JPH0847178A - Charger for battery - Google Patents

Charger for battery

Info

Publication number
JPH0847178A
JPH0847178A JP18443594A JP18443594A JPH0847178A JP H0847178 A JPH0847178 A JP H0847178A JP 18443594 A JP18443594 A JP 18443594A JP 18443594 A JP18443594 A JP 18443594A JP H0847178 A JPH0847178 A JP H0847178A
Authority
JP
Japan
Prior art keywords
value
charging
voltage
output
conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18443594A
Other languages
Japanese (ja)
Inventor
Toshiaki Nakanishi
利明 中西
Hirokazu Hasegawa
広和 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18443594A priority Critical patent/JPH0847178A/en
Publication of JPH0847178A publication Critical patent/JPH0847178A/en
Pending legal-status Critical Current

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE:To make it possible to charge a battery according to a change characteristic in voltage, by counting the number of serially connected battery cells in a secondary battery, storing a plurality of setting values for a final charging term in a voltage comparison means, and selecting a given value in accordance with a secondary battery. CONSTITUTION:A positive-side voltage at a connection terminal 2 of a secondary battery 1 is subjected to AD/DC conversion 3 and entered in a voltage comparison means 6, and a maximum value of the converted voltages is stored in a memory means 4. A detection means 4 detects the number of battery cells on the basis of a state of a switch 10 that is turned on or off according to the number of connected battery cells. Each output from the AD/DC conversion means 3, the memory means 4 and the detection means 10 is entered in a voltage comparison means 6, and the stored value is renewed when the AD/DC conversion value is larger than a former one. In this way, the output from the detection means 5 is varied to store a plurality of given setting values. When the AD/DC conversion value is smaller than before, a charging control signal is generated to reduce a charging current from a power supply 8. As a result, the charging is always carried out adequately, regardless of the number of serially connected battery cells.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、携帯用電子機器の電源
である2次電池の充電装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging device for a secondary battery which is a power source for portable electronic equipment.

【0002】[0002]

【従来の技術】近年、カメラ一体型ビデオやラップトッ
プパソコン用電源として、密閉形ニッケルカドミウム電
池(以下ニカド電池)や密閉型ニッケル水素蓄電池(以
下ニッケル水素電池)等の2次電池が多く使用されてい
る。これらの2次電池の充電の終了を検出する方法とし
て、充電末期の電池電圧の微少な降下(以下−ΔV電
圧)を検出し充電を停止する方法(以下−ΔV制御)が
一般的である。また、これらの電子機器に2次電池を使
用する場合には、同一特性の素電池を複数個直列接続し
て使用するのが一般的である。
2. Description of the Related Art In recent years, secondary batteries such as sealed nickel-cadmium batteries (hereinafter referred to as NiCd batteries) and sealed nickel-hydrogen storage batteries (hereinafter referred to as nickel-hydrogen batteries) have been widely used as power sources for video cameras with a built-in camera and laptop computers. ing. As a method of detecting the end of charging of these secondary batteries, a method of detecting a slight drop in the battery voltage at the end of charging (hereinafter referred to as -ΔV voltage) and stopping charging (hereinafter referred to as -ΔV control) is generally used. When a secondary battery is used for these electronic devices, it is common to use a plurality of unit cells having the same characteristics in series.

【0003】以下に従来の−ΔV制御による充電装置つ
いて、図面を用いて説明する。図5は従来の充電装置を
示す構成図である。図5において1は2次電池、2は接
続端子であり、2次電池1が接続されている。3はA/
D変換手段で端子2を通して入力される2次電池1の電
圧をデジタル値に変換し出力する。4は記憶手段でA/
D変換手段3の出力値の最大値を保持する。6は電圧比
較手段でA/D変換手段3の出力値(以下A/D変換値
と称す)と、記憶手段4の出力値(以下記憶値と称す)
を入力とし、A/D変換値が記憶値より大きい場合は、
記憶手段4にA/D変換値を出力して記憶値を更新し、
A/D変換値が記憶値より所定値以上小さい場合は充電
制御信号を出力する。7は充電制御手段で電圧比較手段
6の充電制御信号の入力により、充電電流を制御する制
御信号を出力する。8は電源で充電制御手段7の出力を
入力とし充電電流を制御する。9はマイコンでA/D変
換手段3と記憶手段4と電圧比較手段6と充電制御手段
7に相当する。
A conventional charging device using −ΔV control will be described below with reference to the drawings. FIG. 5 is a block diagram showing a conventional charging device. In FIG. 5, 1 is a secondary battery and 2 is a connection terminal, to which the secondary battery 1 is connected. 3 is A /
The D conversion means converts the voltage of the secondary battery 1 input through the terminal 2 into a digital value and outputs it. 4 is a storage means A /
The maximum output value of the D conversion means 3 is held. Reference numeral 6 denotes a voltage comparison means, and an output value of the A / D conversion means 3 (hereinafter referred to as an A / D conversion value) and an output value of the storage means 4 (hereinafter referred to as a stored value).
Is input and the A / D converted value is larger than the stored value,
The A / D converted value is output to the storage means 4 to update the stored value,
When the A / D converted value is smaller than the stored value by a predetermined value or more, the charge control signal is output. Reference numeral 7 denotes a charging control means, which outputs a control signal for controlling the charging current when the charging control signal of the voltage comparison means 6 is input. A power source 8 receives the output of the charging control means 7 and controls the charging current. A microcomputer 9 corresponds to the A / D converter 3, the memory 4, the voltage comparator 6, and the charge controller 7.

【0004】次にこの充電装置の動作を説明する。図6
は従来の充電装置を用いた場合のニカド電池の素電池を
8個直列に接続したものを充電した場合の充電特性図で
時間経過に伴う電池電圧VB及び充電電流Iの変化を示
している。
Next, the operation of this charging device will be described. Figure 6
Shows a change in battery voltage V B and charging current I over time in a charging characteristic diagram when 8 unit cells of NiCd battery are connected in series when a conventional charging device is used for charging. .

【0005】充電前の記憶手段4の初期値は0とする。
図6においてまず充電が開始されると、2次電池1は電
源8より供給される所定の電流によって充電され、電池
電圧VBは徐々に上昇する。電池電圧VBが単調に増加し
ている場合には、A/D変換値は記憶値よりも大きいた
め、記憶値は電圧比較手段6の出力する新しいA/D変
換値に毎回更新される。充電末期になると電池電圧はピ
ーク値VBMAXを迎えた後減少するが、このとき記憶手段
4にはVBMAXが記憶されている。充電電圧が徐々に降下
しA/D変換値が記憶値VBMAXより電圧比較手段6の所
定値V1以上小さくなった場合に、電圧比較手段6は電
圧制御手段7に充電制御信号を出力する。充電制御手段
では電圧比較手段6の充電制御信号を受け、充電電流を
1から微少なトリクル電流I2に切り替える制御信号を
電源8に出力する。
The initial value of the storage means 4 before charging is 0.
In FIG. 6, when charging is first started, the secondary battery 1 is charged by a predetermined current supplied from the power source 8, and the battery voltage V B gradually rises. When the battery voltage V B is monotonically increasing, the A / D converted value is larger than the stored value, so the stored value is updated every time to a new A / D converted value output from the voltage comparison means 6. At the end of charging, the battery voltage decreases after reaching the peak value V BMAX . At this time, V BMAX is stored in the storage means 4. When the charging voltage gradually drops and the A / D converted value becomes smaller than the stored value V BMAX by the predetermined value V 1 of the voltage comparing means 6 or more, the voltage comparing means 6 outputs a charging control signal to the voltage controlling means 7. . The charge control means receives the charge control signal of the voltage comparison means 6 and outputs a control signal for switching the charge current from I 1 to the minute trickle current I 2 to the power supply 8.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記従来
の構成では、2次電池1を構成する素電池が8個直列に
接続されたものを過不足なく充電できるよう電圧比較手
段6の所定値を定めると、直列接続された電池の個数の
異なる、例えば素電池が6個直列接続されたものを同じ
充電装置によって充電した場合には次のような不都合が
生じる。個々の素電池の−ΔV電圧が同一特性を示した
場合には、複数個直列接続された素電池の−ΔV電圧
は、1個の電池の−ΔV電圧と素電池の直列接続個数の
積になる。従って素電池が6個直列に接続された場合の
−ΔV電圧の最適値は8個接続された場合に比べ8分の
6の電圧となる。ゆえに素電池が6個直列接続されたも
のを充電する場合に、充電末期の充電完了に用いる−Δ
V電圧の検出の所定値として素電池が8個直列接続され
た場合の値を使用すると、素電池が6個直列接続された
場合の−ΔV電圧のより大きいために適正な充電終了が
検出できず過充電となり、その寿命を著しく低下させて
しまうという問題があった。
However, in the above-mentioned conventional configuration, the predetermined value of the voltage comparison means 6 is determined so that the unit cells of the secondary battery 1 connected in series can be charged without excess or deficiency. When different numbers of batteries connected in series, such as six unit cells connected in series, are charged by the same charging device, the following inconvenience occurs. When the −ΔV voltage of each unit cell shows the same characteristics, the −ΔV voltage of a plurality of unit cells connected in series is the product of the −ΔV voltage of one unit cell and the number of the unit cells connected in series. Become. Therefore, the optimum value of the −ΔV voltage when six unit cells are connected in series is 6/8 of the voltage as compared with the case where eight unit cells are connected. Therefore, when charging six unit cells connected in series, it is used to complete charging at the end of charging.
If the value when eight unit cells are connected in series is used as the predetermined value for detecting the V voltage, an appropriate charging end can be detected because the −ΔV voltage is larger when six unit cells are connected in series. However, there is a problem that the battery is overcharged and its life is significantly shortened.

【0007】図7は従来の充電装置を用いたニカド電池
の素電池が6個直列接続された場合の充電特性図で、時
間経過に伴う電池電圧VB及び充電電流Iの変化を示し
ている。図7において実線で示す電池電圧VB1は、電圧
比較手段6の所定値として上記の素電池が8個直列接続
された場合の充電に用いたV1を使用している。素電池
が6個直列接続された場合には、ピーク電圧VBMAXを迎
えた後の−ΔV電圧の最適値が小さい。そのために素電
池が8個直列接続された場合の所定値V1では適正な充
電終了時期が検出できず、VB1に示すように過充電とな
る。素電池が6個直列接続された場合のみを充電する場
合には、図5の従来の充電装置の構成図に示す電圧検出
手段6の所定値を電池が6個直列接続された場合に適し
たV2(V1>V2)に設定することで、適正な充電が可
能となる。図7において電圧比較手段6の所定値として
2を用いた適正な充電終了電圧曲線を点線VB2で示
す。
FIG. 7 is a charging characteristic diagram when six unit cells of a NiCd battery using a conventional charging device are connected in series, and shows changes in battery voltage V B and charging current I over time. . The battery voltage V B1 shown by the solid line in FIG. 7 uses V 1 used for charging when the eight unit cells are connected in series as a predetermined value of the voltage comparison means 6. When six unit cells are connected in series, the optimum value of −ΔV voltage after reaching the peak voltage V BMAX is small. Therefore, the proper charging end time cannot be detected at the predetermined value V 1 when eight unit cells are connected in series, and overcharge occurs as indicated by V B1 . In the case of charging only when the six unit cells are connected in series, the predetermined value of the voltage detecting means 6 shown in the configuration diagram of the conventional charging device of FIG. 5 is suitable for the case where six batteries are connected in series. By setting V 2 (V 1 > V 2 ), proper charging becomes possible. In FIG. 7, an appropriate charging end voltage curve using V 2 as the predetermined value of the voltage comparison means 6 is shown by a dotted line V B2 .

【0008】ところで、上記のように電圧比較手段6の
所定値をV1>V2なる値V2としてした場合、素電池が
6個直列に接続された場合には適正に充電されるが、素
電池が8個直列に接続された場合には満充電に達する前
に−ΔV電圧を検出してしまい十分な電池容量が得られ
ない。
By the way, when in the V 1> V 2 becomes a value V 2 of the predetermined value of the voltage comparator means 6 as described above, but are properly charged when the unit cells are connected in six series, When eight unit cells are connected in series, -ΔV voltage is detected before reaching full charge, and sufficient battery capacity cannot be obtained.

【0009】図8は従来の充電装置の電圧比較手段6の
所定値がV2である、素電池が8個直列接続された場合
のニカド電池の充電特性図で、時間経過に伴う電池電圧
B及び充電電流Iの変化を示している。図8に示すよ
うに所定値V2は、素電池が8個直列接続された場合の
最適値よりも小さいために電圧比較手段6は充電終了を
検出してしまい、充電不足となって確実な充電ができな
い。
FIG. 8 is a charging characteristic diagram of a nickel-cadmium battery in the case where eight unit cells are connected in series, in which the predetermined value of the voltage comparison means 6 of the conventional charging device is V 2 , and the battery voltage V with time elapses. Changes in B and charging current I are shown. As shown in FIG. 8, the predetermined value V 2 is smaller than the optimum value when eight unit cells are connected in series, so the voltage comparison unit 6 detects the end of charging, and the charging is insufficient, which is certain. I can't charge it.

【0010】以上のように、素電池が8個直列された場
合、6個直列接続された場合のように直列接続された素
電池の個数の異なる2次電池を同じ充電装置で充電する
には、このような問題があった。
As described above, when eight unit cells are connected in series, as in the case where six unit cells are connected in series, secondary batteries having different numbers of unit cells connected in series can be charged by the same charging device. , There was such a problem.

【0011】本発明は上記従来の問題点を解決するもの
で、直列接続された素電池の個数が異なる2次電池を、
過不足なく確実に充電する充電装置を提供するものであ
る。
The present invention solves the above-mentioned problems of the prior art by providing secondary batteries having different numbers of unit cells connected in series,
It is intended to provide a charging device that reliably charges an excess and deficiency.

【0012】[0012]

【課題を解決するための手段】この目的を達成するため
に本発明の充電装置は、2次電池の電圧をデジタル値に
変換するA/D変換手段と、前記A/D変換手段の出力
値の最大値を記憶する記憶手段と、2次電池を構成する
素電池の直列接続数により所定の信号を出力する検出手
段と、前記A/D変換手段の出力値(A/D変換値とい
う)と前記記憶手段の記憶値(記憶値という)と前記検
出手段の出力値を入力とし、A/D変換値と記憶値を比
較し、A/D変換値が大きい場合は前記記憶手段にA/
D変換値を出力して記憶値の更新を行い、A/D変換値
が記憶値より所定値以上小さい場合は充電制御信号を出
力する電圧比較手段と、前記電圧比較手段の出力する充
電制御信号の入力により、充電電流を低下させる制御を
行う充電制御手段と、前記充電制御手段の出力により充
電電流を制御する電源を備え、前記電圧比較手段はA/
D変換値が記憶値より所定値以上小さいことを検出する
所定値を、前記検出手段の出力信号に応じて可変するこ
とを特徴としている。
To achieve this object, a battery charger according to the present invention comprises an A / D conversion means for converting the voltage of a secondary battery into a digital value, and an output value of the A / D conversion means. Storage means for storing the maximum value of, a detection means for outputting a predetermined signal according to the number of series-connected elementary cells forming a secondary battery, and an output value of the A / D conversion means (referred to as an A / D conversion value) The stored value of the storage means (referred to as a stored value) and the output value of the detection means are input, and the A / D converted value and the stored value are compared. If the A / D converted value is large, A / D is stored in the storage means.
The D-converted value is output to update the stored value, and when the A / D-converted value is smaller than the stored value by a predetermined value or more, a voltage comparison unit that outputs a charge control signal, and a charge control signal output by the voltage comparison unit And a power source for controlling the charging current according to the output of the charging control means.
The predetermined value for detecting that the D conversion value is smaller than the stored value by a predetermined value or more is variable according to the output signal of the detection means.

【0013】[0013]

【作用】本発明の充電装置は−ΔV電圧、すなわち電圧
比較手段の所定値を複数値用意し、充電する2次電池の
これを構成する素電池の直列接続数を検出手段で検出
し、検出手段の出力すなわち充電する2次電池に応じて
電圧比較手段の所定値を選択することで、電池電圧の変
化特性に応じた充電制御を行い、直列接続された素電池
の個数の異なった2次電池であっても、同一の充電装置
で過不足なく確実な充電を可能とするものである。
In the charging device of the present invention, the -ΔV voltage, that is, a plurality of predetermined values of the voltage comparing means are prepared, and the detecting means detects and detects the number of series-connected cells of the secondary battery to be charged. By selecting a predetermined value of the voltage comparison means according to the output of the means, that is, the secondary battery to be charged, charge control is performed according to the changing characteristics of the battery voltage, and the secondary batteries having different numbers of unit cells connected in series are used. Even with batteries, the same charging device enables reliable charging without excess or deficiency.

【0014】[0014]

【実施例】以下本発明の一実施例について、図面を用い
て説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0015】図1は本発明の一実施例の充電装置を示す
構成図である。図1において1は2次電池、2は接続端
子で2次電池1が接続されている。3はA/D変換手段
で端子2を通して入力される2次電池1の電圧をデジタ
ル値に変換して出力する。4は記憶手段でA/D変換手
段3の出力値の最大値を保持する。5は検出手段で2次
電池を構成する素電池の直列接続数に応じてオン、オフ
するスイッチ10の状態を検出し、素電池の直列接続数
に応じた信号を出力する。6は電圧比較手段でA/D変
換手段3の出力値(A/D変換値)と、記憶手段4の出
力値(記憶値)と、検出手段の出力値を入力とし、A/
D変換値が記憶値より大きい場合は、記憶手段4にA/
D変換値を出力して記憶値を更新し、検出手段5の出力
により可変する複数個の所定値を持ち、A/D変換値が
記憶値より所定値以上小さい場合は充電制御信号を出力
する。7は充電制御手段で電圧比較手段6の充電制御信
号の入力により、充電電流を制御する制御信号を出力す
る。8は電源で充電制御手段7の出力を入力として充電
電流を制御する。9はマイコンでA/D変換手段3と記
憶手段4と電圧比較手段6と充電制御手段7に相当す
る。
FIG. 1 is a block diagram showing a charging device according to an embodiment of the present invention. In FIG. 1, 1 is a secondary battery and 2 is a connection terminal to which the secondary battery 1 is connected. An A / D conversion unit 3 converts the voltage of the secondary battery 1 input through the terminal 2 into a digital value and outputs the digital value. A storage unit 4 holds the maximum output value of the A / D conversion unit 3. A detection unit 5 detects the state of the switch 10 that is turned on and off according to the number of series-connected unit cells that form the secondary battery, and outputs a signal according to the number of series-connected unit cells. Reference numeral 6 denotes a voltage comparison means, which receives the output value of the A / D conversion means 3 (A / D conversion value), the output value of the storage means 4 (stored value), and the output value of the detection means as input, and
If the D conversion value is larger than the stored value, A /
The D-converted value is output, the stored value is updated, and a plurality of predetermined values that can be changed by the output of the detection means 5 are provided. When the A / D-converted value is smaller than the stored value by a predetermined value or more, a charge control signal is output. . Reference numeral 7 denotes a charging control means, which outputs a control signal for controlling the charging current when the charging control signal of the voltage comparison means 6 is input. A power source 8 controls the charging current by using the output of the charging control means 7 as an input. A microcomputer 9 corresponds to the A / D converter 3, the memory 4, the voltage comparator 6, and the charge controller 7.

【0016】このように構成された充電装置を用いて、
直列接続された素電池の個数が8個及び6個のそれぞれ
の2次電池を充電した場合の動作について説明する。
By using the charging device configured as described above,
The operation when charging the secondary batteries of which the numbers of the unit cells connected in series are 8 and 6 will be described.

【0017】図2は本発明の充電装置を用いて、ニカド
電池の素電池を8個直列接続した場合の充電特性図であ
り、時間経過に伴う電池電圧VB及び充電電流Iの変化
を示している。なお、充電前の記憶手段4の初期値は0
とする。
FIG. 2 is a charging characteristic diagram when eight unit cells of a Nicad battery are connected in series using the charging device of the present invention, and shows changes in the battery voltage V B and the charging current I over time. ing. The initial value of the storage means 4 before charging is 0.
And

【0018】図1において、直列接続された素電池の個
数を検出するスイッチ10は、素電池が8個直列の場合
オフ、6個直列の場合オンとし、その状態は検出手段5
によって電圧比較手段6に出力される。電圧比較手段6
は2種類の所定値V1及びV2(V1>V2)を持ち、その
所定値を検出手段5からの信号により8個直列の場合に
は所定値V1、6個直列の場合には所定値V2と素電池の
直列接続数に応じて選択する。図2において、充電が開
始されると2次電池1は電源8より供給される所定の電
流によって充電され、電池電圧VBは徐々に上昇する。
電池電圧VBが単調に増加している場合には、A/D変
換値は、記憶値よりも大きいため、記憶値は電圧比較手
段6の出力する新しいA/D変換値に毎回更新される。
充電末期になると電池電圧はピーク値VBMAXを迎えた後
減少するが、このとき記憶手段4にはVBMAXが記憶され
ている。ここで2次電池1の素電池の直列接続数を検出
するスイッチ10はオフなので、検出手段5の信号によ
り電圧比較手段6の所定値には8個直列接続の場合に選
択されるV1が用いられる。電圧比較手段の所定値V1
8個直列の場合の値を用いれば充電途中の充電完了検出
による充電不足は発生しない。充電電圧が降下してA/
D変換値が記憶値VBMAXより所定値V1以上小さくなっ
た場合に、電圧比較手段6は電圧制御手段7に充電制御
信号を出力する。充電制御手段7では電圧比較手段6か
らの信号を受け、充電電流をI1から微少なトリクル電
流I2に切り替える制御信号を電源8に出力する。
In FIG. 1, a switch 10 for detecting the number of unit cells connected in series is turned off when eight unit cells are connected in series and turned on when six unit cells are connected in series, and the state thereof is the detection means 5.
Is output to the voltage comparison means 6. Voltage comparison means 6
Has two kinds of predetermined values V 1 and V 2 (V 1 > V 2 ), and the predetermined value V 1 according to the signal from the detection means 5 in the case of a predetermined value V 1 and the predetermined value V 6 in the case of 6 series Is selected according to the predetermined value V 2 and the number of unit cells connected in series. In FIG. 2, when charging is started, the secondary battery 1 is charged by a predetermined current supplied from the power source 8, and the battery voltage V B gradually rises.
When the battery voltage V B is monotonically increasing, the A / D converted value is larger than the stored value, so the stored value is updated every time to the new A / D converted value output from the voltage comparison means 6. .
At the end of charging, the battery voltage decreases after reaching the peak value V BMAX . At this time, V BMAX is stored in the storage means 4. Here, since the switch 10 for detecting the number of unit cells of the secondary battery 1 connected in series is turned off, the signal of the detection means 5 causes the predetermined value of the voltage comparison means 6 to be V 1 selected in the case of eight series connection. Used. If the predetermined value V 1 of the voltage comparison means is set to a value in the case of eight in series, insufficient charging due to detection of charging completion during charging does not occur. Charge voltage drops to A /
When the D conversion value becomes smaller than the stored value V BMAX by the predetermined value V 1 or more, the voltage comparison means 6 outputs a charge control signal to the voltage control means 7. The charging control means 7 receives the signal from the voltage comparison means 6 and outputs a control signal for switching the charging current from I 1 to the minute trickle current I 2 to the power supply 8.

【0019】図3はニカド電池の素電池を6個直列接続
した場合の充電特性図であり、時間経過に伴う電池電圧
B及び充電電流Iの変化を示している。充電前の記憶
手段4の初期値は0とする。図3において、6個直列接
続の場合も同様に電池電圧はピーク値VBMAXを迎えた後
減少するが、このとき記憶手段4にはVBMAXが記憶され
る。ここで2次電池1の素電池の直列接続数を検出する
スイッチ10はオンなので、検出手段5からの信号によ
り、電圧比較手段6の所定値には8個直列接続の場合選
択されたV1よりも小さい値V2が用いられる。6個直列
接続された場合には充電末期の−ΔV電圧の最適値が小
さいために所定値V2を6個直列接続の充電特性に適し
た微小な値とする。充電電圧が降下してA/D変換値が
記憶値V BMAXより所定値V2以上小さくなった場合に、
電圧比較手段6は電圧制御手段7に充電制御信号を出力
する。充電制御手段7では電圧比較手段6からの充電制
御信号を受け、充電電流をI1から微少なトリクル電流
2に切り替える制御信号を電源8に出力する。
FIG. 3 shows six NiCd battery cells connected in series.
It is a charging characteristic diagram in the case of
VBAnd the change of the charging current I. Memory before charging
The initial value of the means 4 is 0. In Fig. 3, 6 in series
Similarly, in the case of the continuation, the battery voltage is the peak value VBMAXAfter welcoming
However, at this time, V is stored in the storage means 4.BMAXIs remembered
It Here, the number of unit cells of the secondary battery 1 connected in series is detected.
Since the switch 10 is on, the signal from the detection means 5 causes
Therefore, the predetermined value of the voltage comparison means 6 is selected when eight are connected in series.
Selected V1Less than V2Is used. 6 in series
When connected, the optimum value of -ΔV voltage at the end of charging is small.
Predetermined value V2Suitable for charging characteristics of 6 in series
It is a small value. The charging voltage drops and the A / D converted value becomes
Memory value V BMAXMore predetermined value V2If it becomes smaller than this,
The voltage comparison means 6 outputs a charge control signal to the voltage control means 7.
To do. The charge control means 7 controls the charge from the voltage comparison means 6.
Control signal and charge current I1To a minute trickle current
I2The control signal for switching to is output to the power supply 8.

【0020】図4は本発明の充電装置による充電制御を
示すフローチャートで、A/D変換手段3と記憶手段4
と検出手段5と電圧比較手段6と充電制御手段7とをマ
イコン9で構成した場合の制御手順である。VBはA/
D変換手段3によってデジタル値に変換された電池電圧
である。VBMAXは記憶手段4内の記憶値である。V1
2は電圧比較手段6の2つの所定値である。図4の動
作説明については前述の動作説明と重複するので詳細な
説明を省略する。 ここで2次電池の電池の直列接続個
数の検出手段5は、例としてスイッチ10のオン信号を
検出して電圧比較手段6に信号を検出したが、オフ信号
を検出して信号を検出しても同じ効果が得られる。また
充電前の2次電池1の開放電圧や充電初期の2次電池1
の開放電圧から2次電池を構成する素電池の直列接続数
を検出手段で検出しても同じ効果が得られる。
FIG. 4 is a flowchart showing the charging control by the charging device of the present invention, which is the A / D conversion means 3 and the storage means 4.
This is a control procedure when the detection unit 5, the voltage comparison unit 6, and the charge control unit 7 are configured by the microcomputer 9. V B is A /
This is the battery voltage converted into a digital value by the D conversion means 3. V BMAX is a stored value in the storage means 4. V 1 ,
V 2 is two predetermined values of the voltage comparison means 6. The description of the operation of FIG. Here, the detection means 5 for detecting the number of rechargeable batteries connected in series detects the ON signal of the switch 10 and the voltage comparison means 6 as an example, but detects the OFF signal and detects the signal. Has the same effect. Also, the open-circuit voltage of the secondary battery 1 before charging and the secondary battery 1 at the beginning of charging
The same effect can be obtained even if the detection means detects the number of series-connected unit cells constituting the secondary battery from the open circuit voltage.

【0021】なお先の実施例においては、2次電池1の
直列接続数は8個及び6個の2種類とし、検出手段4の
出力信号により選択される電圧比較手段の素電池の直列
接続数によって決まる所定値も2値としたが、充電する
素電池の直列接続数の種類を3つ以上、電圧比較手段6
の所定値を3値以上としてもよい。
In the above embodiment, the number of series connections of the secondary battery 1 is two, that is, eight and six, and the number of series connections of the unit cells of the voltage comparison means selected by the output signal of the detection means 4. The predetermined value determined by the value is also binary, but the number of series-connected types of unit cells to be charged is three or more, and the voltage comparison means 6 is used.
The predetermined value of 3 may be three or more.

【0022】さらに本実施例において、A/D変換手段
3に入力されるのは、接続端子2を通して入力される電
池電圧としたが、分圧回路を2次電池1とA/D変換手
段3の間に構成するなどし、電池電圧の対応電圧をA/
D変換手段3の入力としても同じ効果が得られる。
Further, in the present embodiment, what is inputted to the A / D conversion means 3 is the battery voltage inputted through the connection terminal 2, but the voltage dividing circuit is the secondary battery 1 and the A / D conversion means 3 The voltage corresponding to the battery voltage is set to A /
The same effect can be obtained by inputting the D conversion means 3.

【0023】以上のように本実施例によれば、2次電池
電圧をデジタル値に変換するA/D変換手段と、前記A
/D変換手段の出力値の最大値を記憶する記憶手段と、
2次電池を構成する素電池の直列接続数により所定の信
号を出力する検出手段と、前記A/D変換手段のA/D
変換値と前記記憶手段の記憶値と前記検出手段の出力値
を入力とし、A/D変換値と記憶値を比較し、A/D変
換値が大きい場合は前記記憶手段にA/D変換値を出力
して記憶値の更新を行い、A/D変換値が記憶値より所
定値以上小さい場合は充電制御信号を出力する電圧比較
手段と、前記電圧比較手段の出力する充電制御信号の入
力により、充電電流を低下させる制御を行う充電制御手
段と、前記充電制御手段の出力により充電電流を制御す
る電源を備え、前記電圧比較手段はA/D変換値が記憶
値より所定値以上小さいことを検出する所定値を、前記
検出手段の出力信号に応じて可変することを特徴とする
ので、従来の充電装置において生じた過充電による電池
寿命の劣化や、充電不足を改善して適正な充電を行なう
ことができる。
As described above, according to this embodiment, the A / D conversion means for converting the secondary battery voltage into a digital value, and the A / D conversion means
Storage means for storing the maximum output value of the / D conversion means,
Detection means for outputting a predetermined signal according to the number of series-connected elementary cells constituting the secondary battery, and A / D of the A / D conversion means
The converted value, the stored value of the storage means, and the output value of the detection means are input, and the A / D converted value and the stored value are compared. If the A / D converted value is large, the A / D converted value is stored in the storage means. Is output to update the stored value, and when the A / D converted value is smaller than the stored value by a predetermined value or more, the voltage comparison means outputs a charge control signal, and the charge control signal output from the voltage comparison means is input. A charging control means for controlling the charging current and a power source for controlling the charging current by the output of the charging control means, and the voltage comparing means has an A / D converted value smaller than a stored value by a predetermined value or more. Since the predetermined value to be detected is variable according to the output signal of the detection means, deterioration of battery life due to overcharging that occurs in the conventional charging device, and shortage of charging can be improved for proper charging. Can be done.

【0024】[0024]

【発明の効果】以上のように、本発明の充電装置は2次
電池電圧をデジタル値に変換するA/D変換手段と、前
記A/D変換手段の出力値の最大値を記憶する記憶手段
と、2次電池を構成する素電池の直列接続数により所定
の信号を出力する検出手段と、前記A/D変換手段のA
/D変換値と、前記記憶手段の記憶値と、前記検出手段
の出力値を入力とし、A/D変換値と記憶値を比較し、
A/D変換値が大きい場合は前記記憶手段にA/D変換
値を出力して記憶値の更新を行い、A/D変換値が記憶
値より所定値以上小さい場合は充電制御信号を出力する
電圧比較手段と、前記電圧比較手段の出力する充電制御
信号の入力により、充電電流を低下させる制御を行う充
電制御手段と、前記充電制御手段の出力により充電電流
を制御する電源を備え、前記電圧比較手段はA/D変換
値が記憶値より所定値以上小さいことを検出する所定値
を、前記検出手段の出力信号に応じて可変するので、こ
れまでの充電装置において生じた過充電による電池寿命
の劣化や、充電不足を改善して適正な充電をすることが
できる。
As described above, the charging device of the present invention has the A / D conversion means for converting the secondary battery voltage into a digital value and the storage means for storing the maximum output value of the A / D conversion means. And a detection means for outputting a predetermined signal according to the number of series-connected elementary cells constituting the secondary battery, and A of the A / D conversion means.
/ D converted value, the stored value of the storage means, and the output value of the detection means are input, and the A / D converted value and the stored value are compared,
When the A / D converted value is large, the A / D converted value is output to the storage means to update the stored value, and when the A / D converted value is smaller than the stored value by a predetermined value or more, a charge control signal is output. The voltage comparison means, a charging control means for controlling the charging current by the input of the charging control signal output from the voltage comparison means, and a power source for controlling the charging current by the output of the charging control means are provided. Since the comparing means changes the predetermined value for detecting that the A / D converted value is smaller than the stored value by the predetermined value or more in accordance with the output signal of the detecting means, the battery life due to the overcharge that has occurred in the charging device so far. It is possible to correct the deterioration of the battery and the shortage of charging, and to perform proper charging.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の充電装置を示す構成図FIG. 1 is a configuration diagram showing a charging device according to an embodiment of the present invention.

【図2】本発明の一実施例による素電池が8個直列接続
された電池の充電特性図
FIG. 2 is a charging characteristic diagram of a battery in which eight unit cells according to an embodiment of the present invention are connected in series.

【図3】本発明の一実施例による素電池が6個直列接続
された電池の充電特性図
FIG. 3 is a charging characteristic diagram of a battery in which six unit cells according to an embodiment of the present invention are connected in series.

【図4】本発明の充電装置の充電制御を示すフローチャ
ート
FIG. 4 is a flowchart showing charging control of the charging device of the present invention.

【図5】従来例の充電装置を示す構成図FIG. 5 is a configuration diagram showing a conventional charging device.

【図6】従来例の素電池が8個直列接続された電池の充
電特性図
FIG. 6 is a charging characteristic diagram of a battery in which eight conventional unit cells are connected in series.

【図7】従来例の素電池が6個直列接続された電池の過
充電を示す充電特性図
FIG. 7 is a charging characteristic diagram showing overcharge of a battery in which six unit cells of a conventional example are connected in series.

【図8】従来例の素電池が8個直列接続された電池の充
電不足を示す充電特性図
FIG. 8 is a charging characteristic diagram showing insufficient charging of batteries in which eight conventional unit cells are connected in series.

【符号の説明】[Explanation of symbols]

1 2次電池 2 端子 3 A/D変換手段 4 記憶手段 5 検出手段 6 電圧比較手段 7 充電制御手段 8 電源 9 マイコン 10 スイッチ 1 Secondary Battery 2 Terminal 3 A / D Conversion Means 4 Storage Means 5 Detection Means 6 Voltage Comparison Means 7 Charging Control Means 8 Power Supply 9 Microcomputer 10 Switch

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】2次電池の電圧をデジタル値に変換するA
/D変換手段と、前記A/D変換手段の出力値の最大値
を記憶する記憶手段と、2次電池を構成する素電池の直
列接続数により所定の信号を出力する検出手段と、前記
A/D変換手段の出力値(以降A/D変換値という)と
前記記憶手段の記憶値(以降記憶値という)と前記検出
手段の出力値を入力とし、A/D変換値と記憶値とを比
較してA/D変換値が大きい場合は前記記憶手段にA/
D変換値を出力して記憶値の更新を行い、A/D変換値
が記憶値よりも所定値以上小さい場合は充電制御信号を
出力する電圧比較手段と、前記電圧比較手段の出力する
充電制御信号の入力により、充電電流を低下させる制御
を行う充電制御手段と、前記充電制御手段の出力により
充電電流を制御する電源を備え、前記電圧比較手段は、
A/D変換値が記憶値よりも所定値以上小さいことを検
出する所定値を、前記検出手段の出力信号に応じて可変
することを特徴とする電池の充電装置。
1. A for converting the voltage of a secondary battery into a digital value
A / D conversion means, a storage means for storing the maximum output value of the A / D conversion means, a detection means for outputting a predetermined signal depending on the number of series-connected unit cells forming a secondary battery, and the A The output value of the A / D conversion unit (hereinafter referred to as A / D conversion value), the storage value of the storage unit (hereinafter referred to as storage value) and the output value of the detection unit are input, and the A / D conversion value and the storage value are set. In comparison, if the A / D converted value is large, A / D is stored in the storage means.
The D-converted value is output to update the stored value, and when the A / D-converted value is smaller than the stored value by a predetermined value or more, a voltage comparison unit that outputs a charge control signal, and a charge control output by the voltage comparison unit By a signal input, charging control means for controlling to reduce the charging current, and a power supply for controlling the charging current by the output of the charging control means, the voltage comparison means,
A battery charging device, wherein a predetermined value for detecting that the A / D converted value is smaller than a stored value by a predetermined value or more is varied according to an output signal of the detection means.
JP18443594A 1994-08-05 1994-08-05 Charger for battery Pending JPH0847178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18443594A JPH0847178A (en) 1994-08-05 1994-08-05 Charger for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18443594A JPH0847178A (en) 1994-08-05 1994-08-05 Charger for battery

Publications (1)

Publication Number Publication Date
JPH0847178A true JPH0847178A (en) 1996-02-16

Family

ID=16153111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18443594A Pending JPH0847178A (en) 1994-08-05 1994-08-05 Charger for battery

Country Status (1)

Country Link
JP (1) JPH0847178A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7018731B2 (en) * 2002-01-31 2006-03-28 Alcatel End-of-discharge control apparatus for a battery of rechargeable electrochemical cells

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7018731B2 (en) * 2002-01-31 2006-03-28 Alcatel End-of-discharge control apparatus for a battery of rechargeable electrochemical cells

Similar Documents

Publication Publication Date Title
JP3869585B2 (en) Discharge method of multiple secondary batteries and assembled battery
JP3389670B2 (en) Series connection circuit of secondary battery
JP5194004B2 (en) Charge equalization apparatus and method
KR20000057966A (en) A Management System for The Rechargerble Battery And A Managing Method Thereby
JP3229696B2 (en) How to charge the battery
US11616374B2 (en) Battery control unit and battery system
WO2020049824A1 (en) Electricity storage device and charging method
US7994754B2 (en) Battery charging apparatus, battery pack, battery charging system, and battery charging method
JPH09121461A (en) Self-charging battery and electric apparatus employing it
JP2005151683A (en) Battery pack charger
TW202013853A (en) Method of managing batteries and power system
JP2002186191A (en) Cell shunt circuit for battery cell
JPH0974689A (en) Power unit using battery pack
JP3629791B2 (en) Charge control device for battery pack
JP3249261B2 (en) Battery pack
JPH0956056A (en) Secondary-battery power unit, protective circuit, and method for protecting secondary battery from being abnormally charged
JP3419115B2 (en) Battery charge / discharge protection device
JP2001008373A (en) Battery unit and charging method of battery
JPH09149556A (en) Secondary battery charging method
US5646506A (en) Method of charging a secondary battery and an apparatus therefor
JPH11332116A (en) Charging/discharging control circuit and charging-type power supply device
JP3421534B2 (en) Overcharge prevention circuit, overdischarge prevention circuit and charge / discharge control circuit
JPH03173323A (en) Secondary battery charger
JPH0847178A (en) Charger for battery
JPH11146570A (en) Control device of secondary battery, battery pack with the control device of secondary battery and control method of the secondary battery