JPH083735A - Production of thin film - Google Patents

Production of thin film

Info

Publication number
JPH083735A
JPH083735A JP13313794A JP13313794A JPH083735A JP H083735 A JPH083735 A JP H083735A JP 13313794 A JP13313794 A JP 13313794A JP 13313794 A JP13313794 A JP 13313794A JP H083735 A JPH083735 A JP H083735A
Authority
JP
Japan
Prior art keywords
substrate
film
thin film
cathode
hearth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13313794A
Other languages
Japanese (ja)
Inventor
Yoshio Suzuki
義雄 鈴木
Makoto Yoshida
吉田  誠
Satoshi Okada
智 岡田
Chikashi Shinno
史 新野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP13313794A priority Critical patent/JPH083735A/en
Publication of JPH083735A publication Critical patent/JPH083735A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To prepare a high quality thin film with a smooth surface on a substrate of glass, etc. CONSTITUTION:A plasma jet 13 is generated by arc discharge from a cathode 2 and led by a magnetic circuit 8 to an evaporating material 15 on a hearth (anode) 7 disposed in a vacuum vessel 6. The material evaporated from a part on which the plasma jet 13 hits is stuck to a substrate 12 by an ion plating method. At this time, film formation is carried out while keeping the substrate 12 at <=200 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特にイオンプレーティ
ング成膜法を用いて基板に薄膜を形成する薄膜作製方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention particularly relates to a thin film forming method for forming a thin film on a substrate using an ion plating film forming method.

【0002】[0002]

【従来の技術】図3は従来のスパッタリング法を用いた
成膜装置の概略を示す構成図である。同図中、101は
真空ポンプで排気される真空槽、102は不活性ガスを
導入するためのガス導入口、103はターゲットに取り
付けたカソード、104はカソード103に対向して設
けられたアノードで、基板105を保持する基板ホルダ
ーなどとして形成されている。106は放電用の高圧電
源、107はカソード103を水冷する冷却水の配管を
通すための絶縁体である。
2. Description of the Related Art FIG. 3 is a schematic view of a film forming apparatus using a conventional sputtering method. In the figure, 101 is a vacuum chamber evacuated by a vacuum pump, 102 is a gas inlet for introducing an inert gas, 103 is a cathode attached to a target, and 104 is an anode provided opposite to the cathode 103. It is formed as a substrate holder for holding the substrate 105. Reference numeral 106 is a high-voltage power supply for discharge, and 107 is an insulator for passing cooling water piping for cooling the cathode 103 with water.

【0003】スパッタリングは、まず10-4Pa程度に
排気された真空槽101に0.1Pa程度までになるよ
うに不活性ガス(主にAr)をガス導入口102から入
れ、ターゲットに取り付けたカソード103及びこれと
対向するアノード104の間に直流あるいは交流の高電
圧(数百V)を印加して、グロー放電を起こさせる。そ
して、放電によってプラスにイオン化された不活性ガス
は、カソード103にあるターゲットに入射し、ターゲ
ット材をスパッタリングし、基板105上に必要とする
薄膜を形成する、また、図4は従来の電子ビーム蒸着法
を用いた成膜装置の概略を示す構成図である。同図中、
110はガスを導入するバルブ、111はシャッター、
112は基板ホルダー、113は基板ホルダー112を
回転させるモーター、114は水晶モニターである。
In sputtering, first, an inert gas (mainly Ar) is introduced into the vacuum chamber 101 evacuated to about 10 −4 Pa from the gas inlet 102 so that the pressure reaches about 0.1 Pa, and the cathode is attached to the target. A high voltage of DC or AC (several hundreds of V) is applied between 103 and the anode 104 facing it to cause glow discharge. Then, the inert gas positively ionized by the discharge enters the target on the cathode 103, sputters the target material, and forms a necessary thin film on the substrate 105. Further, FIG. 4 shows a conventional electron beam. It is a block diagram which shows the outline of the film-forming apparatus using the vapor deposition method. In the figure,
110 is a valve for introducing gas, 111 is a shutter,
Reference numeral 112 is a substrate holder, 113 is a motor for rotating the substrate holder 112, and 114 is a crystal monitor.

【0004】電子ビーム蒸着は、電子銃からの電子ビー
ムを加速して試料表面に照射することにより、高融点金
属であるMo,Ta,Wをはじめ、石英,アルミナ,I
TO,ZnOなどの酸化物を蒸着するのに用いられてい
る。蒸発源としては、電子ビーム発生用のフィラメント
(W),ビームを偏向させる磁気回路,蒸発材料を置く
水冷されたアノードからなる。また電子は、数KV(1
0〜20KWクラスの電源)で加速され、アノードにお
いた蒸発材料を加熱蒸発させる。
In electron beam evaporation, an electron beam from an electron gun is accelerated to irradiate the surface of the sample, so that refractory metals such as Mo, Ta, and W, quartz, alumina, and I are deposited.
It is used to deposit oxides such as TO and ZnO. The evaporation source is composed of a filament (W) for generating an electron beam, a magnetic circuit for deflecting the beam, and a water-cooled anode on which evaporation material is placed. Also, the electrons are several KV (1
It is accelerated by a power source of 0 to 20 KW) to heat and evaporate the evaporation material placed on the anode.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
ような従来の薄膜作製方法(スパッタリング,電子ビー
ム蒸着法)で成膜した膜(例えばITO膜)は、研磨し
た平滑なガラス等の基板に例えば200nm程度の膜厚
の成膜を行った場合でも、膜表面に10nm(スパッタ
リング膜)から数十nm(電子ビーム蒸着膜)の凹凸が
見られる。特に、基板温度が高温になると基板上に付い
た膜が結晶成長し、凹凸が助長される。また膜厚が厚く
なるに従い、初め多結晶もしくはアモルファス状態であ
ったものが、膜表面に針状,円錐状,ドーム状など種々
の形状が現われることもある。
However, a film (for example, an ITO film) formed by the conventional thin film forming method (sputtering, electron beam evaporation method) as described above is formed on a polished smooth glass substrate or the like, for example. Even when a film having a thickness of about 200 nm is formed, unevenness of 10 nm (sputtering film) to several tens nm (electron beam evaporation film) is observed on the film surface. In particular, when the substrate temperature becomes high, the film attached to the substrate undergoes crystal growth and promotes unevenness. Further, as the film thickness increases, what is initially in a polycrystalline or amorphous state may appear on the film surface in various shapes such as a needle shape, a cone shape, and a dome shape.

【0006】このような膜表面は、各種光学膜{バンド
パスフィルタ,エッジフィルタ,反射鏡,反射防止膜等
(単層,多層含む)}ではエッジのだれ,反射率の低
下,逆に透過率の低下につながる。またディスプレー
(液晶ディスプレー,プラズマディスプレー,エレクト
ロルミネッセンスディスプレー,有機EL,半導体等)
や電子部品(集積回路,抵抗チップ)などに用いた場
合、凸部への電界の集中や、更に上に成膜した膜の成膜
ムラ(特に膜厚が薄い場合下地が表面に露出する)が起
こり、電気的なリークや断線等が起こる。
Such a film surface has various types of optical films (bandpass filters, edge filters, reflecting mirrors, antireflection films, etc. (including a single layer and a multi-layered film)), which have edge drooping, lower reflectance, and conversely transmittance. Leading to a decrease in Display (liquid crystal display, plasma display, electroluminescence display, organic EL, semiconductor, etc.)
When used for electronic parts (integrated circuits, resistive chips), etc., the electric field is concentrated on the convex parts and the unevenness of the film formed on it (especially when the film thickness is thin, the underlayer is exposed on the surface). Occurs, and electrical leakage or disconnection occurs.

【0007】本発明は、上記のような問題点に着目して
なされたもので、表面が平滑な薄膜が得られ、各種光学
膜や機能膜として特性の優れたものが得られる薄膜作製
方法を提供することを目的としている。
The present invention has been made by paying attention to the above problems, and provides a thin film production method capable of obtaining a thin film having a smooth surface and excellent properties as various optical films and functional films. It is intended to be provided.

【0008】[0008]

【課題を解決するための手段】本発明の薄膜作製方法
は、アーク放電を用いたイオンプレーティング成膜法に
より、薄膜を付着させる基板の温度を200℃以下にし
て該基板に成膜させるようにしたものである。
According to the thin film forming method of the present invention, the temperature of a substrate to which a thin film is attached is set to 200 ° C. or lower by an ion plating film forming method using arc discharge to form a film on the substrate. It is the one.

【0009】[0009]

【作用】本発明の薄膜作製方法においては、アーク放電
を用いたイオンプレーティング成膜法で、且つ基板温度
が200℃以下で成膜が行われ、作製された膜の表面が
平滑になる。
In the thin film forming method of the present invention, the film is formed by the ion plating film forming method using arc discharge and the substrate temperature is 200 ° C. or less, and the surface of the formed film becomes smooth.

【0010】[0010]

【実施例】図1は本発明に係る薄膜作製方法を用いた成
膜装置(イオンプレーティング装置)の構成図である。
同図において、1は不活性ガスを導入するガス導入口、
2はカソード、3は環状永久磁石、4は空芯コイル、5
はカソード2に接続された放電用の高圧の直流電源、6
は真空容器、7は真空容器6内に設置されたハース(ア
ノード)で、冷却水により水冷されるようになってい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram of a film forming apparatus (ion plating apparatus) using the thin film forming method according to the present invention.
In the figure, 1 is a gas inlet for introducing an inert gas,
2 is a cathode, 3 is an annular permanent magnet, 4 is an air-core coil, 5
Is a high-voltage DC power supply for discharge connected to the cathode 2, 6
Is a vacuum container, and 7 is a hearth (anode) installed in the vacuum container 6, which is water-cooled by cooling water.

【0011】8は永久磁石を用いた磁気回路で、ハース
7と一体的に設けられている。9は真空排気のための排
気口、10は反応ガスの導入口、12はハース7の上方
に配置された基板、13はアーク放電によって生じた放
電プラズマ流、14は収束用の補助空芯コイル、15は
ハース7上に置かれた蒸発材料である。
Reference numeral 8 denotes a magnetic circuit using a permanent magnet, which is provided integrally with the hearth 7. Reference numeral 9 is an exhaust port for vacuum exhaust, 10 is an inlet for reaction gas, 12 is a substrate arranged above the hearth 7, 13 is a discharge plasma flow generated by arc discharge, and 14 is an auxiliary air-core coil for focusing. , 15 are evaporation materials placed on the hearth 7.

【0012】上記の装置は、真空容器6の中にアーク放
電用のカソード2と蒸発材料15を載置したハース7と
がある距離と角度を持って配置された構成となってい
る。そして、蒸発材料15を蒸発させる際には、先ず1
-6Torr〜10-7Torrに排気した真空容器6内
にカソード2の後部のガス導入口1からAr等の不活性
ガスを導入し、真空容器6を10-4Torr〜10-3
orr台の圧力にした後、カソード2とハース7間に直
流電源5により高電圧を与えて放電させる。
The apparatus described above is constructed such that the cathode 2 for arc discharge and the hearth 7 on which the evaporation material 15 is placed are arranged in the vacuum container 6 at a certain distance and angle. Then, when evaporating the evaporation material 15, first,
An inert gas such as Ar is introduced into the vacuum container 6 evacuated to 0 -6 Torr to 10 -7 Torr from the gas inlet 1 at the rear part of the cathode 2, and the vacuum container 6 is moved to 10 -4 Torr to 10 -3 T.
After adjusting the pressure to the level of the orr level, a high voltage is applied between the cathode 2 and the hearth 7 by the DC power supply 5 to discharge.

【0013】この時、カソード2から出た放電プラズマ
流13は、磁力線に沿って流れ、ハース7の内部の磁気
回路8のN極に向かって落ちる。そして、この放電プラ
ズマ流13が落ちる位置に置かれた蒸発材料15は、放
電プラズマ流13が当たる数平方センチメートルの部分
が昇華、あるいは加熱溶融後に蒸発する。またハース7
上には、ある適当な距離を置いて上記蒸発した材料を付
着させる基板12が配置されている。
At this time, the discharge plasma flow 13 emitted from the cathode 2 flows along the lines of magnetic force and drops toward the N pole of the magnetic circuit 8 inside the hearth 7. Then, in the evaporation material 15 placed at the position where the discharge plasma flow 13 falls, the part of several square centimeters which the discharge plasma flow 13 hits is sublimated or evaporated after heating and melting. See again Hearth 7
A substrate 12 is placed on top of which the vaporized material is deposited at some suitable distance.

【0014】ここで、実際の成膜に際しては、カソード
−アノード間で電流130A、電圧58Vのアーク放電
をさせ、アノード(ハース7)に置いた蒸発材料{IT
O(Indium Tin Oxide)ペレット}15を蒸発させた。ま
た基板12にはガラス基板を用いた。そして、その基板
温度を25〜300℃まで変え、表面の平滑性をSTM
(Scanning Tunnering Microscope) で測定した。図4に
その測定結果である基板温度と膜表面の粗さ(nm)の
関係を示す。
Here, in the actual film formation, an arc discharge having a current of 130 A and a voltage of 58 V is performed between the cathode and the anode, and the evaporation material {IT is placed on the anode (hearth 7).
O (Indium Tin Oxide) pellets} 15 were evaporated. A glass substrate was used as the substrate 12. Then, the substrate temperature is changed to 25 to 300 ° C., and the surface smoothness is STM.
(Scanning Tunnering Microscope). FIG. 4 shows the relationship between the substrate temperature and the roughness (nm) of the film surface, which is the measurement result.

【0015】図4から200℃以下で特に平滑な表面が
見られることがわかる。同様に測定した従来のスパッタ
法の膜はRa(1μm×1μm面内の平均粗さ):3.
704nm,Rmax(最高凸部,最低凹部):29.
681、また電子ビーム蒸着法の膜はRa:8.26
2,Rmax:77.425であり、これに比べて表面
の荒れは1/2から1/数十になり、アーク放電を使っ
たイオンプレーティング膜は平滑性において非常に優れ
ていることがわかる。
It can be seen from FIG. 4 that a particularly smooth surface is seen at 200 ° C. or lower. Similarly, the film obtained by the conventional sputtering method has Ra (1 μm × 1 μm in-plane average roughness): 3.
704 nm, Rmax (highest convex portion, lowest concave portion): 29.
681, and the film of the electron beam evaporation method is Ra: 8.26.
2, Rmax: 77.425, compared to this, the surface roughness becomes 1/2 to 1 / several tens, and it can be seen that the ion plating film using arc discharge is very excellent in smoothness. .

【0016】このように、アーク放電を使ったイオンプ
レーティング成膜法で、且つ基板温度を200℃以下に
して作製した薄膜は、表面が平滑で特性が優れているた
め、例えば光学膜の一種であるバンドパスフィルタに使
用すれば、エッジがシャープな光学特性が得られ、各種
のミラー(アルミ鏡,他の金属,誘電体,セラミック材
料を使っても良い)に使えば、反射された像は乱れのな
い高品位な像が得られる。
As described above, the thin film produced by the ion plating film formation method using arc discharge and the substrate temperature of 200 ° C. or less has a smooth surface and excellent characteristics. When used in a bandpass filter, the optical characteristics with sharp edges can be obtained, and when used in various mirrors (aluminum mirrors, other metals, dielectrics, ceramic materials may be used), the reflected image Gives a high-quality image without distortion.

【0017】また、電子デバイス(例えば集積回路)に
使用すれば、従来のスパッタリング法では得られないシ
ャープなエッチングパターンが得られる。
When used in an electronic device (for example, an integrated circuit), a sharp etching pattern which cannot be obtained by the conventional sputtering method can be obtained.

【0018】また、液晶ディスプレーに使用される透明
電極(STN:Super Twisted Nematic 用)に使用すれ
ば、セルギャップが狭い液晶ディスプレーでもショート
や凸部への電界の集中がなく、欠陥の少ない高品位な画
像が得られる。更に、凹凸のある透明電極に比べ膜が緻
密になり、同じ膜厚でもより低抵抗な電極が得られる。
Further, when it is used for a transparent electrode (for STN: Super Twisted Nematic) used in a liquid crystal display, there is no short circuit or concentration of an electric field on a convex portion even in a liquid crystal display having a narrow cell gap, and a high quality with few defects. Images can be obtained. Further, the film becomes denser than the transparent electrode having irregularities, and an electrode having lower resistance can be obtained even with the same film thickness.

【0019】[0019]

【発明の効果】以上のように、本発明によれば、アーク
放電を用いたイオンプレーティング成膜法で、且つ基板
温度を200℃以下で成膜するようにしたので、表面が
平滑な薄膜が得られ、各種光学膜や機能膜として特性の
優れたものが得られるという効果がある。
As described above, according to the present invention, since the film is formed by the ion plating film forming method using arc discharge and the substrate temperature is 200 ° C. or less, a thin film having a smooth surface is obtained. Is obtained, and various optical films and functional films having excellent characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例を示す構成図FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】 一実施例の基板温度と表面の粗さの関係を示
す図
FIG. 2 is a diagram showing the relationship between the substrate temperature and the surface roughness of one example.

【図3】 従来例を示す構成図FIG. 3 is a configuration diagram showing a conventional example.

【図4】 他の従来例を示す構成図FIG. 4 is a configuration diagram showing another conventional example.

【符号の説明】[Explanation of symbols]

2 カソード 5 直流電源 6 真空容器 7 ハース(アノード) 8 磁気回路 12 基板 13 放電プラズマ流 15 蒸発材料 2 cathode 5 DC power supply 6 vacuum container 7 hearth (anode) 8 magnetic circuit 12 substrate 13 discharge plasma flow 15 evaporation material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新野 史 茨城県つくば市天久保2−11−1 コーポ りぶる203号 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Fumi Shinno 2-1-1, Amakubo, Tsukuba City, Ibaraki Prefecture Corp. Rubiru No. 203

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アーク放電を用いたイオンプレーティン
グ成膜法により、薄膜を付着させる基板の温度を200
℃以下にして該基板に成膜させることを特徴とする薄膜
作製方法。
1. The temperature of a substrate on which a thin film is deposited is set to 200 by an ion plating film forming method using arc discharge.
A method for producing a thin film, which comprises forming the film on the substrate at a temperature of not higher than ° C.
JP13313794A 1994-06-15 1994-06-15 Production of thin film Pending JPH083735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13313794A JPH083735A (en) 1994-06-15 1994-06-15 Production of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13313794A JPH083735A (en) 1994-06-15 1994-06-15 Production of thin film

Publications (1)

Publication Number Publication Date
JPH083735A true JPH083735A (en) 1996-01-09

Family

ID=15097635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13313794A Pending JPH083735A (en) 1994-06-15 1994-06-15 Production of thin film

Country Status (1)

Country Link
JP (1) JPH083735A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100356565B1 (en) * 1997-01-14 2002-12-18 스미도모쥬기가이고교 가부시키가이샤 Thin film growth method and apparatus for forming magnesium oxide thin film at increased thin film growth rate
DE19950852B4 (en) * 1998-10-22 2005-03-24 Stanley Electric Co. Ltd. Method and apparatus for producing a thin layer of low resistance
USRE41747E1 (en) 2001-01-25 2010-09-21 Kyocera Optec Co., Ltd. Metal film and metal film-coated member, metal oxide film and metal oxide film-coated member, thin film forming apparatus and thin film forming method for producing metal film and metal oxide film
CN115491642A (en) * 2022-09-23 2022-12-20 研博智创任丘科技有限公司 Electric arc evaporation coating device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02240250A (en) * 1989-03-14 1990-09-25 Asahi Glass Co Ltd Conductive color filter substrate and coating method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02240250A (en) * 1989-03-14 1990-09-25 Asahi Glass Co Ltd Conductive color filter substrate and coating method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100356565B1 (en) * 1997-01-14 2002-12-18 스미도모쥬기가이고교 가부시키가이샤 Thin film growth method and apparatus for forming magnesium oxide thin film at increased thin film growth rate
DE19950852B4 (en) * 1998-10-22 2005-03-24 Stanley Electric Co. Ltd. Method and apparatus for producing a thin layer of low resistance
USRE41747E1 (en) 2001-01-25 2010-09-21 Kyocera Optec Co., Ltd. Metal film and metal film-coated member, metal oxide film and metal oxide film-coated member, thin film forming apparatus and thin film forming method for producing metal film and metal oxide film
CN115491642A (en) * 2022-09-23 2022-12-20 研博智创任丘科技有限公司 Electric arc evaporation coating device

Similar Documents

Publication Publication Date Title
US7678241B2 (en) Film forming apparatus, substrate for forming oxide thin film and production method thereof
US8821697B2 (en) Silver selenide sputtered films and method and apparatus for controlling defect formation in silver selenide sputtered films
KR20050092712A (en) Transparent conductive film and film forming method therefor
JP2003520296A (en) Electron beam evaporation method of transparent indium tin oxide
JP4240471B2 (en) Method for forming transparent conductive film
US3492215A (en) Sputtering of material simultaneously evaporated onto the target
JPH083735A (en) Production of thin film
JP2946402B2 (en) Plasma processing method and plasma processing apparatus
JPH03240944A (en) Method and device for focusing target sputtering for forming thin aluminum film
JPH10330937A (en) Formation of substantially flat coating
EP1184484B1 (en) METHOD FOR FABRICATING MgO POLYCRYSTALLINE THIN FILM
JP2002047559A (en) Ito film, and film deposition method thereof
JP3546019B2 (en) Film forming method and apparatus
JP2001140066A (en) Thin film deposition method and deposition system
Felmetsger et al. Dual cathode DC–RF and MF–RF coupled S-Guns for reactive sputtering
JP4351777B2 (en) Deposition assist deposition apparatus and thin film forming method
JPH0827566A (en) Production of observation window of vacuum device
JPH0273963A (en) Formation of thin film on low-temperature substrate
JPH09194232A (en) Substrate formed with ito film and formation of ito film
JPS63458A (en) Vacuum arc vapor deposition device
JPH11172416A (en) Vacuum vapor deposition and formation of ito film using the same
JPH02240250A (en) Conductive color filter substrate and coating method
JP2657206B2 (en) Method for forming transparent conductive film
JPH093628A (en) Transparent conductive film and its production
JP2687845B2 (en) Method for producing composite material thin film using pulsed laser deposition method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980106