps of performing crystal annealing, then secondary recrystallization annealing, and then purifying annealing, the steel sheet before secondary recrystallization has a uniform content of 3 to 10%. After introducing strain, set the temperature gradient across the plate width to 10
A method of manufacturing a grain-oriented electrical steel sheet with low iron loss, characterized in that r determined by the following formula (1) becomes 0.15 or less by performing secondary recrystallization annealing under the condition of ℃ / cm or more. is there.

【0010】記Note

【0011】[0011]

【数4】 [Equation 4]

【0012】[0012]

【作用】以下本発明の基礎となった研究結果について説
明する。方向性電磁鋼板の鉄損はヒステリシス損と渦電
流損からなるが、前者は磁壁移動の妨げとなる不純物元
素量と結晶方位のゴス方位への集積度によって決定さ
れ、後者は板厚、非抵抗、磁区幅によって決定されると
考えられている。しかしながら、現実の多結晶体鋼板に
おいては鉄損をこれらの因子のみで説明するには至って
いない。
[Functions] The results of the research on which the present invention is based will be described below. The iron loss of grain-oriented electrical steel sheets consists of hysteresis loss and eddy current loss.The former is determined by the amount of impurity elements that hinder the domain wall movement and the degree of integration of the crystal orientation in the Goss orientation, and the latter is the thickness and non-resistance. , Is believed to be determined by the domain width. However, in the actual polycrystalline steel sheet, iron loss cannot be explained only by these factors.

【0013】本発明者らは、常法により製造した種々の
方向性電磁鋼板から圧延方向 280mm、圧延垂直方向 100
mmの試片を切り出し、単板磁気測定器によりB8 及びW
17/5 0 を測定した。ここでW17/50 は磁束密度 1.7T、
周波数50Hzにおける鉄損測定値であり、B8 は磁化力 8
00A/mにおける磁束密度を示す。これらの試片からB
8 が 1.920Tから 1.930Tのものを選別した後、磁区観
察により圧延方向の平均磁区幅を求めた。図2は平均磁
区幅と鉄損W17/50 の関係を示す測定図である。図2中
の試片はB8 が同等であることから、〔001 〕方位の圧
延方向への集積度は同一レベルであるといえる。
The present inventors have made various grain-oriented electrical steel sheets manufactured by a conventional method into a rolling direction of 280 mm and a vertical rolling direction of 100 mm.
Cut out a test piece of mm and measure B 8 and W with a single plate magnetometer.
17/5 0 was measured. Here, W 17/50 is the magnetic flux density 1.7T,
It is a measured value of iron loss at a frequency of 50 Hz, and B 8 is the magnetizing force 8
The magnetic flux density at 00 A / m is shown. B from these samples
After selecting 8 from 1.920T to 1.930T, the average magnetic domain width in the rolling direction was obtained by observing the magnetic domains. FIG. 2 is a measurement diagram showing the relationship between the average magnetic domain width and the iron loss W 17/50 . Since the samples in FIG. 2 have the same B 8 , it can be said that the degree of integration of the [001] orientation in the rolling direction is at the same level.

【0014】図2は、平均磁区幅が同じであっても鉄損
は同じではないという結果となっている。図2のよう
に、平均磁区幅、結晶方位集積度の平均値などの条件が
同等であるにもかかわらず、鉄損の異なる試片につい
て、本発明者らはその原因を、明らかにするため、鋼板
の局所的領域における磁束密度の分布の測定を行った。
局所的な磁束密度は、鋼板全体の最大磁束密度が 1.7T
になるように励磁した際の鋼板の圧延垂直方向の10mmの
幅の領域を通過する磁束の圧延方向の成分を「探針法」
と呼ばれる方法を用いて測定した。
FIG. 2 shows that the core loss is not the same even if the average magnetic domain width is the same. As shown in FIG. 2, the present inventors have clarified the cause of the test pieces having different iron losses even though the conditions such as the average magnetic domain width and the average value of the crystal orientation integration degree are equal. The distribution of the magnetic flux density in the local area of the steel sheet was measured.
As for the local magnetic flux density, the maximum magnetic flux density of the entire steel sheet is 1.7T.
The "probe method" is used to determine the component in the rolling direction of the magnetic flux that passes through the region of 10 mm width in the vertical direction of the rolling of the steel sheet when excited so that
It measured using the method called.

【0015】ここで探針法とは、鋼板の磁化方向と垂直
な方向に並ぶ2本の針を、地鉄部分に接触させることに
より、サーチコイルと同様の局所的な磁束密度を非破壊
で測定することのできる方法である。局所領域の磁束密
度は鋼板全幅で 1.7Tを平均として、1.30T〜1.90T程
度に変化している。このような鋼板内における局所的な
磁束密度の変化を下の式(1)のように定量化した。
Here, the probe method is a method in which two needles arranged in a direction perpendicular to the magnetization direction of the steel sheet are brought into contact with the base iron portion, so that a local magnetic flux density similar to that of the search coil is nondestructive. It is a method that can be measured. The magnetic flux density in the local region changes from 1.30T to 1.90T with 1.7T as the average over the entire width of the steel sheet. The local change in magnetic flux density in the steel sheet was quantified as in the following equation (1).

【0016】[0016]

【数5】 (Equation 5)

【0017】式(1) のrの意味するところは、局所的な
磁束密度変化の標準偏差の励磁磁束密度に対する比率で
ある。局所磁束密度の測定点は圧延方向、圧延垂直方向
にそれぞれ10mmの間隔をおいて設定し、鋼板の圧延方向
中央の約 200点に対して測定を行った。図2に示した試
片全てについてrを算出し、rの値によって、図3、図
4の関係を得た。
The meaning of r in the equation (1) is the ratio of the standard deviation of the local magnetic flux density change to the exciting magnetic flux density. The measurement points of the local magnetic flux density were set at intervals of 10 mm in the rolling direction and the vertical direction of the rolling, and the measurement was performed at about 200 points in the center of the steel sheet in the rolling direction. R was calculated for all the test pieces shown in FIG. 2, and the relationship of FIGS. 3 and 4 was obtained from the value of r.

【0018】図3は平均磁区幅0.22〜0.24mmの試片につ
いて、rとW17/50 の関係を示したものである。rの増
大に従ってW17/50 は増大しており、図2で見られた同
一磁区幅の試片に対する鉄損のばらつきの原因は、rと
して定量化した鋼板内の磁束密度の不均一にあることが
明らかである。図4は図2をrの値によって分類した結
果である。図3、図4よりrが0.15以下であるような鋼
板において低鉄損が安定して得られている。またrが0.
10以下でかつ平均磁区幅が0.23以下の場合には更なる低
鉄損が得られている。
FIG. 3 shows the relationship between r and W 17/50 for a sample having an average magnetic domain width of 0.22 to 0.24 mm. W 17/50 increases with the increase of r, and the cause of the variation of the iron loss for the specimen with the same magnetic domain width seen in FIG. 2 is the nonuniform magnetic flux density in the steel sheet quantified as r. It is clear. FIG. 4 is a result of classifying FIG. 2 by the value of r. From FIGS. 3 and 4, low iron loss is stably obtained in the steel sheet having r of 0.15 or less. Also, r is 0.
When the average magnetic domain width is 10 or less and 0.23 or less, further lower iron loss is obtained.

【0019】以上の結果から、圧延方向の磁区の幅を低
減するとともに鋼板全体にわたる局所磁束密度変化を均
一化し、rを0.15以下とすることで鉄損の低い製品を得
られることがわかった。ここで局所磁束密度分布のばら
つきの指標として励磁磁束密度 1.7T下における式(1)
で定めるところのrを使用したが、特にこれに限らず磁
化力 100A/mにおける局所的な磁束密度の不均一や、
鋼板の圧延垂直方向での局所磁束密度変化などを定量化
して使用することができる。
From the above results, it was found that a product having a low iron loss can be obtained by reducing the width of the magnetic domain in the rolling direction, uniformizing the local magnetic flux density change over the entire steel sheet, and setting r to 0.15 or less. Here, as an index of the variation of the local magnetic flux density distribution, the equation (1) under the excitation magnetic flux density of 1.7T is used.
Although the r defined in the above is used, the present invention is not limited to this, and the local magnetic flux density at a magnetizing force of 100 A / m is not uniform,
It is possible to quantify and use the local magnetic flux density change in the rolling vertical direction of the steel sheet.

【0020】なお、以上の結果は素材B8 レベルが1.92
〜1.93Tの材料についての調査結果であるが、これ以上
のB8 レベルの材料の場合も同様の結果であった。また
式(1) のrを求める際の局所磁束密度の測定は幅10mmの
領域の局所磁気測定の場合、圧延垂直方向の間隔が20mm
以下、圧延方向の間隔が50mm以下で行うことが望まし
い。
The above results show that the material B 8 level is 1.92.
Although the results are about the material of .about.1.93T, the same result is obtained for the material of B 8 level higher than this. In addition, the local magnetic flux density when calculating r in equation (1) is 20 mm in the vertical rolling direction when measuring the local magnetic field in a region with a width of 10 mm.
Hereafter, it is desirable that the interval in the rolling direction is 50 mm or less.

【0021】このように、局所的な磁束密度の分布を均
一にすることで鉄損の低い方向性電磁鋼板が得られた理
由は以下のように考えられる。方向性電磁鋼板の鉄損の
うち、6割程度を占める渦電流損は、Pry とBeanの計算
によれば、磁束密度正弦波域では、磁区幅、磁束密度の
2乗にそれぞれ比例して増大する。従来は鋼板内の磁束
密度の分布については考慮されず、渦電流損の低減のた
めには磁区幅の低減が図られていた。しかしながら、図
3に示した結果のように、鋼板内局所で磁束密度は大き
く変化している。したがって、磁束が局所的に集中した
部分では渦電流損が急激に増大し鋼板全体の鉄損も増大
する。また、実際の鋼板においては、結晶粒ごとに磁区
幅が異なっており、磁区幅が広い結晶粒は結晶の〔001
〕方位の圧延面に対する傾斜角が小さく、磁束が集中
し易いため、局所的な鉄損は他の粒にくらべて著しく増
大するという現象が起こる。
The reason why the grain-oriented electrical steel sheet having a low iron loss is obtained by making the distribution of the local magnetic flux density uniform is considered as follows. According to the calculation of Pry and Bean, the eddy current loss, which accounts for about 60% of the iron loss of the grain-oriented electrical steel sheet, increases in proportion to the magnetic domain width and the square of the magnetic flux density in the sine wave region of the magnetic flux density. To do. Conventionally, the distribution of the magnetic flux density in the steel sheet has not been considered, and the magnetic domain width has been reduced in order to reduce the eddy current loss. However, as shown in the result shown in FIG. 3, the magnetic flux density changes locally in the steel sheet. Therefore, the eddy current loss rapidly increases in the portion where the magnetic flux is locally concentrated, and the iron loss of the entire steel sheet also increases. In an actual steel sheet, the magnetic domain width is different for each crystal grain, and a crystal grain with a wide magnetic domain width is
] Since the inclination angle of the orientation with respect to the rolling surface is small and the magnetic flux is easily concentrated, a phenomenon occurs in which the local iron loss is significantly increased as compared with other grains.

【0022】本発明では、このような多結晶体における
磁束密度の分布を均一化することによって、鉄損が局所
的に増大する部分を無くし、鉄損の低い製品を得ること
ができたといえる。本発明において、式(1) のrの上限
を0.15としたのは、rが0.15を超えると、上記のような
機構により鉄損の上昇が起こり安定して低鉄損の製品が
得られなくなるからである。
In the present invention, it can be said that by homogenizing the distribution of the magnetic flux density in such a polycrystalline body, a portion where the iron loss locally increases can be eliminated and a product with low iron loss can be obtained. In the present invention, the upper limit of r in the formula (1) is set to 0.15. When r exceeds 0.15, iron loss increases due to the mechanism as described above, and a stable product with low iron loss cannot be obtained. Because.

【0023】このような磁束密度分布が均一である鋼板
を得るための製造方法として、本発明者らは、含けい素
鋼板スラブを熱間圧延し、ついで1回または中間焼鈍を
挟む2回以上の冷間圧延を施して最終板厚したのち、脱
炭、1次再結晶焼鈍を施し、しかるのちに2次再結晶焼
鈍、ついで純化焼鈍を施す一連の工程によって、一方向
性けい素鋼板を製造するに当たり、2次再結晶前の鋼板
に3〜10%の均一な歪を導入したのち、板幅方向にわた
る温度勾配を10℃/cm以上とする条件で2次再結晶焼鈍
を行うことを特徴とする鉄損の低い方向性電磁鋼板の製
造方法を確立した。
As a manufacturing method for obtaining a steel sheet having such a uniform magnetic flux density distribution, the present inventors hot-roll a silicon steel sheet slab, and then once or twice with intermediate annealing. Cold-rolled to the final thickness, decarburization, primary recrystallization annealing, and then secondary recrystallization annealing, followed by purification annealing to obtain a unidirectional silicon steel sheet. In manufacturing, after introducing a uniform strain of 3 to 10% into the steel sheet before the secondary recrystallization, it is necessary to perform the secondary recrystallization annealing under the condition that the temperature gradient in the sheet width direction is 10 ° C / cm or more. A method for manufacturing grain-oriented electrical steel sheets with low iron loss was established.

【0024】この方法によってrが0.15以下となる磁気
特性の優れた鋼板が得られる理由は以下のように推定で
きる。2次再結晶に先立つ均一歪の導入によって粒界移
動の駆動力となる転移が鋼板中にもたらされ、これに板
幅方向の温度勾配が加わることによって、鋼板の板幅方
向への2次再結晶成長が促進される。このような板幅方
向への2次再結晶粒の十分な成長によって幅方向の2次
再結晶組織が均一化し、その結果として、磁束密度の分
布も均一なものとなり、磁束密度分布の不均一に起因す
る鉄損劣化のない鉄損の低い方向性電磁鋼板が安定して
得られるものと思われる。
The reason why a steel sheet excellent in magnetic properties with r of 0.15 or less can be obtained by this method can be estimated as follows. The introduction of the uniform strain prior to the secondary recrystallization causes a transition in the steel sheet that serves as a driving force for grain boundary movement, and a temperature gradient in the sheet width direction is added to the transition. Recrystallization growth is promoted. Such sufficient growth of secondary recrystallized grains in the plate width direction makes the secondary recrystallized structure in the width direction uniform, and as a result, the distribution of magnetic flux density becomes uniform and the magnetic flux density distribution becomes uneven. It is considered that a grain-oriented electrical steel sheet with low iron loss, which does not cause iron loss deterioration, can be stably obtained.

【0025】ここで、均一歪の導入量が10%を超えると
目的の鋼板が得られ難い。その理由は、過度の転移導入
によって、ゴス方位粒の優先成長が阻害されたからであ
ると考えられる。因みに、Siを3.3 %含む0.23mm厚さの
方向性電磁鋼板の製造にあたって2次再結晶焼鈍に先立
ち、鋼板に軽い圧延により0%、1%、3%、5%、10
%、15%、20%の歪導入後、傾斜焼鈍炉によって、板幅
方向に温度勾配0℃/cm、5℃/cm、10℃/cm、30℃/
cm、50℃/cmの温度勾配をつけて、2次再結晶焼鈍を行
った後、探針法によって式(1) のrを測定した。rと鉄
損レベルについて整理した結果を図1に示す。rが0.15
以下をみたす鋼板が得られた場合を☆で示し、その中で
も0.80W/kg以下の鉄損が得られた場合を★で示してあ
る。平均磁区幅はいずれの鋼板も0.24mm以下であった。
図1より、2次再結晶前に導入する均一歪が3%〜10%
でかつ2次再結晶進行時の板幅方向の温度勾配が10℃/
cm以上の条件で、rが0.15以下をみたす鋼板が得られ、
これらのうちのほどんどがW17/50 で0.80W/kgとなっ
ている。
Here, if the amount of uniform strain introduced exceeds 10%, it is difficult to obtain the desired steel sheet. It is considered that the reason for this is that the preferential growth of Goss-oriented grains was hindered by the excessive introduction of dislocations. By the way, in the production of grain-oriented electrical steel sheet with a thickness of 0.23 mm containing 3.3% of Si, prior to secondary recrystallization annealing, the steel sheet was lightly rolled to 0%, 1%, 3%, 5%, 10%.
%, 15%, 20% strain introduced, then a temperature gradient of 0 ° C / cm, 5 ° C / cm, 10 ° C / cm, 30 ° C /
After performing secondary recrystallization annealing with a temperature gradient of cm and 50 ° C./cm, r of the formula (1) was measured by the probe method. Fig. 1 shows the result of arranging r and the iron loss level. r is 0.15
The case where a steel sheet satisfying the following is obtained is indicated by *, and the case where the iron loss of 0.80 W / kg or less is obtained is indicated by *. The average magnetic domain width was 0.24 mm or less for all the steel sheets.
From Fig. 1, the uniform strain introduced before secondary recrystallization is 3% to 10%.
And the temperature gradient in the plate width direction during secondary recrystallization is 10 ℃ /
Under the condition of cm or more, a steel plate satisfying r of 0.15 or less is obtained,
Most of them have a W 17/50 of 0.80 W / kg.

【0026】[0026]

【実施例】【Example】

実施例1 重量%でSi:3.31%、C:0.069 %、Mn:0.069 %、
S:0.023 %、Al:0.021 %、N:0.0083%、Cu:0.13
%、Sb:0.023 %を含有するけい素鋼板スラブを1430℃
30分加熱後、熱間圧延して 2.2mmの板厚の熱延板とし、
1000℃1分間の焼鈍を施した後、冷間圧延により板厚
1.5mmまでの冷間圧延、1100℃2分間の中間焼鈍を施
し、冷間圧延により0.23mmの最終板厚とした。次に 840
℃2分間の脱炭焼鈍を行った後、引張りにより5%の均
一歪を導入し、MgO 塗布後コイルに巻き取り、板幅方向
に0℃/cm、2℃/cm、5℃/cm、10℃/cm、20℃/c
m、30℃/cmの温度勾配を与えながら昇温して2次再結
晶を完了させ、1200℃5時間の純化焼鈍を行った。
Example 1 Si: 3.31% by weight%, C: 0.069%, Mn: 0.069%,
S: 0.023%, Al: 0.021%, N: 0.0083%, Cu: 0.13
%, Sb: 0.023% silicon steel slab containing 1430 ℃
After heating for 30 minutes, hot rolling to a hot rolled sheet with a thickness of 2.2 mm,
After annealing at 1000 ° C for 1 minute, cold-rolled sheet thickness
Cold rolling to 1.5 mm, intermediate annealing at 1100 ° C. for 2 minutes, and cold rolling to a final plate thickness of 0.23 mm. Then 840
After carrying out decarburization annealing for 2 minutes at ℃, 5% uniform strain was introduced by tensile, and after winding MgO, it was wound on a coil, and 0 ℃ / cm, 2 ℃ / cm, 5 ℃ / cm in the plate width direction, 10 ℃ / cm, 20 ℃ / c
The secondary recrystallization was completed by raising the temperature while applying a temperature gradient of m and 30 ° C./cm, and purified annealing was performed at 1200 ° C. for 5 hours.

【0027】このようにして得られた製品を圧延垂直方
向幅 100mm圧延方向長さ 280mmの試料に剪断し、単板磁
気試験器によってW17/50 、B8 を測定した。また磁区
観察によって平均磁区幅を求めた。この結果から、B8
はほぼ 1.935Tで、平均磁区幅は0.23mmであることが分
かる。
The product thus obtained was sheared into a sample having a width in the vertical direction of 100 mm and a length in the rolling direction of 280 mm, and W 17/50 and B 8 were measured by a single plate magnetic tester. Further, the average magnetic domain width was obtained by observing the magnetic domains. From this result, B 8
Is about 1.935T, and the average magnetic domain width is 0.23 mm.

【0028】これらの試片について探針法を用いて10mm
幅の領域の局所磁束密度を鋼板全域にわたって行い式
(1) で定めたrを求めた。結果を表1に示す。
[0028] Using the probe method for these test pieces, 10 mm
Formula for local magnetic flux density in the width region over the entire steel plate
The r determined in (1) was calculated. The results are shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】表1に示されているように温度勾配が10℃
/cm以上でrが0.15以下となり低鉄損の鋼板が得られて
いる。 実施例2 重量%でSi:3.20%、C:0.069 %、Mn:0.070 %、
S:0.026 %、Al:0.022 %、N:0.0083%、Cu:0.10
%、Sb:0.030 %を含有するけい素鋼板スラブを実施例
1 と同様の工程において処理する際、圧延により0%、
1%、3%、5%、10%、15%の均一歪を導入した後、
20℃/cmの温度勾配をつけて2次再結晶焼鈍を行った。
As shown in Table 1, the temperature gradient is 10 ° C.
When r / cm or more, r is 0.15 or less, and a steel sheet with low iron loss is obtained. Example 2 Si: 3.20%, C: 0.069%, Mn: 0.070% by weight,
S: 0.026%, Al: 0.022%, N: 0.0083%, Cu: 0.10.
%, Sb: 0.030% containing silicon steel sheet slabs
When processed in the same process as 1, 0% by rolling,
After introducing uniform strain of 1%, 3%, 5%, 10%, 15%,
Secondary recrystallization annealing was performed with a temperature gradient of 20 ° C / cm.

【0031】実施例1と同様の手順で試料はB8 、平均
磁区幅およびrを求めた。結果を表2に示す。この結果
から、B8 はほぼ 1.930Tで、平均磁区幅は0.24mmであ
ることが分かる。
B 8 of the sample, the average magnetic domain width and r were determined by the same procedure as in Example 1. Table 2 shows the results. From this result, it can be seen that B 8 is approximately 1.930 T and the average magnetic domain width is 0.24 mm.

【0032】[0032]

【表2】 [Table 2]

【0033】表2に示されているように2次再結晶時の
温度勾配が20℃/cmのとき、均一歪量が3〜10%におい
て、rが0.15以下となり低鉄損の鋼板が得られている。
As shown in Table 2, when the temperature gradient during secondary recrystallization is 20 ° C./cm, r is 0.15 or less at a uniform strain amount of 3 to 10%, and a steel sheet with low iron loss is obtained. Has been.

【0034】[0034]

【発明の効果】本発明は鋼板の局所的な磁束密度の変化
を鋼板全体にわたり低減することによって得られる鉄損
の低い方向性電磁鋼板およびその製造方法であって、本
発明による鋼板をトランス等の鉄心に使用することで多
大な電力エネルギーが節約できる。
Industrial Applicability The present invention is a grain-oriented electrical steel sheet having a low iron loss obtained by reducing the local change in magnetic flux density of the steel sheet over the entire steel sheet, and a method for producing the same. A large amount of electric energy can be saved by using it for the iron core.

【図面の簡単な説明】[Brief description of drawings]

【図1】2次再結晶前に導入した均一歪量と2次再結晶
進行時の板幅方向の温度勾配が鉄損に及ぼす影響を示す
グラフである。
FIG. 1 is a graph showing the influence of the uniform strain amount introduced before secondary recrystallization and the temperature gradient in the plate width direction during secondary recrystallization on iron loss.

【図2】鋼板の平均磁区幅と鉄損W17/50 の関係を示す
測定図である。
FIG. 2 is a measurement diagram showing the relationship between the average magnetic domain width of a steel sheet and iron loss W 17/50 .

【図3】磁区幅0.22〜0.24mmの試料のrと鉄損W17/50
の関係を示す測定図である。
[Fig. 3] r and iron loss W 17/50 of samples with magnetic domain width of 0.22 to 0.24 mm
It is a measurement diagram showing the relationship of.

【図4】図2の関係をrで分類した測定図である。FIG. 4 is a measurement diagram in which the relationship of FIG. 2 is classified by r.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 圭司 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社鉄鋼開発・生産本部鉄鋼研究所 内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Keiji Sato 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 最終仕上げ焼鈍を経た含けい素鋼板にお
いて、下記の式(1)にて定める鋼板の局所磁束密度標
準偏差の励磁磁束密度に対する比率rが0.15以下に均一
に分布したことを特徴とする鉄損の低い方向性電磁鋼
板。記 【数1】
1. A silicon-containing steel sheet that has undergone final finish annealing, characterized in that the ratio r of the standard deviation of the local magnetic flux density of the steel sheet to the exciting magnetic flux density defined by the following formula (1) is uniformly distributed to 0.15 or less. A grain-oriented electrical steel sheet with low iron loss. Note [Equation 1]
【請求項2】 含けい素鋼板スラブを熱間圧延し、つい
で1回または中間焼鈍を挟む2回以上の冷間圧延を施し
て最終板厚したのち、脱炭、1次再結晶焼鈍を施し、し
かるのちに2次再結晶焼鈍、ついで純化焼鈍を施す一連
の工程によって、一方向性けい素鋼板を製造するに当た
り、2次再結晶前の鋼板に3〜10%の均一な歪を導入し
たのち、板幅方向にわたる温度勾配を10℃/cm以上とす
る条件で2次再結晶焼鈍を行うことによって、下記の式
(1)で定めたrが0.15以下となることを特徴とする鉄
損の低い方向性電磁鋼板の製造方法。記 【数2】
2. A silicon-containing steel plate slab is hot-rolled, and then cold-rolled once or twice or more with intermediate annealing, to obtain a final plate thickness, followed by decarburization and primary recrystallization annealing. Then, in producing a unidirectional silicon steel sheet, a uniform strain of 3 to 10% was introduced into the steel sheet before the secondary recrystallization by a series of steps of performing secondary recrystallization annealing and then purifying annealing. After that, by performing secondary recrystallization annealing under the condition that the temperature gradient across the plate width direction is 10 ° C / cm or more, r determined by the following formula (1) becomes 0.15 or less. Of low grain oriented electrical steel sheet. Note [Equation 2]
JP18566494A 1994-08-08 1994-08-08 Oriented electrical steel sheet with low iron loss and method for producing the same Expired - Fee Related JP3914270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18566494A JP3914270B2 (en) 1994-08-08 1994-08-08 Oriented electrical steel sheet with low iron loss and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18566494A JP3914270B2 (en) 1994-08-08 1994-08-08 Oriented electrical steel sheet with low iron loss and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0849045A true JPH0849045A (en) 1996-02-20
JP3914270B2 JP3914270B2 (en) 2007-05-16

Family

ID=16174715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18566494A Expired - Fee Related JP3914270B2 (en) 1994-08-08 1994-08-08 Oriented electrical steel sheet with low iron loss and method for producing the same

Country Status (1)

Country Link
JP (1) JP3914270B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6110298A (en) * 1997-07-17 2000-08-29 Kawasaki Steel Corporation Grain-oriented electrical steel sheet excellent in magnetic characteristics and production process for same
EP2620425A1 (en) 2005-08-31 2013-07-31 Hodogaya Chemical Co., Ltd. Arylamine compound and organic electroluminescence device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6110298A (en) * 1997-07-17 2000-08-29 Kawasaki Steel Corporation Grain-oriented electrical steel sheet excellent in magnetic characteristics and production process for same
EP2620425A1 (en) 2005-08-31 2013-07-31 Hodogaya Chemical Co., Ltd. Arylamine compound and organic electroluminescence device

Also Published As

Publication number Publication date
JP3914270B2 (en) 2007-05-16

Similar Documents

Publication Publication Date Title
RU2580776C1 (en) Method of making sheet of textured electrical steel
CN111656465B (en) Grain-oriented electromagnetic steel sheet, wound iron core of transformer using same, and method for manufacturing wound iron core
JP2009263782A (en) Grain-oriented magnetic steel sheet and manufacturing method therefor
JP4120121B2 (en) Method for producing grain-oriented electrical steel sheet
EP0229846A1 (en) Process for producing silicon steel sheet having soft magnetic characteristics
EP3733895B1 (en) Low-iron-loss grain-oriented electrical steel sheet and production method for same
US20200373046A1 (en) Grain-oriented electrical steel sheet, stacked transformer core using the same, and method for producing stacked core
JPH0578744A (en) Manufacture of grain-oriented electrical steel sheet excellent in magnetic property
AU2002327631B2 (en) Method of producing (110)[001] grain oriented electrical steel using strip casting
JP3333798B2 (en) Grain-oriented electrical steel sheet with low iron loss
JP4192399B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP3914270B2 (en) Oriented electrical steel sheet with low iron loss and method for producing the same
JP3397277B2 (en) Manufacturing method of ultra-low iron loss ultra-high magnetic flux density unidirectional electromagnetic steel strip
JP2000345306A (en) High magnetic flux density grain oriented silicon steel sheet excellent in high magnetic field core loss
JP4377477B2 (en) Method for producing high magnetic flux density unidirectional electrical steel sheet
JP3455019B2 (en) Unidirectional electrical steel sheet for instruments with excellent low-field magnetic properties and manufacturing method
JPH0733547B2 (en) Method of manufacturing bidirectional electrical steel sheet with high magnetic flux density
KR100273095B1 (en) The manufacturing method of oriented electric steelsheet with low temperature slab heating
JPH08246108A (en) Nonoriented silicon steel sheet reduced in anisotropy and its production
JPH08253815A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JPH093541A (en) Production of grain oriented silicon steel sheet with extremely high magnetic flux density
JPH07258736A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JP3397273B2 (en) Manufacturing method for ultra-low iron loss ultra-high magnetic flux density unidirectional electrical steel sheet
JPH021893B2 (en)
JPS63277714A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees