JPH083643A - Production of composite magnetic member - Google Patents

Production of composite magnetic member

Info

Publication number
JPH083643A
JPH083643A JP13855894A JP13855894A JPH083643A JP H083643 A JPH083643 A JP H083643A JP 13855894 A JP13855894 A JP 13855894A JP 13855894 A JP13855894 A JP 13855894A JP H083643 A JPH083643 A JP H083643A
Authority
JP
Japan
Prior art keywords
less
magnetic member
composite magnetic
ferromagnetic
member according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13855894A
Other languages
Japanese (ja)
Other versions
JP3179967B2 (en
Inventor
Shinya Sugiura
慎也 杉浦
Toshiaki Terada
利昭 寺田
Keizo Takeuchi
桂三 竹内
Yoshitada Katayama
義唯 片山
Yoshihiro Tanimura
圭宏 谷村
Satoshi Sugiyama
聡 杉山
Kazu Sasaki
計 佐々木
Tsutomu Inui
勉 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, NipponDenso Co Ltd filed Critical Hitachi Metals Ltd
Priority to JP13855894A priority Critical patent/JP3179967B2/en
Publication of JPH083643A publication Critical patent/JPH083643A/en
Application granted granted Critical
Publication of JP3179967B2 publication Critical patent/JP3179967B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To develop a composite magnetic member in which a ferromagnetic part and a nonmagnetic part are continuously formed by working an austenitic stainless steel having a specified compsn. under specified conditions, imparting ferromagnetic properties thereto and thereafter imparting nonmagnetic properties thereto by local solution treatment under heating. CONSTITUTION:An austenitic nonmagnetic stainless steel having a compsn. contg., by weight, <0.6% C, 12 to 19% Cr, 6 to 12% Ni, <2% Mn, <2%. Mo and <1% Nb and in which the Hirayama's equivalent shown by [Ni]+1.05 [Mn%]+0.65 [Cr%]+0.35 [Si%]+12.6 [C%] is regulated to 20 to 30, the Ni equivalent expressed by [Ni%]+30[C%]+0.5[Mn%] is regulated to 9 to 12 and the Cr equivalent expressed by [Cr%]+[Mo%]+1.5[Si%]+0.5[Nb%] is regulated to 16 to 19 is cooled by dry ice or the like, and ferromagnetic properties are applied thereto by drawing and ironing at <=400 deg.C. Next, it is locally heated and is subjected to solution treatment to return it into a nonmagnetic one, by which the composite magnetic member in which the ferromagnetic part and nonmagnetic part are continuously present can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非磁性および強磁性部
分が連続して形成された複合磁性部材の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a composite magnetic member in which nonmagnetic and ferromagnetic parts are continuously formed.

【0002】[0002]

【従来の技術】従来、一般のオーステナイト系のステン
レス鋼や高マンガン鋼等は、溶体化処理状態では非磁性
状態にあるが、室温において冷間加工を加えることによ
って加工誘起マルテンサイトが発生し、強磁性的性質を
持つようになることが知られている。しかしながら、こ
の様な現象によって得られる磁性化の程度は小さいもの
であり、実際に磁気回路部品に対して適用することは困
難である。
2. Description of the Related Art Conventionally, general austenitic stainless steels and high manganese steels are in a non-magnetic state in a solution heat treated state, but when a cold working is performed at room temperature, a work induced martensite is generated, It is known to have ferromagnetic properties. However, the degree of magnetization obtained by such a phenomenon is small, and it is difficult to actually apply it to magnetic circuit parts.

【0003】そのため、オーステナイト系ステンレス鋼
や高マンガン鋼の組成および加工法を適性化することに
より強磁性と非磁性をあわせ持つ部材を作り、磁気目盛
として利用できる材料が特開昭63−161146号公
報に示されている。これは準安定オーステナイト鋼を冷
間伸線してオーステナイトのマルテンサイト化により強
磁性化する。その後、局部を加熱溶体化し、もとのオー
ステナイトにもどすことにより非磁性化させ、その結果
強磁性、非磁性をあわせ持つ部材としたものである。
Therefore, by optimizing the composition and processing method of austenitic stainless steel and high manganese steel, a member having both ferromagnetism and nonmagnetism can be produced, and a material that can be used as a magnetic scale is disclosed in JP-A-63-161146. It is shown in the official gazette. This is because the metastable austenitic steel is cold-drawn and the austenite becomes martensite to become ferromagnetic. After that, the local portion is heated to a solution and returned to the original austenite to be non-magnetized, and as a result, a member having both ferromagnetism and non-magnetism is obtained.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、特開昭
63−161146号公報に開示した複合磁性部材にお
いては、通常の環境下においては、十分な強磁性部分を
非磁性部分と一体に形成することを可能にすることがで
きたが、いまだ温度に対する非磁性部分の対策は行われ
ておらず、極低温のような劣悪な温度環境の場合には、
非磁性部にはマルテンサイトが発生し、強磁性的性質を
帯びてしまうという問題が生じていた。
However, in the composite magnetic member disclosed in Japanese Unexamined Patent Publication No. 63-161146, it is necessary to form a sufficient ferromagnetic portion integrally with the non-magnetic portion under a normal environment. However, no measures have been taken for the non-magnetic part against temperature, and in the case of a bad temperature environment such as extremely low temperature,
There has been a problem that martensite is generated in the non-magnetic part and the ferromagnetic property is imparted.

【0005】そこで、本願発明は上記問題点を鑑みて得
られたものであり、極低温の如く劣悪な環境であって
も、十分な強磁性部分および非磁性部分が一体に形成さ
れた複合磁性部材の製法を提供するものである。
Therefore, the present invention has been made in view of the above-mentioned problems, and even in an adverse environment such as an extremely low temperature, a composite magnetic layer in which a sufficient ferromagnetic portion and a non-magnetic portion are integrally formed is formed. A method for manufacturing a member is provided.

【0006】[0006]

【課題を解決するための手段】そこで、我々発明者ら
は、まず通常環境下において、十分な強磁性または非磁
性特性を一体に有する複合磁性部材とはどのような物理
的特性が妥当であるかを検討し直した。その結果、複合
磁性部材を比透磁率μが1.2以下の非磁性とし、同時
に残部を、非磁性部と強磁性部の遷移領域および非磁
性、強磁性の特性を特に必要としない部分を除き磁束密
度B4000(磁界の強さが4000A/m を与えた場合の磁束密
度)が0.3T(0.3テスラ)以上の強磁性とする必
要があることを見出した。
Therefore, the inventors of the present invention first of all, in a normal environment, what physical properties are appropriate for a composite magnetic member integrally having sufficient ferromagnetic or non-magnetic properties. I reconsidered that. As a result, the composite magnetic member is made nonmagnetic with a relative magnetic permeability μ of 1.2 or less, and at the same time, the remaining portion is a transition region between the nonmagnetic portion and the ferromagnetic portion and a portion not particularly required for the nonmagnetic and ferromagnetic characteristics. It was found that the magnetic flux density B 4000 (the magnetic flux density when the magnetic field strength is 4000 A / m) should be 0.3 T (0.3 Tesla) or more to be ferromagnetic.

【0007】そこで、まず上記特性を得るためには、室
温において安定したオーステナイトを発生させ、冷間加
工によってマルテンサイトを発生させて強磁性化する組
成とするとともに、かつ十分な磁気特性が得られるよう
にする組成を下記の如く鋭意研究により選択した。この
様な目的に適合する金属材料の組成は、重量でCが0.
6%以下、Crが12〜19%、Niが6〜12%、M
nが2%以下、Moが2%以下、Nbが1%以下、さら
に残部がFeおよび不純物によって構成され、平山の当
量Heq=〔Ni%〕+1.05〔Mn%〕+0.65
〔Cr%〕+0.35〔Si%〕+12.6〔C%〕が
20〜23%で、かつ ニッケル当量Nieq=〔Ni%〕+30〔C%〕+
0.5〔Mn%〕が9〜12%であり、かつ クロム当量Creq=〔Cr%〕+〔Mn%〕+1.5
〔Sl%〕+0.5〔Nb%〕が16〜19%であるこ
とが望ましい。
Therefore, in order to obtain the above-mentioned characteristics, first, stable austenite is generated at room temperature, and martensite is generated by cold working to make it ferromagnetic, and sufficient magnetic characteristics can be obtained. The composition to be made was selected by diligent research as described below. The composition of the metal material which is suitable for such purpose is such that C by weight is 0.
6% or less, Cr 12 to 19%, Ni 6 to 12%, M
n is 2% or less, Mo is 2% or less, Nb is 1% or less, and the balance is composed of Fe and impurities. Hirayama equivalent Heq = [Ni%] + 1.05 [Mn%] + 0.65
[Cr%] + 0.35 [Si%] + 12.6 [C%] is 20 to 23%, and nickel equivalent Nieq = [Ni%] + 30 [C%] +
0.5 [Mn%] is 9 to 12%, and chromium equivalent Creq = [Cr%] + [Mn%] + 1.5
[Sl%] + 0.5 [Nb%] is preferably 16 to 19%.

【0008】この様な金属材料の組成において、Cを
0.6%以下としたのは0.6%を越えても磁気的な特
性では満足できるが、炭化物量が増加して加工成形性が
低下するからである。またCrの量を12〜19%と
し、かつNiの量を6〜12%としたのは、これらの物
質の下限値を下回ると比透磁率がμ=1.2以下の非磁
性を示すことがなく、B4000が0.3T(0.3テス
ラ)以上を示さなくなるからである。またMnは2%を
越えると成形性能を低下させるようになり、従ってその
含有量の上限を2%とした。
In such a composition of the metal material, the reason why C is set to 0.6% or less is that the magnetic characteristics are satisfactory even if C exceeds 0.6%, but the workability increases due to the increase in the amount of carbide. Because it will decrease. Further, the amount of Cr is set to 12 to 19% and the amount of Ni is set to 6 to 12% because the relative magnetic permeability is μ = 1.2 or less when it is below the lower limit of these substances. This is because B 4000 does not show 0.3 T (0.3 Tesla) or more. Further, when Mn exceeds 2%, the molding performance is deteriorated, so the upper limit of the content is made 2%.

【0009】さらに、MoとNbは必ずしも添加する必
要はないが、MoはMs点を低める効果があり、またN
bは材料強度を高める作用があり、目的に応じて単独ま
たは、複合で添加することができる。ここでMoが2%
を超えると、またNbが1%を超えると、加工成形が低
下するため、好ましくは、MoおよびNbの添加量の上
限をそれぞれ2%および1%とした。
Further, although Mo and Nb are not necessarily added, Mo has the effect of lowering the Ms point, and N
b has the effect of increasing the material strength, and can be added alone or in combination depending on the purpose. Where Mo is 2%
If Nb exceeds 1%, and if Nb exceeds 1%, the workability decreases, so the upper limits of the amounts of addition of Mo and Nb are preferably set to 2% and 1%, respectively.

【0010】この様に各元素の組成範囲を限定するのみ
ではまだ十分ではなく、これらの組成範囲内での組み合
わせによって目的とする磁気特性が得られる。このため
に、本発明では、平山の当量Heq=20〜23%、ニ
ッケルの当量Nieq=9〜12%、さらにクロムの当
量Creq=16〜19%とする。これらの条件が満足
させられない場合は、目的とする強磁性特性および非磁
性特性のいずれか一方のみしか満足することができな
い。
It is still not sufficient to limit the composition range of each element in this way, and the desired magnetic characteristics can be obtained by the combination within these composition ranges. Therefore, in the present invention, the Hirayama equivalent Heq = 20 to 23%, the nickel equivalent Nieq = 9 to 12%, and the chromium equivalent Creq = 16 to 19%. If these conditions are not satisfied, only the desired ferromagnetic property or non-magnetic property can be satisfied.

【0011】以下、これらの範囲に特定する根拠を説明
する。図1に平山の当量と溶体化処理後の非透磁率の関
係を示す。図1よりあきらかなように、平山の当量が大
きくなるに従い非透磁率は低下するとともに、平山の当
量Heq=20%より大きい場合、非透磁率μ=1.2
以下を満たすことができることから、平山の当量の下限
値を20%とした。
The grounds for specifying these ranges will be described below. FIG. 1 shows the relationship between the equivalent of Hirayama and the non-permeability after solution treatment. As is clear from FIG. 1, the non-permeability decreases as the Hirayama equivalent increases, and when the Hirayama equivalent Heq = 20% or more, the non-permeability μ = 1.2.
Since the following can be satisfied, the lower limit of the Hirayama equivalent was set to 20%.

【0012】図2に冷間圧延した場合の圧延率と冷間加
工後の磁束密度の関係を示す。図2よりあきらかなよう
に、平山の当量が大きくなるとオーステナイトが安定化
し、その結果冷間加工による強磁性化が生じにくくな
り、磁束密度が低下することが分かった。この冷間加工
である冷間圧延ではHeq=23%を越えると圧延率を
大きくしてもB4000=0.3Tを達成することが困難と
なる。そこで本発明においては、平山の当量の上限値を
23%とした。
FIG. 2 shows the relationship between the rolling ratio in the case of cold rolling and the magnetic flux density after cold working. As is clear from FIG. 2, it was found that when the equivalent weight of Hirayama was increased, austenite was stabilized, and as a result, ferromagnetization due to cold working was less likely to occur and the magnetic flux density was decreased. In the cold rolling which is the cold working, if Heq = 23% is exceeded, it becomes difficult to achieve B 4000 = 0.3T even if the rolling ratio is increased. Therefore, in the present invention, the upper limit of the Hirayama equivalent is set to 23%.

【0013】さらに、ニッケルの当量およびクロムの当
量を上述と同様の理由において、それぞれ9〜12%お
よび16〜19%の範囲とした。ここで、脱酸元素とし
て通常Siを2%以下およびAlを0.5%以下や、他
の不純物元素が含有されているものであるが、これらは
複合磁性材料の特徴を損なうものではない。
Further, the nickel equivalent and the chromium equivalent are set in the ranges of 9 to 12% and 16 to 19%, respectively, for the same reason as above. Here, the deoxidizing element usually contains Si of 2% or less, Al of 0.5% or less, and other impurity elements, but these do not impair the characteristics of the composite magnetic material.

【0014】さらに、我々は、低温下にて比透磁率が上
昇する原因が、オーステナイトからマルテンサイトへの
変化が起こり始める温度であるMs点温度よりも、極低
温度の温度が低くなることによって生じることに着目
し、例えば、上記組成の複合磁性部材の有するMs点温
度を−40℃以下にできれば、−40℃までの比透磁率
の上昇を抑制できるのではないかと判断した。
Furthermore, we have found that the cause of the increase in relative permeability at low temperatures is that the temperature at the extremely low temperature becomes lower than the Ms point temperature, which is the temperature at which the change from austenite to martensite begins to occur. Focusing on the occurrence, it was determined that, for example, if the Ms point temperature of the composite magnetic member having the above composition could be set to -40 ° C or lower, an increase in relative permeability up to -40 ° C could be suppressed.

【0015】そのため本願発明では、低温環境下におい
て、複合磁性部材の非磁性特性が強磁性特性に変化する
ことを抑制するために、Ms点温度を従来よりさらに低
下させるべく、その手段として、オーステナイト結晶粒
の粒径を変化させる。即ち、オーステナイト結晶粒の結
晶粒が小さいほど、オーステナイトからマルテンサイト
への変態が生ずるMs点温度が低下することを、はじめ
て複合磁性部材に適用したのである。
Therefore, in the present invention, in order to suppress the change of the non-magnetic property of the composite magnetic member to the ferromagnetic property in a low temperature environment, the austenite is used as a means for further lowering the Ms temperature. Change the grain size of the crystal grains. That is, it was applied to the composite magnetic member for the first time that the smaller the austenite crystal grains, the lower the Ms point temperature at which transformation from austenite to martensite occurs.

【0016】図3にその概念図を示した。図3より明ら
かなように、オーステナイト結晶粒の結晶粒径とMs点
温度とは密接な関係があり、結晶粒径を所定の値におい
て、Ms点温度が急激に低下するのである。図4に複合
磁性部材を−40℃の低温下に保持したときの非透磁率
の変化を示した。
FIG. 3 shows a conceptual diagram thereof. As is clear from FIG. 3, there is a close relationship between the crystal grain size of the austenite crystal grains and the Ms point temperature, and the Ms point temperature sharply decreases when the crystal grain size is a predetermined value. FIG. 4 shows the change in non-permeability when the composite magnetic member was kept at a low temperature of −40 ° C.

【0017】図4により結晶粒径が30μm以下となる
ように加熱条件を選択することにより、−40℃に保持
しても比透磁率がμ=1.2を越えないことを見出すこ
とができた。しかしながら、このような上記の複合部材
における部材の所望の条件を見いだすことはできたが、
いまだこの複合磁性部材を得るための製造方法に関して
は十分に満足する製造方法を得ることができない。
It can be found from FIG. 4 that by selecting the heating conditions so that the crystal grain size is 30 μm or less, the relative magnetic permeability does not exceed μ = 1.2 even when kept at −40 ° C. It was However, although it has been possible to find desired conditions for the member in the above composite member,
As for the manufacturing method for obtaining this composite magnetic member, a sufficiently satisfactory manufacturing method cannot be obtained yet.

【0018】例えば、図5に示すようなカップ形状体1
0の製造を従来のプレスの絞り加工を連続的に行なった
が、このような加工工程を施したのみでは、本願発明に
おける磁束密度B4000を0.3T以上とすることを確実
に得ることができない。我々は、この原因を究明した結
果次の原因であることを見いだした。その説明を図6を
用いて説明する。
For example, a cup-shaped body 1 as shown in FIG.
No. 0 was manufactured by continuously performing the drawing process of the conventional press, but it is possible to surely obtain the magnetic flux density B 4000 of 0.3T or more in the present invention only by performing such a processing step. Can not. As a result of investigating this cause, we found that it was the next cause. The description will be given with reference to FIG.

【0019】即ち、加工時に一度に歪みを付与すると、
材料温度が図6のA線に示すように、非磁性を示すオー
ステナイトから強磁性を示すマルテンサイトに変態する
限界温度であるMd点に達してしまう。そのため、Md
点に達したX点の後は、マルテンサイト発生に寄与しな
い歪みを付与する加工分αとなり、強磁性化の可能性が
あるにも関わらず有効歪分の寄与しかないことを見いだ
した。
That is, when strain is applied at one time during processing,
As shown by the line A in FIG. 6, the material temperature reaches the Md point which is the critical temperature at which austenite showing non-magnetism is transformed into martensite showing ferromagnetism. Therefore, Md
After the point X which reached the point, it was found that there is only a contribution of the effective strain though there is a processing amount α that gives a strain that does not contribute to the generation of martensite and there is a possibility of becoming ferromagnetic.

【0020】そこで、我々は、加工工程における加工発
熱をできるだけ低減させるために、歪付与をできるだけ
分割し、各工程での加工発熱を最小限に押さえれば、上
記問題が解決できるのではないかと判断した。また、さ
らには加工時に発生する熱を予め除去するべく室温以下
に材料を冷却した後に、歪みを付与する加工を施すこと
により、さらなる強磁性化を図ることができるのではな
いかと判断した。
Therefore, in order to reduce the processing heat generation in the processing process as much as possible, we have decided that the above problem can be solved by dividing the strain application as much as possible and minimizing the processing heat generation in each process. did. Furthermore, it was determined that further ferromagnetization could be achieved by cooling the material to room temperature or below to remove heat generated during processing in advance and then performing processing for imparting strain.

【0021】その詳細な説明を図6を用いて説明する。
即ち、準安定オーステナイト鋼の部品製造時における絞
りおよびしごきなどの加工工程をできるだけ多段階にす
ることで、図6のB線に示すように一度の歪付与を最適
化し、塑性加工による発熱を抑制させる加工を行った。
尚、図2においては、従来1回の加工工程を3回に分割
していることを示す。
A detailed description will be given with reference to FIG.
That is, by making processing steps such as drawing and ironing at the time of manufacturing the parts of the metastable austenitic steel as many stages as possible, optimization of one-time strain application as shown by the line B in FIG. 6 and suppression of heat generation due to plastic working are suppressed. It was processed to make it.
In addition, in FIG. 2, it is shown that the conventional one processing step is divided into three times.

【0022】このように多段階の加工工程に分割させる
ことにより、材料温度をMd点以下に維持したままで、
最終加工度に到達させることができるので、材料に対し
て十分な強磁性を付与することができる。さらに、各工
程の加工温度をあらかじめ冷却した後に、歪み加工を施
す加工工程を行ってもよい。
By dividing the processing steps into multi-steps in this way, the material temperature is kept below the Md point,
Since the final degree of processing can be reached, sufficient ferromagnetism can be imparted to the material. Furthermore, a processing step of performing strain processing may be performed after cooling the processing temperature of each step in advance.

【0023】あらかじめ冷却させることによって、図6
のC線に示すように、Md点への到達を遅らせ、部品の
強磁性化レベルがB4000で0.3T以上とすることを容
易に可能とすることができる。これは、さらなる強磁性
化レベルの向上を狙い、加工工程で発生する熱の除去を
狙った素材の極低温(−196〜℃)での冷却を加え
る。この低温処理により、強磁性化に多工程を要せず、
より少ない加工工程であっても磁束密度B4000で目標レ
ベル0.3T以上を満足させることができるのである。
By pre-cooling, FIG.
As can be seen from the C line, the arrival at the Md point can be delayed, and the ferromagnetic level of the component can be easily set to 0.3 T or more at B 4000 . This involves cooling the material at an extremely low temperature (-196 to ° C) aiming at removing the heat generated in the processing step in order to further improve the ferromagnetization level. This low temperature treatment does not require multiple steps for ferromagnetization,
Even with a smaller number of processing steps, it is possible to satisfy the target level of 0.3 T or higher with the magnetic flux density B 4000 .

【0024】また、この各工程の材料温度は、100℃
以内とすることがよい。その理由を図7を用いて説明す
る。それは、引張試験にて歪付与速度と加工温度の上昇
の関係を検討し、塑性加工による発熱をほとんど無視で
きる歪速度(1mm/min)にて恒温槽内で準安定オ
ーステナイト鋼の引張試験を行った。その結果、図7に
示すように100℃を境にマルテンサイト発生が生じな
くなることがわかった。そのため、100℃以上におい
ては、発生するマルテンサイト量が10%以下となって
しまう。
The material temperature in each step is 100 ° C.
It should be within the range. The reason will be described with reference to FIG. The tensile test of the metastable austenitic steel is conducted in a constant temperature bath at a strain rate (1 mm / min) where the heat generation due to plastic working can be almost ignored by examining the relationship between the strain application rate and the rise in processing temperature in a tensile test. It was As a result, as shown in FIG. 7, it was found that martensite does not occur at 100 ° C. as a boundary. Therefore, at 100 ° C. or higher, the amount of martensite generated becomes 10% or less.

【0025】これで、磁気特性は満足させることができ
た。我々はさらに鋭意研究を行い、絞り工程後に10%
以上のしごき加工を加えることが応力腐食割れを防止す
ることができることを見いだした。これを図8を用いて
説明する。応力腐食割れの主要因は絞り加工で生じた円
周方向(図9参照)の引張の残留応力といわれている
が、このしごき加工を加えることで、この引張の残留応
力を大幅に低減させることができる。
With this, the magnetic characteristics could be satisfied. We conducted further research, 10% after the drawing process
It was found that stress corrosion cracking can be prevented by applying the above ironing process. This will be described with reference to FIG. It is said that the main cause of stress corrosion cracking is the tensile residual stress in the circumferential direction (see Fig. 9) that occurs during drawing, but by adding this ironing process, it is possible to significantly reduce this tensile residual stress. You can

【0026】即ち、図8に示されるように、10%のし
ごきで割れの生じない領域に達し、20%以上のしごき
加工では逆に完全に圧縮の残留応力に変えることができ
るのである。このサンプルを42%の塩化マグネシウム
試験で評価した結果、表1に示すように10%以上のし
ごき加工を加えたものでは割れが発生しなかったことに
おいても検証できる。
That is, as shown in FIG. 8, a region where cracking does not occur is reached with ironing of 10%, and it is possible to completely convert the residual stress into compression by ironing with 20% or more. As a result of evaluating this sample by a 42% magnesium chloride test, it can be verified that no crack was generated in the sample to which ironing processing of 10% or more was added as shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】このしごき加工は当然ながら強磁性化の歪
付与にも非常に有効な手段で、強磁性化の一工程である
ことは言うまでもない。以上のように、第1の発明で
は、重量でCが0.6%以下、Crが12〜19%、N
iが6〜12%、Mnが2%以下、Moが2%以下、N
bが1%以下、さらに残部がFeおよび不可避不純物に
よって構成され、平山の等量Heq=〔Ni%〕+1.
05〔Mn%〕+0.65〔Cr%〕+0.35〔Si
%〕+12.6〔C%〕が20〜23%で、かつ ニッケル等量Nieq=〔Ni%〕+30〔C%〕+
0.5〔Mn%〕が9〜12%であって、かつ クロム等量 Creq=〔Cr%〕+〔Mo%〕+1.
5〔Si%〕+0.5〔Nb%〕が16〜19%である
組成の材料の歪み付加を行う加工工程を多段階にすると
ともに、各加工工程の加工温度を100℃以内に制御す
ることにより、磁束密度B4000が0.3T以上の強磁性
部を付し、前記強磁性化部の一部を10秒以内で加熱溶
体化させ、結晶粒径を30μm 以下とする複合磁性部材
の製造方法を提供する。
Needless to say, this ironing process is, of course, a very effective means for imparting strain for ferromagnetization, and is one step of ferromagnetization. As described above, in the first invention, C by weight is 0.6% or less, Cr is 12 to 19%, and N is N.
i is 6 to 12%, Mn is 2% or less, Mo is 2% or less, N
b is 1% or less, and the balance is composed of Fe and unavoidable impurities.
05 [Mn%] + 0.65 [Cr%] + 0.35 [Si
%] + 12.6 [C%] is 20 to 23%, and nickel equivalent Nieq = [Ni%] + 30 [C%] +
0.5 [Mn%] is 9 to 12%, and chromium equivalent Creq = [Cr%] + [Mo%] + 1.
5 [Si%] + 0.5 [Nb%] is 16 to 19%. A processing step for adding strain to a material having a composition of 16 to 19% is performed in multiple stages, and the processing temperature of each processing step is controlled within 100 ° C. To produce a composite magnetic member having a ferromagnetic part having a magnetic flux density B 4000 of 0.3 T or more, part of the ferromagnetized part being heated to solution within 10 seconds, and having a crystal grain size of 30 μm or less. Provide a way.

【0029】第2の発明では、重量でCが0.6%以
下、Crが12〜19%、Niが6〜12%、Mnが2
%以下、Moが2%以下、Nbが1%以下、さらに残部
がFeおよび不可避不純物によって構成され、平山の等
量Heq=〔Ni%〕+1.05〔Mn%〕+0.65
〔Cr%〕+0.35〔Si%〕+12.6〔C%〕が
20〜23%で、かつ ニッケル等量Nieq=〔Ni%〕+30〔C%〕+
0.5〔Mn%〕が9〜12%であって、かつ クロム等量 Creq=〔Cr%〕+〔Mo%〕+1.
5〔Si%〕+0.5〔Nb%〕が16〜19%である
組成の材料の温度を室温以下に冷却した後、歪み付加を
行う加工工程を行うことによって、材料温度を100℃
以下に制御することにより、磁束密度B 4000が0.3T
以上の強磁性部を付し、さらに前記強磁性化部の一部を
10秒以内で加熱溶体化させ、結晶粒径を30μm 以下
とする複合磁性部材の製造方法を提供する。
In the second invention, C is 0.6% or less by weight.
Below, Cr is 12 to 19%, Ni is 6 to 12%, and Mn is 2
% Or less, Mo 2% or less, Nb 1% or less, and the balance
Is composed of Fe and unavoidable impurities, Hirayama et al.
Amount Heq = [Ni%] + 1.05 [Mn%] + 0.65
[Cr%] + 0.35 [Si%] + 12.6 [C%]
20 to 23% and nickel equivalent Nieq = [Ni%] + 30 [C%] +
0.5 [Mn%] is 9 to 12%, and chromium equivalent Creq = [Cr%] + [Mo%] + 1.
5 [Si%] + 0.5 [Nb%] is 16 to 19%
After cooling the temperature of the composition material to room temperature or lower, add strain
By performing the processing steps to be performed, the material temperature is 100 ° C.
By controlling below, the magnetic flux density B 4000Is 0.3T
The above ferromagnetic part is attached, and a part of the above-mentioned ferromagnetic part is added.
Heat solution within 10 seconds, crystal grain size is 30μm or less
And a method for manufacturing a composite magnetic member.

【0030】第3の発明としては、重量でCが0.6%
以下、Crが12〜19%、Niが6〜12%、Mnが
2%以下、Moが2%以下、Nbが1%以下、さらに残
部がFeおよび不可避不純物によって構成され、平山の
等量Heq=〔Ni%〕+1.05〔Mn%〕+0.6
5〔Cr%〕+0.35〔Si%〕+12.6〔C%〕
が20〜23%で、かつ ニッケル等量Nieq=〔Ni%〕+30〔C%〕+
0.5〔Mn%〕が9〜12%であって、かつ クロム等量 Creq=〔Cr%〕+〔Mo%〕+1.
5〔Si%〕+0.5〔Nb%〕が16〜19%である
組成の材料の歪み付加を行う加工工程を多段階にすると
ともに、各加工工程の材料温度を100℃以内に制御す
るとともに、前記加工工程の後、10%以上のしごき加
工を加えることにより、磁束密度B4000が0.3T以上
に強磁性部を付し、さらに、前記強磁性化部の一部を1
0秒以内で加熱溶体化させ、結晶粒径を30μm 以下と
する複合磁性部材の製造方法を提供する。
In a third invention, C is 0.6% by weight.
Below, Cr is 12 to 19%, Ni is 6 to 12%, Mn is 2% or less, Mo is 2% or less, Nb is 1% or less, and the balance is composed of Fe and inevitable impurities. = [Ni%] + 1.05 [Mn%] + 0.6
5 [Cr%] + 0.35 [Si%] + 12.6 [C%]
Is 20 to 23% and the nickel equivalent Nieq = [Ni%] + 30 [C%] +
0.5 [Mn%] is 9 to 12%, and chromium equivalent Creq = [Cr%] + [Mo%] + 1.
5 [Si%] + 0.5 [Nb%] is 16 to 19%, and the processing step for adding strain to the material having a composition is multi-staged, and the material temperature of each processing step is controlled within 100 ° C. After the processing step, ironing is performed by 10% or more to add a ferromagnetic portion with a magnetic flux density B 4000 of 0.3T or more, and further, a part of the ferromagnetic portion is reduced to 1
Provided is a method for producing a composite magnetic member, which is heated to a solution within 0 seconds and has a crystal grain size of 30 μm or less.

【0031】[0031]

【作用および発明の効果】第1発明乃至第3発明を採用
することによって、図1乃至図8に示されるように、本
願発明の複合磁性部材の製造方法を採用することによっ
て、容易に強磁性部および非磁性部を一体に有する複合
磁性部材を容易に有することができる。
By adopting the first to third inventions, as shown in FIGS. 1 to 8, the method for manufacturing the composite magnetic member according to the present invention is easily adopted to obtain the ferromagnetic material. It is possible to easily have a composite magnetic member that integrally has a portion and a non-magnetic portion.

【0032】[0032]

【実施例】【Example】

【0033】[0033]

【実施例1〜8】 (第1乃至第8実施例)表2で実施例1〜8としてそれ
ぞれ示すような組成の合金を、真空誘導炉において溶解
した後、これを鋳造および圧延加工により厚さ1.2m
mの板1を作成し、加熱により950℃の焼鈍を加えて
軟化状態とした。
Examples 1 to 8 (First to Eighth Examples) Alloys having compositions as shown as Examples 1 to 8 in Table 2 were melted in a vacuum induction furnace, and then the alloys were cast and rolled to form thick films. 1.2m
A plate 1 of m was prepared and annealed at 950 ° C. by heating to make it a softened state.

【0034】このようにして作製された実施例1〜8の
合金は、それぞれ室温にて、図5(a)乃至(c)に示
す絞り加工を行うことによって、図5(d)に示すカッ
プ形状体を得た。この時、合金に対しては、この合金の
温度の上昇を防ぎ、良好な強磁性を得るために、7工程
にわたって段階的に絞り加工を行うことによって、材料
自体の温度を100℃以下に保った。このようにして、
カップ形状体10を成形する。
The alloys of Examples 1 to 8 thus produced were subjected to the drawing processes shown in FIGS. 5 (a) to 5 (c) at room temperature to obtain the cups shown in FIG. 5 (d). A shaped body was obtained. At this time, the temperature of the material itself is kept at 100 ° C. or lower by performing drawing processing stepwise over 7 steps in order to prevent the temperature rise of the alloy and obtain good ferromagnetism. It was In this way,
The cup-shaped body 10 is molded.

【0035】そして、さらに図5(d)乃至(f)に示
すしごき加工によって、肉厚をしごき率(しごき前の厚
さtーしごき後の厚さt’)/しごき前の厚さt×10
0)を10%以上とするように加工を加えて、全体を強
磁性化した所望の円筒体20とした。尚、オーステナイ
トのマルテンサイト化による強磁性化の程度は加工のみ
ならずその材料温度に大きな影響を受け、加工温度の上
昇をさらに抑制することにより、強磁性化することが可
能である。
Further, by the ironing process shown in FIGS. 5D to 5F, the wall thickness is determined by the ironing ratio (thickness before ironing-thickness after ironing t ') / thickness before ironing t ×. 10
0) is processed to 10% or more to obtain a desired cylindrical body 20 which is entirely ferromagnetic. The degree of ferromagnetization due to martensite transformation of austenite is greatly affected not only by processing but also by the material temperature thereof, and by further suppressing the rise in processing temperature, it is possible to achieve ferromagnetization.

【0036】また、表2に示す組成等の材料を絞り加工
のみでカップ形状に加工すると、残留応力によって、応
力腐食割れや置き割れの懸念が考えられる。しかしなが
ら、本実施例においては、さらにしごき加工を加えるこ
とにより、残留応力を低減させると共に、低減された残
留応力も複合磁性部材内の圧縮応力から引張応力に変化
させることができたため、残留応力等による応力腐食割
れ等を防止することができる。
When a material having the composition shown in Table 2 is processed into a cup shape only by drawing, there is a concern that stress corrosion cracking or misplacement cracking may occur due to residual stress. However, in the present embodiment, by further performing ironing, the residual stress was reduced, and the reduced residual stress could be changed from the compressive stress in the composite magnetic member to the tensile stress. It is possible to prevent stress corrosion cracking and the like.

【0037】なお、応力腐食割れ等を防ぐ有効な手段で
ある溶体化処理は冷間加工による強磁性部を非磁性とし
てしまう処理のため採用することはできない。次に、図
10に示す如く、強磁性化された円筒体20の中間部を
取り囲むように高周波コイル22を設定し、この円筒体
の胴部の一部分を局部的に加熱するとともに、温度約2
0℃の冷却液Wによる冷却によって、その一部を非磁性
化する。
The solution treatment, which is an effective means for preventing stress corrosion cracking, cannot be adopted because it is a treatment for making the ferromagnetic portion non-magnetic by cold working. Next, as shown in FIG. 10, a high-frequency coil 22 is set so as to surround the middle part of the ferromagnetic body 20, and a part of the body of this cylinder is locally heated, and a temperature of about 2
By cooling with the cooling liquid W at 0 ° C., a part thereof is made non-magnetic.

【0038】この時、高周波加熱の条件としては、周波
数100kHz、プレート電圧6kV、プレート電流
2.1Aおよび加熱時間0.8secとした。この高周
波加熱による方法では、高周波電流によって材料中に発
生するうず電流を加熱源とするため、コイル形状、周波
数、電流電圧等を適正に抑制することにより、局部的な
溶融を伴わずに短時間での溶体化が比較的簡単に実現可
能であるだけではなく、加熱時間が数秒と短いため結晶
粒の粗大化を防ぐことができるのである。
At this time, the high frequency heating conditions were a frequency of 100 kHz, a plate voltage of 6 kV, a plate current of 2.1 A and a heating time of 0.8 sec. In this method using high-frequency heating, the eddy current generated in the material by the high-frequency current is used as the heating source, so by appropriately suppressing the coil shape, frequency, current voltage, etc., a short time without local melting. Not only is it possible to realize solution treatment in a relatively simple manner, but it is also possible to prevent coarsening of crystal grains because the heating time is as short as several seconds.

【0039】すなわち、上記加工を施すことによって、
図10(b)に示す如く、円筒体20の3分割された領
域A〜Cの両側の領域AおよびCは強磁性特性を有する
ように設定され、その間のB部分が非磁性特性を有する
ように構成される。このように作製された実施例1〜8
の部材の強磁性部および非磁性部により、それぞれ磁気
特性測定用の試験片を採取し、この試験片それぞれの磁
気特性を直流磁気磁束計もしくは透磁率計によって測定
した。
That is, by performing the above processing,
As shown in FIG. 10B, the regions A and C on both sides of the three divided regions A to C of the cylindrical body 20 are set to have ferromagnetic properties, and the portion B between them is set to have nonmagnetic properties. Is composed of. Examples 1 to 8 thus produced
A test piece for measuring magnetic properties was taken by the ferromagnetic part and the non-magnetic part of the member, and the magnetic property of each test piece was measured by a DC magnetic flux meter or a permeability meter.

【0040】その結果が表3で示される。これによって
目標を満足することのできる磁気特性および低温におい
ても非磁性を保つことのできる条件である結晶粒径30
μm以下の部材を得られることが確認された。
The results are shown in Table 3. As a result, the crystal grain size is 30 which is the condition that the magnetic properties satisfy the target and the non-magnetism can be maintained even at a low temperature.
It was confirmed that a member having a thickness of μm or less was obtained.

【0041】[0041]

【表2】 [Table 2]

【0042】[0042]

【表3】 [Table 3]

【0043】また、上記実施例では、局部溶体化方法と
して、高周波加熱を用いたが、本願発明はこれに限られ
るものではなく、高周波加熱の如く、部材の非磁性化さ
せた箇所のみを特定して部材を溶融させることなく短時
間で加熱できる方法であればよい。 (実施例9〜10)実施例9および10においては、合
金に対して歪みを付加する前に冷却する実施例を説明す
る。
Further, in the above embodiment, high frequency heating was used as the local solution heat treatment method, but the present invention is not limited to this, and only the non-magnetized portion of the member is specified as in high frequency heating. Any method that can heat the member in a short time without melting the member may be used. (Examples 9 to 10) In Examples 9 and 10, an example in which the alloy is cooled before strain is applied will be described.

【0044】実施例9および10の合金は、実施例1の
組成の合金を用いる。この組成の合金を真空誘導炉にお
いて溶解した後、これを鋳造および圧延加工により厚さ
1.2mmの板1を作成し、加熱により950℃の焼鈍
を加えて軟化状態とした。このようにして作製された実
施例5および6の合金は、それぞれ室温にて、図5
(a)乃至(c)に示す絞り加工を行うことによって、
図5(d)に示すカップ形状体を得た。この時、合金に
対しては、絞り加工を行う前に、実施例5においては、
ドライアイスを加えることによって−77℃に冷却した
液体メタノール中に合金を浸漬させることによって、こ
の合金を−77℃に冷却した。また、実施例6において
は、絞り加工を行う前に、合金を液体窒素中に浸漬させ
ることによって、−196℃に冷却した。
As the alloys of Examples 9 and 10, the alloy having the composition of Example 1 is used. After melting the alloy having this composition in a vacuum induction furnace, the plate 1 having a thickness of 1.2 mm was formed by casting and rolling, and was annealed at 950 ° C. by heating to be in a softened state. The alloys of Examples 5 and 6 produced in this way were respectively obtained at room temperature as shown in FIG.
By performing the drawing process shown in (a) to (c),
A cup-shaped body shown in FIG. 5 (d) was obtained. At this time, in Example 5, before drawing the alloy,
The alloy was cooled to -77 ° C by immersing the alloy in liquid methanol cooled to -77 ° C by adding dry ice. Further, in Example 6, the alloy was immersed in liquid nitrogen to be cooled to −196 ° C. before being drawn.

【0045】そして、これら合金の温度の上昇を防ぎ、
良好な強磁性を得るために、3工程にわたって段階的に
絞り加工を行うことによって、合金自体の温度を100
℃以下に保った。このようにして、カップ形状体10を
成形する。そして、さらに図5(d)乃至(f)に示す
しごき加工によって、肉厚をしごき率(しごき前の厚さ
tーしごき後の厚さt’)/しごき前の厚さt×10
0)を30%以上とするように加工を加えて、全体を強
磁性化した所望の円筒体20とした。
And, to prevent the temperature rise of these alloys,
In order to obtain good ferromagnetism, the temperature of the alloy itself is set to 100 by performing drawing gradually in three steps.
The temperature was kept below ℃. In this way, the cup-shaped body 10 is molded. Then, by the ironing process shown in FIGS. 5D to 5F, the wall thickness is determined by the ironing rate (thickness before ironing-thickness after ironing t ') / thickness before ironing t × 10.
0) is processed to 30% or more to obtain a desired cylindrical body 20 which is made entirely ferromagnetic.

【0046】この結果を表4に示す。表4よりあきらか
なように、合金に対して絞り加工を付与する前に冷却さ
せることによってもまた、さらなる強磁性を有する部材
を得ることができた。また、歪みを付与する加工工程前
に冷却させることによって、よりすくない加工工程によ
ってもまた、十分な強磁性および非磁性を合わせ持つ複
合磁性部材を得ることができる。
The results are shown in Table 4. As is clear from Table 4, it was also possible to obtain a member having further ferromagnetism by cooling the alloy before drawing it. Further, by cooling before the processing step for imparting strain, it is possible to obtain a composite magnetic member having sufficient ferromagnetism and non-magnetism even by a processing step that is lesser.

【0047】[0047]

【表4】 [Table 4]

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、平山の当量と比透磁率との関係を示す
特性図である。
FIG. 1 is a characteristic diagram showing the relationship between the equivalent of Hirayama and the relative permeability.

【図2】図2は、圧延率と磁束密度との関係を示す特性
図である。
FIG. 2 is a characteristic diagram showing a relationship between rolling rate and magnetic flux density.

【図3】図3は、結晶粒径とマルテンサイトに変化する
温度との関係を示す関係図である。
FIG. 3 is a relationship diagram showing a relationship between a crystal grain size and a temperature at which martensite is changed.

【図4】図4は、結晶粒径と比透磁率との関係を示す関
係図である。
FIG. 4 is a relationship diagram showing a relationship between crystal grain size and relative permeability.

【図5】図5(a)乃至(f)は、本発明の複合磁性部
材の製造を説明する説明図である。
5 (a) to 5 (f) are explanatory views for explaining the production of the composite magnetic member of the present invention.

【図6】図6は、各加工方法における加工度と材料温度
との関係を示す特性図である。
FIG. 6 is a characteristic diagram showing a relationship between a working degree and a material temperature in each working method.

【図7】図7は、材料温度とマルテンサイト量との関係
を示す特性図である。
FIG. 7 is a characteristic diagram showing the relationship between the material temperature and the amount of martensite.

【図8】図8は、しごき率と応力変化との関係を示す特
性図である。
FIG. 8 is a characteristic diagram showing a relationship between an ironing rate and a stress change.

【図9】図9は、円周方向を説明する説明図である。FIG. 9 is an explanatory diagram illustrating a circumferential direction.

【図10】図10(a)及び(b)は、本発明の複合磁
性部材の製造を説明する説明図である。
10 (a) and 10 (b) are explanatory views for explaining the production of the composite magnetic member of the present invention.

フロントページの続き (72)発明者 竹内 桂三 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (72)発明者 片山 義唯 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (72)発明者 谷村 圭宏 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (72)発明者 杉山 聡 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (72)発明者 佐々木 計 東京都千代田区丸の内二丁目1番2号 日 立金属株式会社内 (72)発明者 乾 勉 島根県安来市安来町2107−2 日立金属株 式会社安来工場内Front Page Continuation (72) Inventor Keizo Takeuchi 1-1, Showa-cho, Kariya, Aichi Prefecture, Nihon Denso Co., Ltd. (72) Inventor Yoshii Katayama 1-1-1-1, Showa-cho, Kariya, Aichi Nihondenso Co., Ltd. (72) Inventor Keihiro Tanimura 1-1, Showa-cho, Kariya city, Aichi Prefecture Nihon Denso Co., Ltd. (72) Inventor Satoshi Sugiyama 1-1-1-1 Showa-cho, Kariya city, Aichi Nihon Denso Co., Ltd. (72) Inventor Total Sasaki Marunouchi 2-1-2 Marunouchi, Chiyoda-ku, Tokyo Inside Hiritsu Metal Co., Ltd. (72) Inventor Tsutomu Inui 2107-2 Yasugi-cho, Yasugi City, Shimane Prefecture Hitachi Metals Co., Ltd. Inside Yasugi Factory

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 重量でCが0.6%以下、Crが12
〜19%、Niが6〜12%、Mnが2%以下、Moが
2%以下、Nbが1%以下、さらに残部がFeおよび不
可避不純物によって構成され、 平山の等量Heq=〔Ni%〕+1.05〔Mn%〕+
0.65〔Cr%〕+0.35〔Si%〕+12.6
〔C%〕が20〜23%で、かつ ニッケル等量Nieq=〔Ni%〕+30〔C%〕+
0.5〔Mn%〕が9〜12%であって、かつ クロム等量 Creq=〔Cr%〕+〔Mo%〕+1.
5〔Si%〕+0.5〔Nb%〕が16〜19%である
組成の材料の歪み付加を行う加工工程を多段階にすると
ともに、各加工工程の材料温度を100℃以内に制御す
ることにより、磁束密度B4000(H=4000A/m にお
ける磁束密度)が0.3T以上の強磁性部を付し、前記
強磁性化部の一部を10秒以内で加熱溶体化させ、結晶
粒径を30μm 以下とすることを特徴とする複合磁性部
材の製造方法。
1. A C content of 0.6% or less and a Cr content of 12
-19%, Ni 6-12%, Mn 2% or less, Mo 2% or less, Nb 1% or less, and the balance Fe and unavoidable impurities. Hirayama equivalent Heq = [Ni%] +1.05 [Mn%] +
0.65 [Cr%] + 0.35 [Si%] + 12.6
[C%] is 20 to 23%, and nickel equivalent Nieq = [Ni%] + 30 [C%] +
0.5 [Mn%] is 9 to 12%, and chromium equivalent Creq = [Cr%] + [Mo%] + 1.
5 [Si%] + 0.5 [Nb%] is 16 to 19%. A multi-step processing step for adding strain to a material having a composition and controlling the material temperature of each processing step within 100 ° C. The magnetic flux density B 4000 (the magnetic flux density at H = 4000 A / m) is 0.3 T or more, and a part of the ferromagnetized portion is heated to a solution within 10 seconds to give a crystal grain size. Is 30 μm or less, a method for producing a composite magnetic member.
【請求項2】 前記非磁性部は、−40℃までの低温下
にて非透磁率をμ=1.2を越えない非磁性部であるこ
とを特徴とする請求項1記載の複合磁性部材の製造方
法。
2. The composite magnetic member according to claim 1, wherein the non-magnetic portion is a non-magnetic portion whose non-permeability does not exceed μ = 1.2 at a low temperature up to −40 ° C. Manufacturing method.
【請求項3】 前記加工工程は、絞りおよびしごきであ
ることを特徴とする請求項1記載の複合磁性部材の製造
方法。
3. The method for manufacturing a composite magnetic member according to claim 1, wherein the processing step is drawing and ironing.
【請求項4】 前記非磁性部は、前記強磁性部の一部を
溶融させることなく10秒以内で加熱溶体化されること
によって得られることを特徴とする請求項1記載の複合
磁性部材。
4. The composite magnetic member according to claim 1, wherein the non-magnetic portion is obtained by heating and solidifying the non-magnetic portion within 10 seconds without melting a part of the ferromagnetic portion.
【請求項5】 重量でCが0.6%以下、Crが12〜
19%、Niが6〜12%、Mnが2%以下、Moが2
%以下、Nbが1%以下、さらに残部がFeおよび不可
避不純物によって構成され、 平山の等量Heq=〔Ni%〕+1.05〔Mn%〕+
0.65〔Cr%〕+0.35〔Si%〕+12.6
〔C%〕が20〜23%で、かつ ニッケル等量Nieq=〔Ni%〕+30〔C%〕+
0.5〔Mn%〕が9〜12%であって、かつ クロム等量 Creq=〔Cr%〕+〔Mo%〕+1.
5〔Si%〕+0.5〔Nb%〕が16〜19%である
組成の材料の温度を室温以下に冷却した後、歪み付加を
行う加工工程を行うことによって、材料温度を100℃
以下に制御することにより、磁束密度B 4000が0.3T
以上の強磁性部を付し、前記強磁性化部の一部を10秒
以内で加熱溶体化させ、結晶粒径を30μm 以下とする
ことを特徴とする複合磁性部材の製造方法。
5. C by weight is 0.6% or less, and Cr is 12-.
19%, Ni 6-12%, Mn 2% or less, Mo 2
% Or less, Nb is 1% or less, and the balance is Fe or not
Hirayama equivalent Heq = [Ni%] + 1.05 [Mn%] +
0.65 [Cr%] + 0.35 [Si%] + 12.6
[C%] is 20 to 23%, and nickel equivalent Nieq = [Ni%] + 30 [C%] +
0.5 [Mn%] is 9 to 12%, and chromium equivalent Creq = [Cr%] + [Mo%] + 1.
5 [Si%] + 0.5 [Nb%] is 16 to 19%
After cooling the temperature of the composition material to room temperature or lower, add strain
By performing the processing steps to be performed, the material temperature is 100 ° C.
By controlling below, the magnetic flux density B 4000Is 0.3T
The above ferromagnetic part is attached, and a part of the above-mentioned ferromagnetic part is set for 10 seconds.
The solution is heated within the solution and the crystal grain size is reduced to 30 μm or less.
A method of manufacturing a composite magnetic member, comprising:
【請求項6】 前記材料は、ドライアイスまたは液体窒
素にて冷却されることを特徴とする請求項5記載の複合
磁性部材の製造方法。
6. The method for manufacturing a composite magnetic member according to claim 5, wherein the material is cooled with dry ice or liquid nitrogen.
【請求項7】 前記非磁性部は、−40℃までの低温下
にて非透磁率をμ=1.2を越えない非磁性部であるこ
とを特徴とする請求項5記載の複合磁性部材の製造方
法。
7. The composite magnetic member according to claim 5, wherein the non-magnetic portion is a non-magnetic portion whose non-permeability does not exceed μ = 1.2 at a low temperature up to −40 ° C. Manufacturing method.
【請求項8】 前記加工工程は、絞りおよびしごきであ
ることを特徴とする請求項5記載の複合磁性部材の製造
方法。
8. The method of manufacturing a composite magnetic member according to claim 5, wherein the processing step is drawing and ironing.
【請求項9】 前記非磁性部は、前記強磁性部の一部を
溶融させることなく10秒以内で加熱溶体化されること
によって得られることを特徴とする請求項5記載の複合
磁性部材。
9. The composite magnetic member according to claim 5, wherein the non-magnetic portion is obtained by heating and solutionizing a part of the ferromagnetic portion within 10 seconds without melting.
【請求項10】 重量でCが0.6%以下、Crが12
〜19%、Niが6〜12%、Mnが2%以下Moが2
%以下、Nbが1%以下、さらに残部がFeおよび不可
避不純物によって構成され、 平山の等量Heq=〔Ni%〕+1.05〔Mn%〕+
0.65〔Cr%〕+0.35〔Si%〕+12.6
〔C%〕が20〜23%で、かつ ニッケル等量Nieq=〔Ni%〕+30〔C%〕+
0.5〔Mn%〕が9〜12%であって、かつ クロム等量 Creq=〔Cr%〕+〔Mo%〕+1.
5〔Si%〕+0.5〔Nb%〕が16〜19%である
組成の材料の歪み付加を行う加工工程を多段階にすると
ともに、各加工工程の材料温度を100℃以内に制御す
るとともに、前記加工工程の後、10%以上のしごき加
工を加えることにより、磁束密度B4000が0.3T以上
に強磁性部を付し、さらに、前記強磁性化部の一部を1
0秒以内で加熱溶体化させ、結晶粒径を30μm 以下と
することを特徴とする複合磁性部材の製造方法。
10. C by weight is 0.6% or less and Cr is 12 by weight.
-19%, Ni 6-12%, Mn 2% or less Mo 2
% Or less, Nb is 1% or less, and the balance is composed of Fe and unavoidable impurities. Hirayama equal amount Heq = [Ni%] + 1.05 [Mn%] +
0.65 [Cr%] + 0.35 [Si%] + 12.6
[C%] is 20 to 23%, and nickel equivalent Nieq = [Ni%] + 30 [C%] +
0.5 [Mn%] is 9 to 12%, and chromium equivalent Creq = [Cr%] + [Mo%] + 1.
5 [Si%] + 0.5 [Nb%] is 16 to 19%, and the processing step for adding strain to the material having a composition is multi-staged, and the material temperature of each processing step is controlled within 100 ° C. After the processing step, ironing is performed by 10% or more to add a ferromagnetic portion with a magnetic flux density B 4000 of 0.3T or more, and further, a part of the ferromagnetic portion is reduced to 1
A method for producing a composite magnetic member, characterized in that the solution is heated to a solution within 0 seconds and the crystal grain size is 30 μm or less.
【請求項11】 前記非磁性部は、−40℃までの低温
下にて非透磁率をμ=1.2を越えない非磁性部である
ことを特徴とする請求項10記載の複合磁性部材の製造
方法。
11. The composite magnetic member according to claim 10, wherein the non-magnetic portion is a non-magnetic portion whose non-permeability does not exceed μ = 1.2 even at a low temperature up to −40 ° C. Manufacturing method.
【請求項12】 前記加工工程は、絞りおよびしごきで
あることを特徴とする請求項10記載の複合磁性部材の
製造方法。
12. The method for manufacturing a composite magnetic member according to claim 10, wherein the processing step is drawing and ironing.
【請求項13】 前記加熱溶体化の後、さらに、100
℃以上の温度で前記材料に対して、温間加工を行うこと
で所望の形状とすることを特徴とする請求項10記載の
複合磁性部材の製造方法。
13. The method further comprising 100 after the heat solution treatment.
The method for producing a composite magnetic member according to claim 10, wherein the material is formed into a desired shape by performing warm working on the material at a temperature of not less than ° C.
【請求項14】 前記非磁性部は、前記強磁性部の一部
を溶融させることなく10秒以内で加熱溶体化されるこ
とによって得られることを特徴とする請求項10記載の
複合磁性部材。
14. The composite magnetic member according to claim 10, wherein the non-magnetic portion is obtained by heating and solidifying the ferromagnetic portion within 10 seconds without melting a part of the ferromagnetic portion.
JP13855894A 1994-06-21 1994-06-21 Manufacturing method of composite magnetic member Expired - Fee Related JP3179967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13855894A JP3179967B2 (en) 1994-06-21 1994-06-21 Manufacturing method of composite magnetic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13855894A JP3179967B2 (en) 1994-06-21 1994-06-21 Manufacturing method of composite magnetic member

Publications (2)

Publication Number Publication Date
JPH083643A true JPH083643A (en) 1996-01-09
JP3179967B2 JP3179967B2 (en) 2001-06-25

Family

ID=15224957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13855894A Expired - Fee Related JP3179967B2 (en) 1994-06-21 1994-06-21 Manufacturing method of composite magnetic member

Country Status (1)

Country Link
JP (1) JP3179967B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0803582A2 (en) * 1996-04-26 1997-10-29 Denso Corporation Method of stress inducing transformation of austenite stainless steel and method of producing composite magnetic members
US5944262A (en) * 1997-02-14 1999-08-31 Denso Corporation Fuel injection valve and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0803582A2 (en) * 1996-04-26 1997-10-29 Denso Corporation Method of stress inducing transformation of austenite stainless steel and method of producing composite magnetic members
EP0803582A3 (en) * 1996-04-26 1997-11-12 Denso Corporation Method of stress inducing transformation of austenite stainless steel and method of producing composite magnetic members
US6143094A (en) * 1996-04-26 2000-11-07 Denso Corporation Method of stress inducing transformation of austenite stainless steel and method of producing composite magnetic members
EP1178123A1 (en) * 1996-04-26 2002-02-06 Denso Corporation Method of stress inducing transformation of austenite stainless steel and method of producing composite magnetic members
US6521055B1 (en) 1996-04-26 2003-02-18 Denso Corporation Method of stress inducing transformation of austenite stainless steel and method of producing composite magnetic members
US6949148B2 (en) 1996-04-26 2005-09-27 Denso Corporation Method of stress inducing transformation of austenite stainless steel and method of producing composite magnetic members
US5944262A (en) * 1997-02-14 1999-08-31 Denso Corporation Fuel injection valve and its manufacturing method

Also Published As

Publication number Publication date
JP3179967B2 (en) 2001-06-25

Similar Documents

Publication Publication Date Title
US4883544A (en) Process for preparation of austenitic stainless steel having excellent seawater resistance
JP7221474B6 (en) Non-magnetic austenitic stainless steel and its manufacturing method
JPH0711397A (en) Composite magnetic member, its production and solenoid valve using the same composite magnetic member
JP4399751B2 (en) Composite magnetic member, method for manufacturing ferromagnetic portion of composite magnetic member, and method for forming nonmagnetic portion of composite magnetic member
JP2002173745A (en) Fe-Ni BASED PERMALLOY, ITS PRODUCTION METHOD AND CAST SLAB
WO2018135414A1 (en) Non-oriented electromagnetic steel sheet and production method therefor
US5769974A (en) Process for improving magnetic performance in a free-machining ferritic stainless steel
JP2009084646A (en) Soft magnetic steel member, soft magnetic steel component, and method for producing the same
US5525164A (en) Ni-Fe magnetic alloy and method for producing thereof
JP3179967B2 (en) Manufacturing method of composite magnetic member
US5685921A (en) Method of preparing a magnetic article from a duplex ferromagnetic alloy
JP2001073097A (en) Nonoriented silicon steel sheet excellent in magnetic characteristic and workability, and its manufacture
JP4223726B2 (en) Soft magnetic steel material excellent in cold forgeability and magnetic permeability characteristics, soft magnetic steel part excellent in magnetic permeability characteristics and manufacturing method thereof
JP4502889B2 (en) Soft magnetic steel material excellent in cold forgeability, cutting workability and AC magnetic characteristics, soft magnetic steel parts excellent in AC magnetic characteristics, and method for producing the same
JPH0250931A (en) Manufacture of ferromagnetic ni-fe alloy and slab of the same alloy having excellent surface properties
JP2004225082A (en) High strength low permeability austenitic stainless steel sheet, method of producing the same, and method of producing washer for bolt fastening
KR102265212B1 (en) Non-magnetic austenitic stainless steel
JP4646872B2 (en) Soft magnetic steel material, soft magnetic component and method for manufacturing the same
JP4223727B2 (en) Soft magnetic steel material excellent in cold forgeability and magnetic properties, soft magnetic steel parts excellent in magnetic properties, and manufacturing method thereof
CN114981465B (en) Non-magnetic austenitic stainless steel
JPS6333518A (en) Non-oriented electrical steel sheet having low iron loss and excellent magnetic flux density and its production
WO2022009483A1 (en) Soft magnetic member and intermediate thereof, methods respectively for producing said member and said intermediate, and alloy for soft magnetic member
JPH06264195A (en) Fe-co series magnetic alloy
JP3244613B2 (en) Manufacturing method of slab for ultra high magnetic flux density unidirectional electrical steel sheet
KR20160036813A (en) Carbon steel and method of manufacturing the carbon steel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees