JPH0845506A - Manufacture of non-sintered type positive electrode for alkaline storage battery - Google Patents

Manufacture of non-sintered type positive electrode for alkaline storage battery

Info

Publication number
JPH0845506A
JPH0845506A JP6179120A JP17912094A JPH0845506A JP H0845506 A JPH0845506 A JP H0845506A JP 6179120 A JP6179120 A JP 6179120A JP 17912094 A JP17912094 A JP 17912094A JP H0845506 A JPH0845506 A JP H0845506A
Authority
JP
Japan
Prior art keywords
nickel
lithium
positive electrode
solution
nickel hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6179120A
Other languages
Japanese (ja)
Other versions
JP3407983B2 (en
Inventor
Kenji Arisawa
謙二 有澤
Masayuki Terasaka
雅行 寺坂
Kozo Otsuki
浩三 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP17912094A priority Critical patent/JP3407983B2/en
Publication of JPH0845506A publication Critical patent/JPH0845506A/en
Application granted granted Critical
Publication of JP3407983B2 publication Critical patent/JP3407983B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a non-sintered type Ni positive electrode of high energy density by gradually supplying mixed solution of acid lithium salt and acid Ni salt and alkali aq. solution in a reacting tank by controlling supplying amount so as to maintain pH in a designated value and depositing lithium containing Ni hydroxide crystal. CONSTITUTION:Mixed aq. solution with at least acid lithium salt(lithium nitrate) and acid Ni salt(nickel sulfate) and alkali aq. solution(sodium hydroxide) are prepared. The respective aq. solution are gradually supplied in a reacting tank and mixed by controlling supply amount so as to be maintain pH to a designated value(more than 8 and less than 12) to produce lithium containing nickel hydroxide crystal fully entrapping lilthium ion in the nickel hydroxide crystal grid. A nickel positive electrode having high cell capacity from the beginning of charging/discharging can be provided by preparing a nonsintered type positive electrode for an alkaline dry cell by using this crystal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ニッケル−カドミウム
蓄電池やニッケル−水素化物蓄電池などに使用されるア
ルカリ蓄電池用非焼結式正極の製造方法に関し、詳しく
はそのような正極を構成する水酸化ニッケル活物質の改
良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-sintered positive electrode for an alkaline storage battery used in a nickel-cadmium storage battery, a nickel-hydride storage battery or the like. The present invention relates to improvement of nickel active material.

【0002】[0002]

【従来の技術】従来、ニッケル−カドミウム蓄電池など
のニッケル極には、焼結式ニッケル正極が使用されてい
たが、この焼結式ニッケル正極は、焼結基板の細孔径が
小さいのでニッケル粉末を直接充填することができな
い。このため、ニッケルを硝酸ニッケル塩溶液として焼
結基板に含浸させた後、前記基板をアルカリ溶液に浸漬
して前記硝酸ニッケルを水酸化ニッケルに変化させる操
作を何回も繰り返すことにより、焼結基板に活物質を充
填することが行われている。しかし、この方法は工程が
煩雑であるため生産性が低い。しかも、焼結基板は、多
孔度が低いため極板の活物質充填密度を充分に高めるこ
とができない。よって、高エネルギー密度の正極となす
のには限界がある。そこで、最近では、焼結式に代え非
焼結式ニッケル正極が使用されるようになっている。非
焼結式では、スポンジ状またはフェルト状の金属多孔体
等の高多孔度の活物質保持体を使用可能なため、ニッケ
ル活物質をスラリー状として直接充填することができ
る。よって、非焼結式ニッケル正極は、焼結式に比べ、
製造方法が簡単であり、しかも電極の軽量化、高容量化
を図り得るという特徴がある。
2. Description of the Related Art Conventionally, a sintered nickel positive electrode has been used for a nickel electrode of a nickel-cadmium storage battery or the like. However, since this sintered nickel positive electrode has a small pore size of a sintered substrate, a nickel powder is used. It cannot be filled directly. For this reason, after impregnating nickel into a sintered substrate as a nickel nitrate salt solution, the operation of immersing the substrate in an alkaline solution and changing the nickel nitrate into nickel hydroxide is repeated many times to obtain a sintered substrate. The active material is filled in. However, this method has low productivity because the steps are complicated. Moreover, since the sintered substrate has a low porosity, the active material packing density of the electrode plate cannot be sufficiently increased. Therefore, there is a limit in forming a positive electrode having a high energy density. Therefore, recently, a non-sintered nickel positive electrode has been used instead of the sintered type. In the non-sintering type, since a high-porosity active material holder such as a sponge-like or felt-like porous metal material can be used, the nickel active material can be directly filled as a slurry. Therefore, the non-sintered nickel positive electrode is
It is characterized in that the manufacturing method is simple and that the weight and capacity of the electrode can be reduced.

【0003】ところで、ニッケル正極を備えるアルカリ
蓄電池において、電解液にリチウムを添加した場合、ニ
ッケル正極のエネルギー密度が向上することが知られて
いる。しかし、この効果は、単に電解液中にリチウムが
存在すれば発揮されるというものではなく、電解液に添
加されたリチウムがリチウムイオンとして水酸化ニッケ
ルの結晶格子内に取り込まれて初めてその効果を発揮す
るものである。このことから、特開昭60−21176
7号公報では、ニッケル塩溶液にリチウムを含むアルカ
リ金属を作用させることにより、水酸化ニッケルの集合
粒子中に予めリチウムを含有させたる技術が提案されて
いる。この技術によると、水酸化ニッケルの集合粒子が
形成される際に、リチウムがその内部に取り込まれるた
め、リチウムを電解液に添加する場合に比べ、充放電の
初期の段階からニッケル活物質の利用率や充電受入れ性
の改善を高めることができる。よって、このようなリチ
ウム含有ニッケル活物質を活物質として正極を構成する
と、電極の容量密度が向上する。
By the way, it is known that in an alkaline storage battery having a nickel positive electrode, when lithium is added to an electrolytic solution, the energy density of the nickel positive electrode is improved. However, this effect is not simply exhibited if lithium is present in the electrolytic solution, and the effect is exhibited only when lithium added to the electrolytic solution is incorporated as lithium ions into the crystal lattice of nickel hydroxide. It is something to demonstrate. From this fact, JP-A-60-21176
In Japanese Patent Laid-Open No. 7-74, a technique is proposed in which an aggregate metal of nickel hydroxide is preliminarily made to contain lithium by causing an alkali metal containing lithium to act on a nickel salt solution. According to this technique, when the aggregated particles of nickel hydroxide are formed, lithium is taken into the inside of the aggregated particles, so compared to the case where lithium is added to the electrolytic solution, the use of the nickel active material from the initial stage of charging / discharging The rate and charge acceptance can be improved. Therefore, when the positive electrode is formed by using such a lithium-containing nickel active material as the active material, the capacity density of the electrode is improved.

【0004】[0004]

【発明が解決しようとする課題】しかし、前記技術を適
用した場合であっても、ニッケル正極の初期充放電にお
ける容量密度を充分に高めることができない。何故な
ら、前記技術では、リチウムイオンを充分にニッケル活
物質の結晶格子内に取り込ませることができないため、
水酸化ニッケル粒子の集合体に含有せられたリチウムの
一部は単に水酸化ニッケル粒子に付着した状態で存在し
ているからである。よって、前記技術を適用したニッケ
ル正極は、電解液にリチウムを添加する方法に比べ初期
充放電特性の改善が見られものの、充分に容量密度が高
いものとはなっていない。
However, even when the above technique is applied, the capacity density of the nickel positive electrode in the initial charge / discharge cannot be sufficiently increased. Because, in the above technique, lithium ions cannot be sufficiently incorporated into the crystal lattice of the nickel active material,
This is because a part of lithium contained in the aggregate of nickel hydroxide particles simply exists in a state of being attached to the nickel hydroxide particles. Therefore, the nickel positive electrode to which the above technique is applied has an improvement in initial charge / discharge characteristics as compared with the method in which lithium is added to the electrolytic solution, but the capacity density is not sufficiently high.

【0005】即ち、前記技術を適用したニッケル正極で
は、水酸化ニッケル結晶格子内に取り込まれていないリ
チウムが存在するために、何サイクルもの充放電サイク
ルを実行して、このようなリチウムを水酸化ニッケル結
晶格子内に取り込ませないと、リチウム添加の効果を充
分には引き出せないという問題があった。本発明は、前
記技術の問題点に鑑みなされたものであって、リチウム
イオンを水酸化ニッケル結晶格子内に充分取り込ませる
方法を見い出し、もって充放電初期から高エネルギー密
度を実現し得る非焼結式ニッケル正極の製造方法を提供
しようとするものである。
That is, in the nickel positive electrode to which the above-mentioned technique is applied, since there is lithium that is not incorporated in the nickel hydroxide crystal lattice, many charging / discharging cycles are performed to oxidize such lithium. There was a problem that the effect of adding lithium could not be fully brought out unless it was incorporated into the nickel crystal lattice. The present invention has been made in view of the problems of the above-mentioned technique, and has found a method of sufficiently incorporating lithium ions into a nickel hydroxide crystal lattice, and thus non-sintering that can achieve a high energy density from the initial stage of charge / discharge. An object of the present invention is to provide a method of manufacturing a formula nickel positive electrode.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の発明は、リチウムを含有する水酸化
ニッケル粉末を作製する工程を備えた非焼結式ニッケル
正極の製造方法において、前記工程が、酸性のリチウム
塩とニッケル塩の混合水溶液と、アルカリ水溶液とを、
反応槽内PHが所定値に維持されるように夫々の水溶液
の導入量を制御しつつ、反応槽内に除々に導入して混合
することにより、リチウムを含有した水酸化ニッケル結
晶を析出させる工程を具備する、ことを特徴とする。
In order to achieve the above object, the invention according to claim 1 provides a method for producing a non-sintered nickel positive electrode, which comprises a step of producing a nickel hydroxide powder containing lithium. , The step, a mixed aqueous solution of an acidic lithium salt and nickel salt, and an alkaline aqueous solution,
A step of precipitating nickel hydroxide crystals containing lithium by gradually introducing into the reaction tank and mixing while controlling the introduction amount of each aqueous solution so that the pH in the reaction tank is maintained at a predetermined value It is characterized by including.

【0007】請求項2記載の発明は、請求項1記載のア
ルカリ蓄電池用非焼結式正極の製造方法において、前記
反応槽内PHが、8以上12以下に維持されることを特
徴とする。
According to a second aspect of the invention, in the method for producing a non-sintered positive electrode for an alkaline storage battery according to the first aspect, the pH in the reaction tank is maintained at 8 or more and 12 or less.

【0008】[0008]

【作用】 請求項1の発明によれば、水酸化ニッケル結晶の格子
内にリチウムイオンを充分に取り込ませたリチウム含有
水酸化ニッケルを得ることができる。以下、このことを
詳説する。なお、単に「リチウム」と記す場合は、如何
なる形態であれリチウム元素が存在すればよいことを意
味し、リチウムの化学的形態を問わない。
According to the invention of claim 1, lithium-containing nickel hydroxide in which lithium ions are sufficiently incorporated in the lattice of nickel hydroxide crystals can be obtained. This will be described in detail below. It should be noted that when simply described as “lithium”, it means that lithium element may exist in any form, and the chemical form of lithium does not matter.

【0009】既に説明したように、ニッケル正極を備え
るアルカリ蓄電池の電解液にリチウムが添加されている
場合、充放電の繰り返しによってニッケル正極のエネル
ギー密度が向上する(以下、このような効果をリチウム
添加効果という)。このリチウム添加効果は、リチウム
イオン半径がニッケルイオン半径より小さいので、電池
充電時にリチウムイオンが正極活物質である水酸化ニッ
ケルの結晶格子内に入り込み、水酸化ニッケルと一体と
なって作用するために充電受入れ性や利用率が向上する
ものと考えれれる。このことから、リチウム添加効果を
充分に引き出すためには、当初から可能な限り多くのリ
チウムイオンを水酸化ニッケルの結晶格子内に取り込ま
せるのが良いといえる。
As described above, when lithium is added to the electrolytic solution of the alkaline storage battery having the nickel positive electrode, the energy density of the nickel positive electrode is improved by repeating charging and discharging (hereinafter, such an effect is obtained by adding lithium. Effect). The effect of this lithium addition is that the lithium ion radius is smaller than the nickel ion radius, so during battery charging, lithium ions enter the crystal lattice of nickel hydroxide, which is the positive electrode active material, and act together with nickel hydroxide. It is considered that charge acceptance and utilization rate will be improved. From this, it can be said that in order to fully bring out the effect of adding lithium, it is preferable to incorporate as many lithium ions as possible into the crystal lattice of nickel hydroxide from the beginning.

【0010】しかし、前記従来技術のように、ニッケル
塩とリチウム塩の酸性混合水溶液に、単に所定量のアル
カリ水溶液を注加したのでは、リチウムイオンが充分に
水酸化ニッケルの結晶格子内に取り込まれない。この理
由を以下に説明する。ニッケル塩とリチウム塩の酸性の
混合水溶液に酸アルカリ反応に必要な所定量のアルカリ
を添加すると、水酸化リチウムと水酸化ニッケルのゲル
状析出物が生成し、このゲル状析出物を乾燥すると、リ
チウムを含有した水酸化ニッケル粉末を得られる。しか
し、このように単に所定量のアルカリを作用させる方法
では、水酸化ニッケルと水酸化リチウムの析出が好都合
にはなされない。したがって、水酸化ニッケル結晶格子
内に充分にリチウムを取り込ませることができない。何
故なら、ニッケル塩とリチウム塩の酸性混合水溶液にア
ルカリを添加すると、直ちにニッケル塩及びリチウム塩
とアルカリとの反応が進行し、それに伴い溶液PHが変
化するため、水酸化ニッケルや水酸化リチウムの析出条
件が刻々と変化する。よって、水酸化ニッケル中のリチ
ウムの存在態様が一様でない不均一なものとなる。つま
り、水酸化ニッケル結晶にリチウムイオンとして取り込
まれるリチウムもあるが、水酸化ニッケル結晶とは別個
に単に水酸化ニッケルの周囲に水酸化リチウムとして析
出するものもある。したがって、このようにして作製さ
れたリチウム含有水酸化ニッケル粉末では、水酸化ニッ
ケル結晶格子内に存在するリチウムの割合が少ないの
で、含有せられたリチウムの一部のみが、活物質利用率
改善効果等を発揮するに過ぎない。
However, as in the prior art described above, if a predetermined amount of the alkaline aqueous solution is simply added to the acidic mixed aqueous solution of the nickel salt and the lithium salt, the lithium ions are sufficiently incorporated into the nickel hydroxide crystal lattice. I can't. The reason for this will be described below. When a predetermined amount of alkali necessary for an acid-alkali reaction is added to an acidic mixed aqueous solution of a nickel salt and a lithium salt, a gel precipitate of lithium hydroxide and nickel hydroxide is generated, and when this gel precipitate is dried, A nickel hydroxide powder containing lithium can be obtained. However, the method of simply allowing a predetermined amount of alkali to act as described above does not favorably deposit nickel hydroxide and lithium hydroxide. Therefore, lithium cannot be sufficiently incorporated into the nickel hydroxide crystal lattice. This is because when an alkali is added to an acidic mixed aqueous solution of a nickel salt and a lithium salt, the reaction between the nickel salt and the lithium salt and the alkali immediately proceeds, and the solution PH changes accordingly. The deposition conditions change every moment. Therefore, the presence of lithium in nickel hydroxide becomes non-uniform and non-uniform. That is, some of the lithium is taken into the nickel hydroxide crystal as lithium ions, but some of the lithium is simply precipitated as lithium hydroxide around the nickel hydroxide separately from the nickel hydroxide crystal. Therefore, in the lithium-containing nickel hydroxide powder thus produced, since the proportion of lithium present in the nickel hydroxide crystal lattice is small, only a part of the contained lithium is effective in improving the active material utilization rate. It only demonstrates the above.

【0011】本発明では、共に酸性のニッケル塩とリチ
ウム塩の混合水溶液と、アルカリ水溶液とを混合してニ
ッケル含有水酸化ニッケルを析出させる工程において、
反応槽内の溶液PHが常に所定値に維持されるように、
両液の単位時間当たりの導入量をそれぞれ制御して反応
槽内に導入し、混合してリチウム含有水酸化ニッケルを
析出させるように構成した。このような構成であると、
反応槽内の溶液PHが常に所望の値に維持されているの
で、一定の好適な条件の下でリチウム含有水酸化ニッケ
ルを析出させることができ、これによりリチウムをその
結晶格子内に充分取り込んだ水酸化ニッケルを得ること
が可能となる。
In the present invention, in the step of precipitating nickel hydroxide containing nickel by mixing a mixed aqueous solution of both acidic nickel salt and lithium salt with an alkaline aqueous solution,
In order that the solution PH in the reaction tank is always maintained at a predetermined value,
The amounts of both solutions introduced per unit time were controlled respectively, and the solutions were introduced into the reaction vessel and mixed to deposit lithium-containing nickel hydroxide. With such a configuration,
Since the solution PH in the reaction tank is always maintained at a desired value, lithium-containing nickel hydroxide can be deposited under certain suitable conditions, whereby lithium is sufficiently incorporated into its crystal lattice. It becomes possible to obtain nickel hydroxide.

【0012】ここで、前記所定のPHは、溶液の攪拌強
度や溶液温度を勘案した上、水酸化ニッケル結晶の格子
内にリチウムを取り込ませるのに好適な条件に設定すれ
ばよい。このようにして好適な条件の下で析出させた水
酸化ニッケルは、確実にその結晶格子内にリチウムイオ
ンを取り込むので、このようにして得たリチウム含有水
酸化ニッケル粉末でニッケル正極を構成すれば、従来技
術のように充放電操作を加えなくとも、当初から高いエ
ネルギー密度を有したものとなる。
Here, the predetermined PH may be set to a condition suitable for incorporating lithium into the lattice of the nickel hydroxide crystal in consideration of the stirring strength of the solution and the solution temperature. Nickel hydroxide thus deposited under suitable conditions surely incorporates lithium ions into its crystal lattice, so if the nickel-containing nickel hydroxide powder thus obtained is used to form a nickel positive electrode. Even if the charging / discharging operation is not performed as in the prior art, it has a high energy density from the beginning.

【0013】請求項2の発明では、請求項1記載のア
ルカリ蓄電池用非焼結式正極の製造方法において、反応
槽内PHを8〜12に規定したが、このようなPH範囲
内で反応槽内PHを設定した場合、充分に水酸化ニッケ
ル結晶格子内にリチウムを取り込ませたリチウム含有水
酸化ニッケルを得ることができる。ここで、PHを8以
上としたのは、8未満のPHであると得られたリチウム
含有水酸化ニッケル粉末中に陰イオン根(不純物)が多
く残存し、この陰イオン根が電池反応に影響するからで
あり、PHを12以下としたのは、反応槽内PHが12
を超過とすると、水酸化ニッケルの活性が低下する点で
好ましくないからである。このことから、反応槽内のP
Hは、8〜12の範囲のPHに設定するのが好ましい。
According to the second aspect of the invention, in the method for producing a non-sintered positive electrode for an alkaline storage battery according to the first aspect, the pH in the reaction tank is regulated to 8 to 12. However, within such a PH range, the reaction tank is When the inner pH is set, it is possible to obtain lithium-containing nickel hydroxide in which lithium is sufficiently incorporated in the nickel hydroxide crystal lattice. Here, the pH is set to 8 or more because a large amount of anion roots (impurities) remain in the obtained lithium-containing nickel hydroxide powder when the pH is less than 8, and the anion roots affect the battery reaction. The reason why the pH is 12 or less is that the PH in the reaction tank is 12 or less.
This is because if the value exceeds the range, the activity of nickel hydroxide decreases, which is not preferable. From this, P in the reaction tank
H is preferably set to PH in the range of 8-12.

【0014】[0014]

〔実施例1〜実施例5〕[Examples 1 to 5]

(リチウム含有水酸化ニッケル粉末の作製)先ず、2.
2mol/l(リットル;以下同じ)の硫酸ニッケルと
0.03mol/lの硫酸リチウムとからなる混合水溶
液(Ni・Li混合液とする)と、6.0mol/lの
水酸化ナトリウム水溶液(アルカリ液とする)を調製す
ると共に、PH7.5、8、10、12、13の5通り
のPHの水酸化ナトリウム水溶液(予備アルカリ液とす
る)を調製する。
(Preparation of lithium-containing nickel hydroxide powder) First, 2.
A mixed aqueous solution (referred to as a Ni / Li mixed solution) consisting of 2 mol / l (liter; the same applies hereinafter) of nickel sulfate and 0.03 mol / l of lithium sulfate, and a 6.0 mol / l sodium hydroxide aqueous solution (alkaline solution). And 5) of pH 7.5, 8, 10, 12, and 13 are prepared, and an aqueous sodium hydroxide solution of pH 5 (preliminary alkali solution) is prepared.

【0015】次に攪拌器付きの反応槽の中に前記PH7
の予備アルカリ液を適量入れ、この反応槽に前記酸性混
合液を一定流量で導入するとともに、これと平行して反
応槽内の溶液がPH7に維持されるようにペハーメター
等で槽内PHを監視しながら、前記アルカリ液を反応槽
内に導入する。アルカリ液の導入に当たっては、反応槽
内のPHが酸アルカリ反応の進行(水酸化ニッケル、水
酸化リチウムの析出)より変動するので、これに合わせ
てアルカリ液の導入流量を適宜調整した。なお、前記反
応槽は約40℃に加温されているとともに、反応槽内溶
液は常に攪拌される状態にしてある。
Next, the PH7 was placed in a reaction vessel equipped with a stirrer.
Put an appropriate amount of the preliminary alkaline solution in, and introduce the acidic mixed solution into this reaction tank at a constant flow rate. In parallel with this, monitor the pH in the tank with a pH meter etc. so that the solution in the reaction tank is maintained at PH7. Meanwhile, the alkaline liquid is introduced into the reaction tank. Upon introduction of the alkaline solution, the pH in the reaction vessel fluctuates due to the progress of the acid-alkali reaction (precipitation of nickel hydroxide and lithium hydroxide). Therefore, the introduction flow rate of the alkaline solution was adjusted accordingly. The reaction tank is heated to about 40 ° C., and the solution in the reaction tank is constantly stirred.

【0016】このようにしてNi・Li混合液とアルカ
リ液を混合し、水酸化ニッケルを析出させ、この析出物
を採取して水洗した後、乾燥しリチウム含有水酸化ニッ
ケル粉末を得た。このような一連の操作を、PH8、1
0、12、13の予備アルカリ液を用いた場合について
も同様に行い、反応槽内PHの異なる、表1に示す5通
り(a1〜a5 )のリチウム含有水酸化ニッケル粉末を
作製した。なお、この5通りのリチウム含有水酸化ニッ
ケル粉末のリチウム含有量を原子吸光分析で測定したと
ころ、何れも約1重量%のリチウムが含まれていた。
Thus, the Ni / Li mixed solution and the alkaline solution were mixed to precipitate nickel hydroxide, and the precipitate was collected, washed with water and dried to obtain a lithium-containing nickel hydroxide powder. Such a series of operations can be performed on PH8, 1
The same procedure was performed for the case of using 0, 12, and 13 preliminary alkaline liquids, and five kinds (a 1 to a 5 ) of lithium-containing nickel hydroxide powder shown in Table 1 having different PH in the reaction tank were prepared. In addition, when the lithium content of the five kinds of lithium-containing nickel hydroxide powder was measured by atomic absorption spectrometry, each contained about 1% by weight of lithium.

【0017】(ニッケル正極の作製)前記リチウム含有
水酸化ニッケル粉末(a1 〜a5 )に重量比で0.2の
水酸化コバルト粉末を添加して活物質粉末とし、この活
物質粉末に0.5重量%濃度のメチルセルロース水溶液
を適量加えて混合し活物質スラリーを作製する。この活
物質スラリーを発泡ニッケル基体に充填し乾燥した後、
圧延してニッケル極板を作製した。
(Preparation of Nickel Positive Electrode) Cobalt hydroxide powder having a weight ratio of 0.2 was added to the lithium-containing nickel hydroxide powder (a 1 to a 5 ) to prepare an active material powder. An appropriate amount of a methyl cellulose aqueous solution having a concentration of 0.5 wt% is added and mixed to prepare an active material slurry. After filling the foamed nickel substrate with this active material slurry and drying,
A nickel electrode plate was produced by rolling.

【0018】このようにして作製したニッケル極板を、
それぞれ使用したリチウム含有水酸化ニッケル粉末に対
応させて、本発明例ニッケル正極A1 〜A5 とする。 〔比較例1〕予備アルカリ液を用いず、Ni・Li混合
液とアルカリ液を反応槽内に投入し反応槽内PHを制御
することなく攪拌したこと以外は、上記実施例1〜5と
同様にして水酸化ニッケル粉末を作製した。
The nickel electrode plate thus produced was
Inventive Example nickel positive electrodes A 1 to A 5 are made corresponding to the lithium-containing nickel hydroxide powders used. [Comparative Example 1] Same as Examples 1 to 5 except that the preliminary alkaline solution was not used, the Ni / Li mixed solution and the alkaline solution were charged into the reaction vessel and stirred without controlling the PH in the reaction vessel. Then, nickel hydroxide powder was prepared.

【0019】このようにして作製した粉末を、水酸化ニ
ッケル粉末b1 とする。このニッケル粉末b1 を用い、
実施例1〜5と同様にして比較例ニッケル正極B1 を作
製した。 〔比較例2〕6水塩の結晶硫酸ニッケル13kgを水に
溶解して全量を40lとし、これを約25℃の状態で攪
拌しながら、水酸化リチウム粉末6.5kgを加えたの
ち、約50℃で1時間放置する。その後、析出物を採取
し、乾燥後粉砕したのち、水洗し再度乾燥して水酸化ニ
ッケル粉末を得た。
The powder thus produced is referred to as nickel hydroxide powder b 1 . Using this nickel powder b 1 ,
A comparative nickel positive electrode B 1 was prepared in the same manner as in Examples 1-5. [Comparative Example 2] 13 kg of crystalline nickel sulfate hexahydrate was dissolved in water to a total volume of 40 L, and while stirring this at about 25 ° C, 6.5 kg of lithium hydroxide powder was added, and then about 50 Leave at ℃ for 1 hour. Then, the precipitate was collected, dried, pulverized, washed with water and dried again to obtain nickel hydroxide powder.

【0020】このようにして作製した粉末を、比較例水
酸化ニッケル粉末b2 とする。この水酸化ニッケル粉末
2 を用い、実施例1〜5と同様にして、比較例ニッケ
ル正極B2 を作製した。。 〔比較例3〕前記Ni・Li混合液の代わりに2.2規
定の硫酸ニッケル水溶液を用い、かつ反応槽のPHを1
0としたこと以外は、実施例1〜5の方法と同様にし
て、水酸化ニッケル粉末b3 を作製した。なお、この水
酸化ニッケル粉末b3 はリチウムを全く含有していない
ものである。
The powder thus produced is used as a comparative nickel hydroxide powder b 2 . Using this nickel hydroxide powder b 2, in the same manner as in Example 1-5, was prepared in Comparative Example nickel positive electrode B 2. . [Comparative Example 3] A 2.2 N aqueous nickel sulfate solution was used in place of the Ni / Li mixed solution, and the pH of the reaction tank was set to 1
Nickel hydroxide powder b 3 was prepared in the same manner as in Examples 1 to 5 except that the value was 0. The nickel hydroxide powder b 3 does not contain lithium at all.

【0021】この水酸化ニッケル粉末b3 を用い、実施
例1〜5と同様にして比較例ニッケル正極B3 を作製し
た。 〔実験1〕前記各種水酸化ニッケル粉末について、残留
硫酸根の濃度を測定した。その結果を、表1に示す。な
お、表1は、水酸化ニッケル粉末b3 の残留硫酸根濃度
(w/w)を100とし、これに対する%で表示してあ
る。
A comparative nickel positive electrode B 3 was produced in the same manner as in Examples 1 to 5 using this nickel hydroxide powder b 3 . [Experiment 1] The residual sulfate concentration was measured for each of the various nickel hydroxide powders. The results are shown in Table 1. In Table 1, the residual sulfate group concentration (w / w) of the nickel hydroxide powder b 3 is set to 100, and the percentage is shown.

【表1】 [Table 1]

【0022】表1から、反応槽PHを8〜13とした場
合には、残留硫酸根濃度は水酸化ニッケル粉末b3 (対
照)と殆ど変わらない。一方、反応槽PHを8未満とす
ると顕著に残留硫酸根濃度が高まることが判る。このこ
とから、反応槽PHは8以上とするのが好ましい。 〔実験2〕前記各種水酸化ニッケル粉末を60℃のイオ
ン交換水で充分洗浄したのち乾燥して湯洗処理済水酸化
ニッケル粉末を作製し、この湯洗処理済水酸化ニッケル
粉末と湯洗処理前の各種水酸化ニッケル粉末についてリ
チウム量の測定を行った。測定結果は、湯洗前のリチウ
ム含有量を100とし、湯洗後のリチウム含有量を湯洗
前のリチウム含有量に対する割合を求め、水酸化ニッケ
ル粉末中におけるリチウムの存在状態を評価した。
From Table 1, when the reaction tank PH is set to 8 to 13, the residual sulfate group concentration is almost the same as that of the nickel hydroxide powder b 3 (control). On the other hand, it can be seen that when the reaction tank PH is less than 8, the residual sulfate group concentration is significantly increased. From this, it is preferable that the reaction tank PH is 8 or more. [Experiment 2] The various nickel hydroxide powders were thoroughly washed with ion-exchanged water at 60 ° C. and dried to prepare hot-washed nickel hydroxide powder. The amount of lithium was measured for each of the above various nickel hydroxide powders. With respect to the measurement results, the lithium content before hot water washing was set to 100, the ratio of the lithium content after hot water washing to the lithium content before hot water washing was determined, and the state of existence of lithium in the nickel hydroxide powder was evaluated.

【0023】表1右欄に湯洗後のリチウム含有量比率を
示す。表1より次のことが判る。反応槽を用い一定のP
Hに制御する方法で作製した本発明例ニッケル粉末a1
〜a 5 は、湯洗前後でリチウム含有量に殆ど差が認めら
れない。一方、PH制御を行わない方法で作製した比較
ニッケル粉末b1 、b2 では、湯洗によりリチウム含有
量が大きく減少している。
The lithium content ratio after washing with hot water is shown in the right column of Table 1.
Show. The following can be seen from Table 1. Use a reaction tank to maintain a constant P
Inventive example nickel powder a produced by a method of controlling H1
~ A FiveShows that there is almost no difference in the lithium content before and after washing with hot water.
Not. On the other hand, comparison made by a method without PH control
Nickel powder b1, B2Then, after washing with hot water, it contains lithium
The amount has decreased significantly.

【0024】これらの結果は次の理由によるものと考え
られる。本発明に係る方法により作製したリチウム含有
水酸化ニッケル粉末は、リチウムが水酸化ニッケル結晶
内に充分に取り込まれた状態になっているため、湯洗に
よって失われることがない。これに対し、PH制御を行
わない方法で作製した水酸化ニッケル粉末では、湯洗に
よりリチウム含有量が大きく減少したのは、リチウムが
水酸化ニッケル結晶格子内に充分取り込まれていず、単
に水酸化ニッケル結晶の周囲に付着した状態で存在する
リチウムが多いためと考えられる。
It is considered that these results are due to the following reasons. The lithium-containing nickel hydroxide powder produced by the method according to the present invention is in a state in which lithium is sufficiently incorporated into the nickel hydroxide crystal, and therefore is not lost by washing with hot water. On the other hand, in the nickel hydroxide powder produced by the method not performing PH control, the lithium content was greatly reduced by washing with water because lithium was not sufficiently incorporated in the nickel hydroxide crystal lattice and It is considered that this is because a large amount of lithium existing around the nickel crystal is present.

【0025】〔実験3〕上記各種ニッケル正極を用いて
試験用電池を構成し、この電池を用いて各種ニッケル正
極の性能を比較した。試験用電池は次のように作製し
た。前記ニッケル正極A1 〜A5 の夫々と、前記ニッケ
ル正極より充分に容量の大きい公知のカドミウム負極と
を組合せ、電解液として水酸化カリウム水溶液を用い
て、公称容量1.2AhのAサイズの密閉型ニッケル−
カドミウム蓄電池とする。
[Experiment 3] A test battery was constructed using the various nickel positive electrodes described above, and the performance of various nickel positive electrodes was compared using this battery. The test battery was manufactured as follows. Each of the nickel positive electrodes A 1 to A 5 is combined with a known cadmium negative electrode having a capacity sufficiently larger than that of the nickel positive electrode, and an aqueous potassium hydroxide solution is used as an electrolytic solution to hermetically seal a size A of a nominal capacity of 1.2 Ah. Type Nickel-
Use cadmium battery.

【0026】このように構成した各試験用電池に対し、
0.1Cで16時間充電を行ったのち、1Cで電池電圧
が1.0Vになるまで放電するという充放電サイクル
を、10サイクル繰り返した。そして、1サイクル目と
10サイクル目の放電容量を測定した。その結果を表2
に示す。
For each test battery thus constructed,
After charging for 16 hours at 0.1 C, the battery was discharged at 1 C until the battery voltage became 1.0 V, which was repeated 10 cycles. Then, the discharge capacities of the first cycle and the tenth cycle were measured. The results are shown in Table 2.
Shown in

【表2】 表2より、反応槽のPHを一定に制御する方法により作
製した本発明例ニッケル正極を使用した電池XA1 〜X
5 は何れも、比較ニッケル正極を使用したXB1 、X
2 及び対照としたXB3 (リチウムを全く含有せず)
に比べ、1サイクル目、10サイクル目とも高い放電容
量を示している。そして、特に注目すべきは、本発明に
係る電池電池XA1 〜XA5 では、1サイクル目から高
い放電容量が得られているのに対し、比較例電池X
1 、B2 では1サイクル目より10サイクル目の方が
放電容量が大きくなっている。このことは、本発明例ニ
ッケル正極では、当初からリチウムが水酸化ニッケル結
晶格子中に取り込まれているため、1サイクル目からリ
チウムの添加効果が発揮されるのに対し、比較ニッケル
正極では、水酸化ニッケル粉末が含有するリチウムのう
ちかなりの量のリチウムが水酸化ニッケルの結晶格子中
に取り込まれていないため、これらのリチウムが充放電
により除々にリチウムが水酸化ニッケルの結晶格子内に
取り込まれてリチウム添加効果を発揮するようになった
ためと考えられる。
[Table 2] From Table 2, the batteries XA 1 to X using the nickel positive electrode of the present invention produced by the method of controlling the pH of the reaction tank to be constant.
All of A 5 are XB 1 and X using a comparative nickel positive electrode.
B 2 and XB 3 as control (does not contain any lithium)
In comparison with the above, the discharge capacity is high in the first cycle and the tenth cycle. And it should be particularly noted that the battery batteries XA 1 to XA 5 according to the present invention have a high discharge capacity from the first cycle, whereas the comparative battery X
In B 1 and B 2 , the discharge capacity was larger in the 10th cycle than in the 1st cycle. This means that in the nickel positive electrode of the present invention, since lithium was incorporated into the nickel hydroxide crystal lattice from the beginning, the effect of adding lithium was exhibited from the first cycle, whereas in the comparative nickel positive electrode, Since a considerable amount of lithium contained in the nickel oxide powder is not incorporated into the nickel hydroxide crystal lattice, these lithium are gradually incorporated into the nickel hydroxide crystal lattice due to charge and discharge. It is considered that this is because the lithium addition effect has come to be exhibited.

【0027】なお、本発明例電池XA5 は、比較例電池
XA1 〜XA4 に比較すると、やや放電容量が低い。こ
れは、ニッケル正極A5 に用いた水酸化ニッケルの活性
度が低いことに起因していると考えられ、このことから
反応槽PHは12以下とするのが好ましいことが判る。
The inventive battery XA 5 has a slightly lower discharge capacity than the comparative batteries XA 1 to XA 4 . This is considered to be due to the low activity of nickel hydroxide used for the nickel positive electrode A 5 , and it is clear from this that it is preferable to set the reaction tank PH to 12 or less.

【0028】[0028]

【発明の効果】以上のように本発明製造方法を用いる
と、リチウムイオンを確実に水酸化ニッケルの結晶格子
内に取り込ませることができるので、リチウム添加効果
を最大に引き出すことが可能なリチウム含有水酸化ニッ
ケル粉末と成し得る。よって、本発明アルカリ蓄電池用
非焼結式正極の製造方法によれば、充放電の当初から高
い電池容量を実現できるニッケル正極を提供できる。
INDUSTRIAL APPLICABILITY As described above, when the production method of the present invention is used, lithium ions can be surely incorporated into the crystal lattice of nickel hydroxide, so that the lithium addition effect that maximizes the lithium addition effect can be obtained. It may consist of nickel hydroxide powder. Therefore, according to the method for producing a non-sintered positive electrode for an alkaline storage battery of the present invention, it is possible to provide a nickel positive electrode that can realize a high battery capacity from the beginning of charge / discharge.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを含有する水酸化ニッケル粉末
を作製する工程を備えた非焼結式ニッケル正極の製造方
法において、 前記工程が、少なくとも、酸性のリチウム塩と酸性のニ
ッケル塩の混合水溶液と、アルカリ水溶液とを、反応槽
内PHが所定値に維持されるように夫々の水溶液の導入
量を制御しつつ、反応槽内に除々に導入して混合するこ
とにより、リチウムを含有した水酸化ニッケル結晶を析
出させる工程を具備する、 ことを特徴とするアルカリ蓄電池用非焼結式正極の製造
方法。
1. A method for producing a non-sintered nickel positive electrode comprising a step of producing a nickel hydroxide powder containing lithium, wherein the step comprises at least a mixed aqueous solution of an acidic lithium salt and an acidic nickel salt. , The alkaline aqueous solution is gradually introduced into the reaction vessel and mixed while controlling the introduction amount of each aqueous solution so that the pH in the reaction vessel is maintained at a predetermined value. A method for producing a non-sintered positive electrode for an alkaline storage battery, comprising a step of depositing nickel crystals.
【請求項2】 前記反応槽内PHが、8以上12以下に
維持されることをことを特徴とする請求項1に記載のア
ルカリ蓄電池用非焼結式正極の製造方法。
2. The method for producing a non-sintered positive electrode for an alkaline storage battery according to claim 1, wherein the PH in the reaction tank is maintained at 8 or more and 12 or less.
JP17912094A 1994-07-29 1994-07-29 Method for producing non-sintered positive electrode for alkaline storage battery Expired - Fee Related JP3407983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17912094A JP3407983B2 (en) 1994-07-29 1994-07-29 Method for producing non-sintered positive electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17912094A JP3407983B2 (en) 1994-07-29 1994-07-29 Method for producing non-sintered positive electrode for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH0845506A true JPH0845506A (en) 1996-02-16
JP3407983B2 JP3407983B2 (en) 2003-05-19

Family

ID=16060360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17912094A Expired - Fee Related JP3407983B2 (en) 1994-07-29 1994-07-29 Method for producing non-sintered positive electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3407983B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0834470A2 (en) * 1996-09-27 1998-04-08 Sharp Kabushiki Kaisha Process for preparing lithium nickel material and non-aqueous secondary battery having positive electrode prepared from this material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0834470A2 (en) * 1996-09-27 1998-04-08 Sharp Kabushiki Kaisha Process for preparing lithium nickel material and non-aqueous secondary battery having positive electrode prepared from this material
EP0834470A3 (en) * 1996-09-27 2000-02-16 Sharp Kabushiki Kaisha Process for preparing lithium nickel material and non-aqueous secondary battery having positive electrode prepared from this material
US6103421A (en) * 1996-09-27 2000-08-15 Sharp Kabushiki Kaisha Process of producing a positive electrode active material and nonaqueous secondary battery using the same

Also Published As

Publication number Publication date
JP3407983B2 (en) 2003-05-19

Similar Documents

Publication Publication Date Title
EP3719885A1 (en) Ternary precursor material and preparation method therefor
CN113823779B (en) Radial nickel-based precursor and preparation method thereof
WO2022089204A1 (en) Coated high nickel ternary material and preparation method therefor and use thereof
JP2945377B2 (en) Method for producing positive electrode active material for secondary battery
TWI250129B (en) Nickel hydroxide and process for its preparation
CN114583141A (en) Precursor material with three-layer structure, preparation method thereof and anode material
CN113571694B (en) Multi-ion modified ternary material precursor and preparation method of anode material
JP3205276B2 (en) Method for producing positive electrode active material for alkaline secondary battery, paste-type nickel electrode, alkaline secondary battery and method for producing the same
CN109411749B (en) Large-particle cobaltosic oxide doped with Al and preparation method thereof
JPH0559546B2 (en)
CN113488620A (en) Ternary positive electrode precursor and preparation method thereof, ternary positive electrode material and preparation method thereof, and lithium ion battery
JP3356628B2 (en) Nickel hydroxide covered with β-cobalt hydroxide layer for alkaline storage battery and method for producing the same
CN107251284B (en) Nickel hydroxide positive electrode for alkaline rechargeable batteries
JPH03252318A (en) Production of nickel hydroxide
JP2002056844A (en) Method of manufacturing positive electrode active material for alkaline storage battery, nickel electrode using this positive electrode active material, and alkaline storage battery using this nickel electrode
JPH09306487A (en) Manufacture of positive electrode active material for alkaline storage battery
JPH0845506A (en) Manufacture of non-sintered type positive electrode for alkaline storage battery
JP3367152B2 (en) Method for producing nickel hydroxide powder coated with cobalt hydroxide
JP3609231B2 (en) Method for producing cobalt-nickel hydroxide for Li-ion secondary battery
JP3594322B2 (en) Non-sintered nickel positive electrode for alkaline storage battery and method for producing the same
JPH10284075A (en) Manufacture of positive electrode active material for alkaline battery
JP3415364B2 (en) Nickel hydroxide coated with α-cobalt hydroxide layer for alkaline storage battery and method for producing the same
JP3609196B2 (en) Method for producing cobalt-nickel hydroxide for Li-ion secondary battery
JPH11268917A (en) Production of nickel hydroxide
CN111430702B (en) Doped anode material and preparation method and application thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees