JPH0841730A - Production of high-thermal conductivity carbon fiber - Google Patents

Production of high-thermal conductivity carbon fiber

Info

Publication number
JPH0841730A
JPH0841730A JP19458394A JP19458394A JPH0841730A JP H0841730 A JPH0841730 A JP H0841730A JP 19458394 A JP19458394 A JP 19458394A JP 19458394 A JP19458394 A JP 19458394A JP H0841730 A JPH0841730 A JP H0841730A
Authority
JP
Japan
Prior art keywords
pitch
diameter
fiber
carbon fiber
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19458394A
Other languages
Japanese (ja)
Other versions
JP3406696B2 (en
Inventor
Hiroyuki Tadokoro
寛之 田所
Yutaka Arai
豊 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Corp
Priority to JP19458394A priority Critical patent/JP3406696B2/en
Publication of JPH0841730A publication Critical patent/JPH0841730A/en
Application granted granted Critical
Publication of JP3406696B2 publication Critical patent/JP3406696B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject carbon fiber developing few fluffs, excellent in handleability, suitable for materials for space, aircraft and automotive brakes requiring thermal shock resistance and dimensional stability. CONSTITUTION:Optically anisotropic mesophase pitch is melted, fed via an inlet of diameter D1, contracted at an approach space with the profile from the inlet to circle-sectioned delivery hole 50-110mut m in capillary diameter D3 having an angle theta1, of 90-150 deg., and delivered via a spinning nozzle consisting of the capillary extended from the flat surface of diameter D2 situated at the terminal end of the approach space, thus forming fine pitch fibers each 5-11mum in diameter. The pitch fibers are then infusibilized and carbonized, and then graphitized in an inert gas atmosphere to obtain the objective high-thermal conductivity carbon fibers 4-8mum in single fiber diameter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は平均繊維径が4〜8μm
の高熱伝導率炭素繊維の製造方法である。本発明で得ら
れた炭素繊維は耐熱衝撃性、寸法安定性を要求される宇
宙用材料、航空機用材料、自動車のブレーキ用材料等に
広く使用される。
BACKGROUND OF THE INVENTION The present invention has an average fiber diameter of 4 to 8 μm.
Is a method for producing a high thermal conductivity carbon fiber. The carbon fiber obtained by the present invention is widely used for space materials, aircraft materials, automobile brake materials, etc., which are required to have thermal shock resistance and dimensional stability.

【0002】[0002]

【従来の技術】現在、炭素繊維はポリアクリルニトリル
(PAN)を原料としたPAN系炭素繊維とピッチを原
料としたピッチ系炭素繊維が製造されているが、現状で
は高性能炭素繊維として主にPAN系炭素繊維が用いら
れている。
2. Description of the Related Art Currently, PAN-based carbon fibers made from polyacrylonitrile (PAN) and pitch-based carbon fibers made from pitch are manufactured as carbon fibers, but at present, they are mainly used as high-performance carbon fibers. PAN-based carbon fiber is used.

【0003】しかしながら、市販されているPAN系炭
素繊維の熱伝導率は100W/mKよりも小さいため、
耐熱衝撃性、寸法安定性を要求される分野での使用は制
限される。
However, since the thermal conductivity of commercially available PAN-based carbon fibers is less than 100 W / mK,
Use in fields requiring heat shock resistance and dimensional stability is limited.

【0004】一方、メソフェースピッチを原料とするピ
ッチ系炭素繊維は、一般的にPAN系炭素繊維に比べ
て、高熱伝導率を示すと言われているが、市販のピッチ
系炭素繊維ではAMOCO社製THORNELP―12
0が高熱伝導率を示すが、700W/mKより小さいも
のである。
On the other hand, pitch-based carbon fibers made from mesophase pitch are generally said to have higher thermal conductivity than PAN-based carbon fibers, but commercially available pitch-based carbon fibers are manufactured by AMOCO. Made THORNELP-12
0 shows high thermal conductivity, but it is smaller than 700 W / mK.

【0005】特開平5―163619号公報には、30
00℃以上で焼成することにより、黒鉛結晶子の層面方
向の広がりLaが1000Åより大きく、電気比抵抗が
1.1μΩmより小さく、1100W/mKより大きい
熱伝導率をもつ炭素繊維の製造方法が開示されている。
Japanese Unexamined Patent Publication No. 5-163619 discloses 30
Disclosed is a method for producing a carbon fiber having a thermal conductivity of less than 1100 W / mK and an electrical resistivity of less than 1.1 μΩm when the graphite crystallite has a spread La in the layer surface direction of more than 1000 Å by firing at a temperature of at least 00 ° C. Has been done.

【0006】しかし1100W/mKより大きな熱伝導
率をもつピッチ系炭素繊維は極めて高弾性となるため繊
維糸条は剛直となり繊維のハンドリング時に繊維糸条が
折れたり、毛羽が多量に発生する等の問題がある。
However, since pitch-based carbon fibers having a thermal conductivity of more than 1100 W / mK have extremely high elasticity, the fiber yarn becomes rigid and the fiber yarn is broken or a large amount of fluff occurs during the handling of the fiber. There's a problem.

【0007】このため繊維のハンドリングが容易である
細径な高熱伝導率炭素繊維が求められるが、その製造方
法は報告されていない。
[0007] For this reason, a thin carbon fiber having a high thermal conductivity, which enables easy handling of the fiber, is required, but a manufacturing method thereof has not been reported.

【0008】特開平4―163319号公報には、ピッ
チ繊維を不融化し、酸素含有雰囲気中で延伸熱処理、延
伸予備炭化処理し、不活性ガス雰囲気下中で延伸しなが
ら炭化を行って熱伝導率、圧縮強度の高い炭素繊維の製
造方法が開示されている。
In Japanese Patent Laid-Open No. 163319/1992, pitch fibers are infusibilized, subjected to a drawing heat treatment in an oxygen-containing atmosphere, a drawing pre-carbonization treatment, and a carbonization while drawing in an inert gas atmosphere to conduct heat. A method for producing a carbon fiber having a high rate and a high compression strength is disclosed.

【0009】しかしながら、延伸処理を施してもPAN
系炭素繊維に匹敵するハンドリングが容易である繊維径
8μm未満である細径な高熱伝導率炭素繊維の製造方法
は報告されていない。
However, even if the stretching treatment is applied, the PAN
There is no report of a method for producing a small diameter high thermal conductivity carbon fiber having a fiber diameter of less than 8 μm, which is easy to handle and is comparable to a carbon-based carbon fiber.

【0010】またJ.Mater.Res.,Vol.
5,No3,P570―577,Mar 1990の
「種々の温度で焼成したピッチ系炭素繊維の構造および
電気特性」の中では、ピッチ繊維の繊維径を変えて、不
融化、炭化を行い、種々の温度で焼成した結果、繊維径
の大きいピッチ繊維から得られた炭素繊維は、ピッチ繊
維中のメソフェースのドメインの平均サイズが大きくな
るため黒鉛化した際の黒鉛化性が繊維径の小さいものに
比べ高くなることを報告しており、従って細径な炭素繊
維から高熱伝導性の炭素繊維が得がたいことが推察され
る。
In addition, J. Mater. Res. , Vol.
5, No3, P570-577, Mar 1990, "Structure and electrical characteristics of pitch-based carbon fiber fired at various temperatures", the fiber diameter of the pitch fiber is changed to infusibilize and carbonize, As a result of firing at a temperature, carbon fibers obtained from pitch fibers with a large fiber diameter have a larger average size of domains of mesophases in the pitch fibers, so the graphitization property when graphitized is smaller than that with a smaller fiber diameter. It has been reported that it becomes high, and therefore it is presumed that it is difficult to obtain a carbon fiber having high thermal conductivity from a carbon fiber having a small diameter.

【0011】[0011]

【発明が解決しようとする課題】上記のように、従来の
技術から細径な炭素繊維から高熱伝導性の炭素繊維が得
がたいことが推察されるが、本発明者等は熱伝導性の高
い炭素繊維を作るために鋭意検討した結果、ある特定の
方法で製造された細径な炭素繊維が、従来の知見と異な
り繊維径の大きな炭素繊維に比べ黒鉛化性が高く、高熱
伝導な炭素繊維が得られることを見いだし、本発明に到
達した。
As described above, it is presumed that it is difficult to obtain a carbon fiber having a high thermal conductivity from a carbon fiber having a small diameter, according to the conventional techniques. As a result of diligent studies to make fibers, a thin carbon fiber manufactured by a certain method has a higher graphitization property than a carbon fiber having a large fiber diameter, which is different from conventional findings, and a carbon fiber having high thermal conductivity is obtained. The inventors have found what is obtained and have reached the present invention.

【0012】本発明の目的は繊維径が4〜8μmの高熱
伝導率炭素繊維の製造方法を提供するものである。
An object of the present invention is to provide a method for producing a high thermal conductivity carbon fiber having a fiber diameter of 4 to 8 μm.

【0013】[0013]

【課題を解決するための手段】本発明は光学的異方性の
メソフェースピッチを溶融紡糸し、不融化、黒鉛化処理
して炭素繊維を製造する際に、メソフェースピッチを、 A)導入孔から吐出孔に至る形状が90〜150度の角
度のアプローチ部で縮流し、 B)アプローチ部終端で一旦平坦部とし、 C)平坦部に設けたキャピラリー径が50〜110μm
である円形断面の吐出孔を有する紡糸ノズルを通過させ
て、紡糸を行い、繊維径5〜11μmの細径ピッチ繊維
を得、炭化した後、不活性ガス雰囲気下で黒鉛化するこ
とを特徴とする、繊維径が4〜8μmの高熱伝導率炭素
繊維の製造方法である。
Means for Solving the Problems In the present invention, when a mesophase pitch having optical anisotropy is melt-spun, infusibilized and graphitized to produce a carbon fiber, the mesophase pitch is introduced as follows. The shape from the hole to the discharge hole is contracted at the approach part with an angle of 90 to 150 degrees, and B) once made a flat part at the end of the approach part, and C) the diameter of the capillary provided at the flat part is 50 to 110 μm.
Is passed through a spinning nozzle having a circular cross-section discharge hole to obtain a fine pitch fiber having a fiber diameter of 5 to 11 μm, carbonized, and then graphitized in an inert gas atmosphere. The method for producing a high thermal conductivity carbon fiber having a fiber diameter of 4 to 8 μm.

【0014】以下、本発明の内容を詳細に説明する。The contents of the present invention will be described in detail below.

【0015】本発明の炭素繊維の出発原料であるピッチ
は、コールタール、コールタールピッチ等の石炭系ピッ
チ、石炭液化ピッチ、エチレンタールピッチ、流動接触
触媒分解残査から得られるデカントオイルピッチ等の石
油系ピッチ、あるいはナフタレン等から触媒などを用い
て作られる合成ピッチ等、各種ピッチを包含するもので
ある。
The pitch which is the starting material of the carbon fiber of the present invention includes coal-based pitch such as coal tar and coal tar pitch, coal liquefied pitch, ethylene tar pitch, decant oil pitch obtained from fluid catalytic cracking residue. It includes various pitches such as petroleum pitch or synthetic pitch produced from naphthalene or the like using a catalyst or the like.

【0016】本発明の光学的異方性のメソフェースピッ
チは、前記ピッチを従来公知の方法でメソフェースを発
生させたものである。
The optically anisotropic mesophase pitch of the present invention is a pitch in which mesophases are generated by a conventionally known method.

【0017】メソフェースピッチは、紡糸した際のピッ
チ繊維の配向性が高いものが望ましく、このためメソフ
ェース含有量は60%以上、好ましくは80%以上、さ
らに好ましくは90%以上含有するものが望ましい。
The mesophase pitch is preferably such that the pitch fibers are highly oriented when spun, and therefore the mesophase content is preferably 60% or more, preferably 80% or more, more preferably 90% or more. .

【0018】なお、メソフェース含有量は60%未満で
あると光学的異方性量が少ないため引張強度が低くなり
好ましくない。
If the mesophase content is less than 60%, the amount of optical anisotropy is small and the tensile strength is low, which is not preferable.

【0019】また本発明で用いるメソフェースピッチは
軟化点が200〜400℃、好ましくは250℃〜35
0℃のものがよい。
The mesophase pitch used in the present invention has a softening point of 200 to 400 ° C, preferably 250 to 35 ° C.
0 ° C is preferable.

【0020】軟化点が200℃未満のピッチはその調整
が困難であり、また軟化点が400℃超のピッチを用い
ると紡糸温度を高温設定する必要が生じるため、安定し
た紡糸が行えなくなる。
It is difficult to adjust a pitch having a softening point of less than 200 ° C., and if a pitch having a softening point of more than 400 ° C. is used, it is necessary to set the spinning temperature at a high temperature and stable spinning cannot be performed.

【0021】ピッチ中に3μm以上の固形異物が存在す
ると紡糸時に糸切れが頻発することとなるので、得られ
たピッチは紡糸に先だって絶対濾過精度が3μm以下の
フィルター、あるいはこのフィルターと同等あるいはそ
れ以上の濾過精度をもつ濾過方法によりピッチ中の異物
を除去しておくことが望ましい。
Since the presence of solid foreign matter of 3 μm or more in the pitch causes frequent yarn breakage during spinning, the obtained pitch has a filter with an absolute filtration accuracy of 3 μm or less prior to spinning, or the same as or equal to this filter. It is desirable to remove foreign matter in the pitch by a filtration method having the above filtration accuracy.

【0022】高熱伝導率ピッチ系炭素繊維を製造するた
めの様々の検討の結果、黒鉛化性を高めることにより高
熱伝導率を得るには、ピッチ繊維状態における分子の繊
維軸方向への配向性がよいものを紡糸することが有効で
あることがわかった。
As a result of various studies for producing a high thermal conductivity pitch-based carbon fiber, in order to obtain a high thermal conductivity by enhancing the graphitization property, the orientation of molecules in the pitch fiber state in the fiber axis direction is required. It has been found that spinning good ones is effective.

【0023】本発明では前述のピッチからピッチ繊維を
紡糸する際に、図1に示すように導入孔から吐出孔に至
る形状(θ1)が90〜150度の角度のアプローチ部
で縮流し、アプローチ終端で一旦平坦部(θ2)とし、
平坦部に設けた円形断面の吐出孔を通過させ、キャピラ
リー径(D3)が50〜110μm、吐出口長さ(L
2)が0.07〜0.17mmである紡糸ノズルを用い
て吐出口のピッチ粘度が100〜1000poise、
好ましくは200〜800poiseでさらに好ましく
は400〜800poiseで繊維径5〜11μmの細
径のピッチ繊維をつくることによって、繊維軸方向への
配向性の高いピッチ繊維が得られ、かつ高引張弾性率、
高引張強度をもつ高熱伝導率炭素繊維が得られる。
In the present invention, when the pitch fiber is spun from the above-mentioned pitch, the shape (θ1) from the introduction hole to the discharge hole is contracted at the approach portion having an angle of 90 to 150 degrees as shown in FIG. At the end, once make a flat part (θ2),
It is passed through a circular cross-section discharge hole provided in the flat portion, the capillary diameter (D3) is 50 to 110 μm, and the discharge port length (L
2) is 0.07 to 0.17 mm, the spinning nozzle has a pitch viscosity of 100 to 1000 poise,
Pitch fibers having a high orientation in the fiber axis direction can be obtained by forming pitch fibers having a fine diameter of preferably 5 to 11 μm and more preferably 400 to 800 poise, and more preferably 400 to 800 poise, and a high tensile elastic modulus,
High thermal conductivity carbon fiber having high tensile strength is obtained.

【0024】しかしながら炭素繊維においてラジアル成
分は軸方向の亀裂につながり、さらにこの亀裂は引張損
傷の生じやすい箇所になるため、従来のノズルでは高強
度化に限界があった。
However, in the carbon fiber, the radial component leads to an axial crack, and this crack becomes a place where tensile damage is likely to occur. Therefore, the conventional nozzle has a limit to increase the strength.

【0025】従来のアプローチ終端で平坦部を有しない
円形断面の吐出孔の紡糸ノズルを用いてピッチ繊維を
得、不融化、炭化、黒鉛化を行い得られた炭素繊維の横
方向の断面を走査電子顕微鏡で観察すると、繊維表層に
少なくとも1.5μmから2.5μmはラジアル構造を
持ち、繊維内部はランダムあるいはオニオン構造を持
ち、複数の構造をとり、ある程度の高強度を保持するこ
とができる。
Pitch fibers were obtained using a spinning nozzle having a circular cross-section discharge hole at the end of the conventional approach, which was infusibilized, carbonized, and graphitized, and the cross section in the transverse direction of the obtained carbon fibers was scanned. When observed by an electron microscope, the fiber surface has a radial structure of at least 1.5 μm to 2.5 μm, and the inside of the fiber has a random or onion structure, and a plurality of structures can be formed to maintain a certain high strength.

【0026】ところが、本発明で用いるノズル構造、す
なわち導入孔から吐出孔に至る形状が90〜150度の
角度のアプローチ部で縮流し、アプローチ終端で一旦平
坦部としたのち、円形断面の吐出孔を持つ紡糸ノズルを
用いると繊維表層のラジアル成分が1.5μm以下、望
ましくは1.0μm以下になり、ラジアル成分が少なく
なる。
However, the nozzle structure used in the present invention, that is, the shape from the introduction hole to the discharge hole is contracted at the approach portion having an angle of 90 to 150 degrees, and is once made flat at the end of the approach, and then the discharge hole having a circular cross section. When the spinning nozzle having the above is used, the radial component of the fiber surface layer becomes 1.5 μm or less, preferably 1.0 μm or less, and the radial component decreases.

【0027】本発明に用いるノズルはこのように、表層
部のラジアル成分がより少なくなるため、さらに高引張
強度を保持することができる。
Since the nozzle used in the present invention has a smaller radial component in the surface layer portion as described above, it is possible to maintain a higher tensile strength.

【0028】アプローチ角度θ1は90度未満では導入
口長さが長くなり不適切であり、150度超ではアプロ
ーチ終端で平坦部を設ける効果が得られ難くなる。
If the approach angle θ1 is less than 90 degrees, the length of the inlet is too long, which is inappropriate, and if the approach angle θ1 exceeds 150 degrees, it is difficult to obtain the effect of providing a flat portion at the end of the approach.

【0029】アプローチ角度θ1をこのように決定され
るので、また優れた引張強度を得るためには導入口長さ
L1は3〜10mm、好ましくは4〜6mmにすること
が好ましく、導入口径D1が0.5〜10mm、好まし
くは1.2〜5mmであり、導入口での滞留時間を1〜
400秒、好ましくは4〜200秒とすることが好まし
い。
Since the approach angle θ1 is determined in this way, and in order to obtain excellent tensile strength, the inlet length L1 is preferably set to 3 to 10 mm, preferably 4 to 6 mm, and the inlet diameter D1 is set. 0.5 to 10 mm, preferably 1.2 to 5 mm, and the residence time at the inlet is 1 to
It is preferably 400 seconds, more preferably 4 to 200 seconds.

【0030】導入口径が0.5mm未満あるいは10m
m超、同様に滞留時間が1秒未満あるいは400秒超で
は優れた強度の繊維を得ることができない。
The inlet diameter is less than 0.5 mm or 10 m
If the residence time is more than m, and the residence time is less than 1 second or more than 400 seconds, fibers having excellent strength cannot be obtained.

【0031】また、平坦部の径D2は導入口径D1の
0.8倍以下、吐出口径D3の1.5倍以上が望まし
く、このときに本発明の効果を最も得ることができる。
吐出孔の断面は引張強度の向上をもたらすためには円形
のものを用いたとき最も効果を発揮する。
Further, the diameter D2 of the flat portion is preferably 0.8 times or less of the introduction port diameter D1 and 1.5 times or more of the discharge port diameter D3. At this time, the effect of the present invention can be most obtained.
The cross section of the discharge hole is most effective when a circular cross section is used in order to improve the tensile strength.

【0032】また、キャピラリー径が50μm未満で
は、キャピラリーの加工が非常に困難となったり、ノズ
ルの整備が煩雑となり、110μm超では、細径なピッ
チ繊維の紡糸が不安定となり好ましくない。
If the capillary diameter is less than 50 μm, the processing of the capillary becomes very difficult and the maintenance of the nozzle becomes complicated, and if it exceeds 110 μm, the spinning of fine pitch fibers becomes unstable, which is not preferable.

【0033】また吐出口長さ0.07mm未満では安定
した紡糸が行えず、0.17mm超では繊維表層部のラ
ジアル部分が増加することが推測され、そのために高強
度を保持できないことが考えられるため、キャピラリー
径と吐出口長さの比1.5〜2の範囲内が望ましい。
Further, if the discharge port length is less than 0.07 mm, stable spinning cannot be performed, and if it exceeds 0.17 mm, the radial portion of the fiber surface layer portion is presumed to increase. Therefore, it is considered that high strength cannot be maintained. Therefore, it is desirable that the ratio of the capillary diameter to the discharge port length is within the range of 1.5 to 2.

【0034】ピッチ粘度が100poise未満では、
極度に粘度が低いため、断糸が増加し紡糸を行うことが
殆ど不可能となり、1000poise超では、紡糸時
に糸切れが起きると他の糸もしくはノズル面に付着し、
紡糸が不安定となり好ましくない。
When the pitch viscosity is less than 100 poise,
Since the viscosity is extremely low, the number of yarn breakage increases and it becomes almost impossible to perform spinning. If the yarn breakage occurs during spinning above 1000 poise, it will adhere to other yarn or the nozzle surface,
This is not preferable because spinning becomes unstable.

【0035】また、4〜8μmのハンドリング面で優位
な細径炭素繊維を得るためには、ピッチ繊維の繊維径
を、ピッチ繊維を不融化、炭化、黒鉛化することにより
繊維径の収縮が生じる分を予め考慮して、5〜11μm
にしなければならない。
In order to obtain a fine carbon fiber having an excellent handling property of 4 to 8 μm, the fiber diameter of the pitch fiber is reduced by infusibilizing, carbonizing or graphitizing the pitch fiber. 5-11 μm considering the minutes in advance
Must be.

【0036】つぎにピッチ繊維は、酸化性ガス雰囲気
下、通常100〜350℃、好ましくは130〜320
℃で、通常10分〜10時間、好ましくは1〜6時間、
不融化処理を行う。
Next, the pitch fiber is usually 100 to 350 ° C., preferably 130 to 320 in an oxidizing gas atmosphere.
Usually at 10 ° C for 10 minutes to 10 hours, preferably 1 to 6 hours,
Perform infusibilization processing.

【0037】酸化性ガスとしては酸素、空気あるいはこ
れらに二酸化窒素、塩素等を混合したガスが用いられ
る。不融化温度が100度未満ではピッチの反応性が低
くなり、また350度超では過度の酸化が行われ、引張
強度が低下してしまう。
As the oxidizing gas, oxygen, air, or a gas in which nitrogen dioxide, chlorine or the like is mixed is used. If the infusibilization temperature is less than 100 ° C., the reactivity of the pitch will be low, and if it exceeds 350 ° C., excessive oxidation will occur, resulting in a decrease in tensile strength.

【0038】また不融化時間は10分未満では反応が未
達となり、10時間超では過度に不融化されてしまい好
ましくない。不融化処理した繊維は窒素、アルゴン等の
不活性ガス雰囲気下で炭化、黒鉛化処理を通常1秒〜1
0時間、好ましくは10秒〜6時間行い、引張弾性率1
00GPa〜1000GPa、引張強度2.0GPa〜
5.0GPaの炭素繊維を得、黒鉛化することにより、
高引張弾性率、高引張強度をもち、且つ3000℃以上
で黒鉛化すると1100W/mKより大きい熱伝導率を
有することを特徴とする繊維径が4〜8μmのハンドリ
ング性に優れた細径ピッチ系高熱伝導率炭素繊維が得ら
れる。
If the infusibilization time is less than 10 minutes, the reaction will not be achieved, and if it exceeds 10 hours, the infusibilization will be excessively unfavorable. The infusibilized fiber is generally carbonized and graphitized in an inert gas atmosphere such as nitrogen or argon for 1 second to 1 second.
0 hours, preferably 10 seconds to 6 hours, tensile modulus 1
00GPa-1000GPa, tensile strength 2.0GPa-
By obtaining 5.0 GPa carbon fiber and graphitizing it,
A fine pitch system having a high tensile elastic modulus and a high tensile strength, and having a thermal conductivity of more than 1100 W / mK when graphitized at 3000 ° C. or more and having a fiber diameter of 4 to 8 μm and excellent in handleability. High thermal conductivity carbon fibers are obtained.

【0039】黒鉛化処理した繊維の、黒鉛化の進行度合
いは、広角X線回折から求めた積層厚みLc002、結
晶子の大きさLa110、層間隔d002で評価した。
The degree of progress of graphitization of the graphitized fiber was evaluated by the layer thickness Lc002, the crystallite size La110, and the layer spacing d002 obtained from wide-angle X-ray diffraction.

【0040】積層厚みLc002は炭素結晶中の002
面の積層の厚さを、La110は結晶子の大きさを、層
間隔d002は結晶の002面の層間隔を示し、Lc0
02は50〜500Å、La110は100〜1000
Å以上、d002は3.352〜3.450Åの値を示
す。
The layer thickness Lc002 is 002 in the carbon crystal.
La110 is the thickness of the layer stack, La110 is the size of the crystallite, layer spacing d002 is the layer spacing of the 002 plane of the crystal, and Lc0
02 is 50 to 500Å, La110 is 100 to 1000
Above Å, d002 indicates a value of 3.352 to 3.450Å.

【0041】Lc002、La110が大きいほど、ま
たd002が小さいほど黒鉛化性が高いと判断でき、格
子欠陥による伝導電子の散乱が抑えられて高熱伝導率を
示す。
It can be judged that the larger the Lc002 and La110 are, and the smaller the d002 is, the higher the graphitization property is, and scattering of conduction electrons due to lattice defects is suppressed and high thermal conductivity is exhibited.

【0042】積層厚みLc002、結晶子の大きさLa
110、層間隔d002は繊維を粉末状にしたのち、標
準シリコンと混合して試料とする粉末法を用い、002
面、110面の回折線から学振法「人造黒鉛の格子定数
および結晶子の大きさ測定法」により求めた。
Lamination thickness Lc002, crystallite size La
110, the layer interval d002 is 002 by using a powder method in which fibers are made into a powder and then mixed with standard silicon to obtain a sample.
Plane, 110 diffraction planes were determined by the Gakshin method “method for measuring lattice constant of artificial graphite and size of crystallite”.

【0043】また熱伝導率は、炭素繊維を直径10m
m、厚さ3mm〜6mmの円柱状一方向炭素繊維強化プ
ラスチックにし、理学電気(株)製レーザーフラッシュ
法熱定数測定装置PS―7型を用いて、比熱および熱拡
散率を測定し、次式により算出した。
The thermal conductivity of carbon fiber is 10 m.
m, a thickness of 3 mm to 6 mm, and a columnar unidirectional carbon fiber reinforced plastic, and the specific heat and thermal diffusivity were measured using a laser flash method thermal constant measuring device PS-7 type manufactured by Rigaku Denki Co., Ltd. It was calculated by

【0044】[0044]

【数1】λ=Cp×α×ρ/Vf## EQU1 ## λ = Cp × α × ρ / Vf

【0045】ここでλは炭素繊維の熱伝導率、αは炭素
繊維の熱拡散率、Cpは一方向炭素繊維強化プラスチッ
クの絶対比熱、ρは密度、Vfは一方向炭素繊維強化プ
ラスチック中に含まれる炭素繊維の体積分率である。
Here, λ is the thermal conductivity of the carbon fiber, α is the thermal diffusivity of the carbon fiber, Cp is the absolute specific heat of the unidirectional carbon fiber reinforced plastic, ρ is the density, and Vf is included in the unidirectional carbon fiber reinforced plastic. This is the volume fraction of carbon fiber that is used.

【0046】マトリックス樹脂の熱伝導率は、炭素繊維
の熱伝導率に対して無視できるほど小さいので炭素繊維
の熱伝導率はλで求められる。なお、測定は室温(25
℃)で行った。
Since the thermal conductivity of the matrix resin is negligibly smaller than that of the carbon fiber, the thermal conductivity of the carbon fiber can be calculated by λ. In addition, the measurement is at room temperature (25
C.).

【0047】以下、さらに本発明を明確にするために、
実施例、比較例を用いて説明する。
Hereinafter, in order to further clarify the present invention,
An example and a comparative example will be described.

【0048】[0048]

【実施例】【Example】

【0049】[0049]

【実施例1】原料としてコールタールピッチを用い、触
媒存在下で直接水素化を行い、この水素化ピッチを減圧
化500℃で熱処理したのち、低沸点成分を除きメソフ
ェースピッチを得た。
Example 1 Using coal tar pitch as a raw material, direct hydrogenation was carried out in the presence of a catalyst, and the hydrogenated pitch was heat-treated at a reduced pressure of 500 ° C. to obtain mesophase pitch after removing low boiling point components.

【0050】このピッチは軟化点304℃、トルエン不
溶分80重量%でメソフェース含有量が94%であっ
た。このメソフェースピッチを用いて、図1に示すよう
な導入孔から吐出孔に至る形状が120度の角度のアプ
ローチ部で縮流し、アプローチ終端で一旦平坦部とし、
キャピラリー径0.10mm、吐出口長さ0.15m
m、平坦部長さ0.8mmのノズルを用い、吐出口のピ
ッチ粘度が450ポイズになるように紡糸し、繊維径1
0μmのピッチ繊維を得た。
This pitch had a softening point of 304 ° C., a toluene insoluble content of 80% by weight, and a mesophase content of 94%. By using this mesoface pitch, the shape from the introduction hole to the discharge hole as shown in FIG. 1 is contracted at the approach part with an angle of 120 degrees, and once flattened at the approach end.
Capillary diameter 0.10 mm, discharge port length 0.15 m
m, the flat portion length was 0.8 mm, and was spun so that the pitch viscosity of the discharge port was 450 poise, and the fiber diameter was 1
0 μm pitch fibers were obtained.

【0051】このピッチ繊維を、空気に二酸化窒素ガス
を5体積%、酸素ガスを10体積%添加した酸化雰囲気
下で、150℃から310℃まで1℃/minで昇温し
不融化繊維を得た。この不融化繊維を390℃まで昇温
し、50min炭化し、炭化繊維を得た。
The pitch fiber was heated from 150 ° C. to 310 ° C. at 1 ° C./min in an oxidizing atmosphere in which 5% by volume of nitrogen dioxide gas and 10% by volume of oxygen gas were added to the air to obtain an infusible fiber. It was The infusible fiber was heated to 390 ° C. and carbonized for 50 minutes to obtain a carbonized fiber.

【0052】つぎにこの炭化繊維を3200℃の温度
で、3時間黒鉛化処理を行い炭素繊維を得た。
Next, this carbonized fiber was graphitized at a temperature of 3200 ° C. for 3 hours to obtain a carbon fiber.

【0053】この炭素繊維は、繊維径7.4μmで、引
張弾性率900GPa、引張強度3.3GPa、X線構
造パラメータがLc002が450Å、La110が9
10Å、d002が3.364Å、熱伝導率1180W
/mKであり毛羽の発生は極めて少なかった。
This carbon fiber has a fiber diameter of 7.4 μm, a tensile elastic modulus of 900 GPa, a tensile strength of 3.3 GPa, an X-ray structural parameter of Lc002 = 450Å, and La110 = 9.
10Å, d002 is 3.364Å, thermal conductivity is 1180W
/ MK, and the occurrence of fluff was extremely small.

【0054】[0054]

【実施例2】実施例1のピッチを用いて図1に示すよう
な導入角135度、キャピラリー径0.09mm、吐出
口長さ0.14mmのノズルを用い、吐出口のピッチ粘
度が600ポイズになるように紡糸し、繊維径9.5μ
mのピッチ繊維を得た。
Example 2 Using the pitch of Example 1, a nozzle having an introduction angle of 135 degrees, a capillary diameter of 0.09 mm, and an ejection port length of 0.14 mm as shown in FIG. 1 was used, and the ejection port pitch viscosity was 600 poise. The fiber diameter is 9.5μ
m pitch fibers were obtained.

【0055】このピッチ繊維を用いて実施例1と同じ条
件で不融化、炭化、黒鉛化を行い炭素繊維を得た。
Using this pitch fiber, infusibilization, carbonization and graphitization were carried out under the same conditions as in Example 1 to obtain a carbon fiber.

【0056】この炭素繊維は、繊維径6.8μmで、引
張弾性率980GPa、引張強度4.0GPa、X線構
造パラメータがLc002が480Å、La110が9
70Å、d002が3.359Å、熱伝導率1230W
/mKであり毛羽の発生は極めて少なかった。
This carbon fiber has a fiber diameter of 6.8 μm, a tensile elastic modulus of 980 GPa, a tensile strength of 4.0 GPa, an X-ray structural parameter of Lc002 of 480Å, and La110 of 9.
70Å, d002 is 3.359Å, thermal conductivity is 1230W
/ MK, and the occurrence of fluff was extremely small.

【0057】[0057]

【比較例1】実施例1のピッチを用いて図2に示すよう
な導入角120度、キャピラリー径0.10mm、吐出
口長さ0.15mmのノズルを用い、吐出口のピッチ粘
度が450ポイズになるように紡糸し、繊維径10μm
のピッチ繊維を得た。
Comparative Example 1 Using the pitch of Example 1, a nozzle having an inlet angle of 120 degrees, a capillary diameter of 0.10 mm, and a discharge port length of 0.15 mm as shown in FIG. 2 was used, and the pitch viscosity of the discharge port was 450 poise. And the fiber diameter is 10 μm
The pitch fiber of was obtained.

【0058】このピッチ繊維を用いて実施例1と同じ条
件で不融化、炭化、黒鉛化を行い炭素繊維を得た。
Using this pitch fiber, infusibilization, carbonization and graphitization were carried out under the same conditions as in Example 1 to obtain a carbon fiber.

【0059】この炭素繊維は、繊維径7.4μmで、引
張弾性率900GPa、引張強度2.8GPa、X線構
造パラメータがLc002が420Å、La110が7
60Å、d002が3.365Å、熱伝導率1070W
/mKであり毛羽の発生は多かった。
This carbon fiber has a fiber diameter of 7.4 μm, a tensile elastic modulus of 900 GPa, a tensile strength of 2.8 GPa, an X-ray structural parameter of Lc002 of 420Å and La110 of 7
60Å, d002 is 3.365Å, thermal conductivity is 1070W
/ MK, and the occurrence of fluff was large.

【0060】[0060]

【比較例2】実施例1のピッチを用いて図2に示すよう
な導入角120度、キャピラリー径0.10mm、吐出
口長さ0.15mmのノズルを用い、吐出口のピッチ粘
度が600ポイズになるように紡糸し、繊維径13μm
のピッチ繊維を得た。
Comparative Example 2 Using the pitch of Example 1, a nozzle having an inlet angle of 120 degrees, a capillary diameter of 0.10 mm, and a discharge port length of 0.15 mm as shown in FIG. 2 was used, and the pitch viscosity of the discharge port was 600 poise. And the fiber diameter is 13 μm
The pitch fiber of was obtained.

【0061】このピッチ繊維を用いて実施例1と同じ条
件で不融化、炭化、黒鉛化を行い炭素繊維を得た。
Using this pitch fiber, infusibilization, carbonization and graphitization were carried out under the same conditions as in Example 1 to obtain a carbon fiber.

【0062】この炭素繊維は、繊維径9.0μmで、引
張弾性率900GPa、引張強度2.5GPa、X線構
造パラメータがLc002が350Å、La110が5
90Å、d002が3.370Å、熱伝導率600W/
mKであり毛羽の発生は多かった。
This carbon fiber has a fiber diameter of 9.0 μm, a tensile elastic modulus of 900 GPa, a tensile strength of 2.5 GPa, and an X-ray structural parameter of Lc002 of 350Å and La110 of 5.
90Å, d002 is 3.370Å, thermal conductivity is 600W /
Since it was mK, fuzz was generated frequently.

【0063】[0063]

【比較例3】実施例1のピッチを用いて図2に示すよう
な導入角120度、キャピラリー径0.10mm、吐出
口長さ0.15mmのノズルを用い、吐出口のピッチ粘
度が700ポイズになるように紡糸し、繊維径13μm
のピッチ繊維を得た。
Comparative Example 3 Using the pitch of Example 1, a nozzle having an inlet angle of 120 degrees, a capillary diameter of 0.10 mm, and a discharge port length of 0.15 mm as shown in FIG. 2 was used, and the pitch viscosity of the discharge port was 700 poise. And the fiber diameter is 13 μm
The pitch fiber of was obtained.

【0064】このピッチ繊維を用いて実施例1と同じ条
件で不融化、炭化、黒鉛化を行い炭素繊維を得た。
Using this pitch fiber, infusibilization, carbonization and graphitization were carried out under the same conditions as in Example 1 to obtain a carbon fiber.

【0065】この炭素繊維は、繊維径9.3μmで、引
張弾性率900GPa、引張強度2.3GPa、X線構
造パラメータがLc002が360Å、La110が6
50Å、d002が3.369Å、熱伝導率700W/
mKであり毛羽の発生は多かった。
This carbon fiber has a fiber diameter of 9.3 μm, a tensile elastic modulus of 900 GPa, a tensile strength of 2.3 GPa, an X-ray structural parameter of Lc002 of 360Å, and La110 of 6
50Å, d002 is 3.369Å, thermal conductivity is 700W /
Since it was mK, fuzz was generated frequently.

【0066】[0066]

【比較例4】実施例1のピッチを用いて図2に示すよう
な導入角120度、キャピラリー径0.12mm、吐出
口長さ0.20mmのノズルを用い、吐出口のピッチ粘
度が600ポイズになるように紡糸し、繊維径10μm
のピッチ繊維を得た。
[Comparative Example 4] Using the pitch of Example 1, a nozzle having an inlet angle of 120 degrees, a capillary diameter of 0.12 mm, and a discharge port length of 0.20 mm as shown in FIG. 2 was used, and the discharge port pitch viscosity was 600 poise. And the fiber diameter is 10 μm
The pitch fiber of was obtained.

【0067】このピッチ繊維を用いて実施例1と同じ条
件で不融化、炭化、黒鉛化を行い炭素繊維を得た。
Using this pitch fiber, infusibilization, carbonization and graphitization were carried out under the same conditions as in Example 1 to obtain a carbon fiber.

【0068】この炭素繊維は、繊維径7.3μmで、引
張弾性率900GPa、引張強度2.7GPa、X線構
造パラメータがLc002が290Å、La110が4
90Å、d002が3.379Å、熱伝導率530W/
mKであり毛羽の発生は多かった。
This carbon fiber has a fiber diameter of 7.3 μm, a tensile elastic modulus of 900 GPa, a tensile strength of 2.7 GPa, an X-ray structural parameter of Lc002 of 290Å and La110 of 4
90Å, d002 is 3.379Å, thermal conductivity is 530W /
Since it was mK, fuzz was generated frequently.

【0069】[0069]

【発明の効果】本発明の炭素繊維は、工業的に実施適応
が容易な技術で、同一条件で炭化または黒鉛化された従
来の炭素繊維にくらべて極めて大きな熱伝導率を示し、
毛羽の発生が極めて少なく、また繊維糸条が折れる問題
が少ない、すなわちハンドリング性に優れた細径炭素繊
維を製造することができ、耐熱衝撃性、寸法安定性を要
求される宇宙用材料、航空機用材料、自動車用材料等の
分野での利用に適した炭素繊維を提供することが可能と
なる。
INDUSTRIAL APPLICABILITY The carbon fiber of the present invention is a technology which is industrially easy to apply and shows, and exhibits extremely large thermal conductivity as compared with the conventional carbon fiber carbonized or graphitized under the same conditions.
Extremely few fluffs and less problem of fiber yarn breakage, that is, it is possible to manufacture small diameter carbon fibers with excellent handling properties, and space materials and aircraft that require thermal shock resistance and dimensional stability. It is possible to provide a carbon fiber suitable for use in the fields of automotive materials, automotive materials, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に用いる紡糸ノズルの一部断面概略図を
示す。
FIG. 1 shows a partial cross-sectional schematic view of a spinning nozzle used in the present invention.

【図2】比較例に用いる従来の紡糸ノズルの一部断面概
略図を示す。
FIG. 2 shows a partial cross-sectional schematic view of a conventional spinning nozzle used in a comparative example.

【符号の説明】[Explanation of symbols]

D1 導入口径 D2 平坦部直径 D3 キャピラリー径 L1 導入口長さ L2 吐出口長さ θ1 アプローチ部角度 θ2 平坦部角度 D1 introduction port diameter D2 flat part diameter D3 capillary diameter L1 introduction port length L2 discharge port length θ1 approach part angle θ2 flat part angle

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光学的異方性のメソフェースピッチを溶
融紡糸し、不融化、炭化、黒鉛化処理して炭素繊維を製
造する際に、メソフェースピッチを、 A)導入孔から吐出孔に至る形状が90〜150度の角
度のアプローチ部で縮流し、 B)アプローチ部終端で一旦平坦部とし、 C)平坦部に設けたキャピラリー径が50〜110μm
である円形断面の吐出孔を有する紡糸ノズルを通過させ
て、紡糸を行い、繊維径5〜11μmの細径ピッチ繊維
を得、不融化、炭化した後、不活性ガス雰囲気下で黒鉛
化することを特徴とする、繊維径が4〜8μmの高熱伝
導率炭素繊維の製造方法。
1. When a carbon fiber is produced by melt spinning an optically anisotropic mesophase pitch and subjecting it to infusibilization, carbonization and graphitization, the mesophase pitch is introduced from the A) introduction hole to a discharge hole. The entire shape is contracted at the approach part with an angle of 90 to 150 degrees, and B) the flat part is once made at the end of the approach part, and C) the diameter of the capillary provided in the flat part is 50 to 110 μm.
And passing through a spinning nozzle having a circular cross-section discharge hole to obtain a fine pitch fiber having a fiber diameter of 5 to 11 μm, infusibilized and carbonized, and then graphitized in an inert gas atmosphere. A method for producing a high thermal conductivity carbon fiber having a fiber diameter of 4 to 8 μm.
JP19458394A 1994-07-28 1994-07-28 Method for producing high thermal conductivity carbon fiber Expired - Lifetime JP3406696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19458394A JP3406696B2 (en) 1994-07-28 1994-07-28 Method for producing high thermal conductivity carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19458394A JP3406696B2 (en) 1994-07-28 1994-07-28 Method for producing high thermal conductivity carbon fiber

Publications (2)

Publication Number Publication Date
JPH0841730A true JPH0841730A (en) 1996-02-13
JP3406696B2 JP3406696B2 (en) 2003-05-12

Family

ID=16326963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19458394A Expired - Lifetime JP3406696B2 (en) 1994-07-28 1994-07-28 Method for producing high thermal conductivity carbon fiber

Country Status (1)

Country Link
JP (1) JP3406696B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013252A1 (en) * 2006-07-28 2008-01-31 Teijin Limited Heat conductive adhesive
JP2008208490A (en) * 2007-02-27 2008-09-11 Teijin Ltd Pitch-based carbon fiber and carbon fiber-reinforced composite material
CN114959949A (en) * 2022-04-27 2022-08-30 北京化工大学 Fused ring aromatic carbon fiber and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013252A1 (en) * 2006-07-28 2008-01-31 Teijin Limited Heat conductive adhesive
US8017674B2 (en) 2006-07-28 2011-09-13 Teijin Limited Heat-conductive adhesive
JP2008208490A (en) * 2007-02-27 2008-09-11 Teijin Ltd Pitch-based carbon fiber and carbon fiber-reinforced composite material
CN114959949A (en) * 2022-04-27 2022-08-30 北京化工大学 Fused ring aromatic carbon fiber and preparation method thereof

Also Published As

Publication number Publication date
JP3406696B2 (en) 2003-05-12

Similar Documents

Publication Publication Date Title
EP0245035B1 (en) High modulus pitch-based carbon fiber and method for preparing same
US5399330A (en) Carbon thread and process for producing it
JPH0790725A (en) Milled meso-phase pitch carbon fiber and production thereof
JPH0841730A (en) Production of high-thermal conductivity carbon fiber
JPH0768064B2 (en) Carbon fiber reinforced composite material
JP2985455B2 (en) Carbon fiber and method for producing the same
JP2849156B2 (en) Method for producing hollow carbon fiber
JPH05272017A (en) Carbon fiber and its production
JP2640528B2 (en) Pitch-based carbon fiber
JPS5976925A (en) Manufacture of pitch-based carbon fiber
JP2678384B2 (en) Pitch for carbon fiber and method of manufacturing carbon fiber using the same
JPH06146120A (en) Pitch-based carbon fiber having high strength and high elastic modulus and its production
JPS6262915A (en) Production of pitch carbon yarn
JPS62177220A (en) Production of pitch based carbon fiber
JP3024320B2 (en) Method for producing high strand strength carbon fiber
JPS60259631A (en) Production of pitch carbon fiber
JPH03146717A (en) Pitch-based carbon fiber having high elongation and high strength
JPS6262917A (en) Production of pitch carbon yarn
JPH1025626A (en) Production of carbon fiber
JP2000212840A (en) Pitch-based carbon fiber
JP2007023477A (en) Carbon fiber
JPH1025624A (en) Carbon fiber and carbon fiber assembly
JPH0610215A (en) Pitch carbon fiber and its production
JPH0569061B2 (en)
JPH055218A (en) Production of carbon fiber having high strand strength

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030204

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term