JPH0835858A - Method for correcting offset of encoder - Google Patents

Method for correcting offset of encoder

Info

Publication number
JPH0835858A
JPH0835858A JP19362194A JP19362194A JPH0835858A JP H0835858 A JPH0835858 A JP H0835858A JP 19362194 A JP19362194 A JP 19362194A JP 19362194 A JP19362194 A JP 19362194A JP H0835858 A JPH0835858 A JP H0835858A
Authority
JP
Japan
Prior art keywords
signal
signals
phase
encoder
phase signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19362194A
Other languages
Japanese (ja)
Other versions
JP3407413B2 (en
Inventor
Akihiro Nomura
章博 野村
Koji Nakajima
耕二 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP19362194A priority Critical patent/JP3407413B2/en
Publication of JPH0835858A publication Critical patent/JPH0835858A/en
Application granted granted Critical
Publication of JP3407413B2 publication Critical patent/JP3407413B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method for correcting the offset of an encoder which outputs highly accurate position signals within one pitch by removing an offset voltage signal without moving the encoder by one magnetization pitch when the encoder is a magnetic encoder or by one slit pitch when the encoder is an optical encoder. CONSTITUTION:In a method for correcting the offset of an encoder which generates a sine-wave A-phase signal and B-phase signal which is shifted in phase from the A-phase signal by 90 deg., the A- and B-phase signals are modulated in amplitude by using a sine wave signal outputted from a high-frequency oscillator 1 and the modulated signals are respectively differentiated by means of differentiators 31 and 32. Then both differentiated signals are again modulated in amplitude by using the sine wave signal outputted from the oscillator 1 and the modulated signals are respectively passed through low-pass filters 41 and 42.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はインクリメンタル方式の
エンコーダに関わり、そのオフセット電圧を除去するこ
とにより1ピッチ内の回転位置を精度よく検出するエン
コーダのオフセット補正方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an incremental encoder, and more particularly to an encoder offset correction method for accurately detecting a rotational position within one pitch by removing the offset voltage.

【0002】[0002]

【従来の技術】従来の磁気式エンコーダのオフセット補
正回路のブロック図を図3に示す(特開平1−9261
2)。図によれば、A相信号及びB相信号は検出タイミ
ング演算器にも入力され、そこでオフセット補正用信号
AH、AL、BH、及びBLを検出するためのタイミン
グ信号TAH、TAL、TBH及びTBLがつくられる。第1の
検出器はA相信号とタイミング信号TAHからオフセット
補正用信号AHを出力し、第2の検出器はA相信号とタ
イミング信号TALからオフセット補正用信号ALを出力
し、第3の検出器はB相信号とタイミング信号TBHから
オフセット補正用信号BHを出力し、第4の検出器はB
相信号とタイミング信号TBLからオフセット補正用信号
BLを出力する。A−オフセット演算器はオフセット補
正用信号AHとオフセット補正用信号ALから計算式O
SA=(AH+AL)/2によりA相オフセット信号O
SAを演算し、B−オフセット演算器はオフセット補正
用信号BHとオフセット補正用信号BLから計算式OS
B=(BH+BL)/2によりB相オフセットOSBを
計算する。A−減算器はA相信号f0 からA相オフセッ
ト信号OSAを減算してオフセット信号を除去したA相
信号出力f0 ’となし、B−減算器はB相信号g0 から
OSBを減算してオフセット信号を除去したB相信号出
力g0 ’となす。このオフセットが除去されたA相信号
及びB相信号を信号解析器に入力し逓倍することにより
着磁1ピッチ内の回転位置を精度よく検出することがで
きる。
2. Description of the Related Art A block diagram of a conventional offset correction circuit for a magnetic encoder is shown in FIG. 3 (JP-A-1-9261).
2). According to the figure, the A-phase signal and the B-phase signal are also input to the detection timing calculator, and there are timing signals T AH , T AL , T BH for detecting the offset correction signals AH, AL, BH, and BL. And T BL are created. The first detector outputs the offset correction signal AH from the A-phase signal and the timing signal T AH , the second detector outputs the offset correction signal AL from the A-phase signal and the timing signal T AL , and the third detector Detector outputs the offset correction signal BH from the B-phase signal and the timing signal T BH , and the fourth detector outputs B
An offset correction signal BL is output from the phase signal and the timing signal T BL . The A-offset calculator calculates the formula O from the offset correction signal AH and the offset correction signal AL.
SA = (AH + AL) / 2, A phase offset signal O
SA is calculated, and the B-offset calculator calculates the formula OS from the offset correction signal BH and the offset correction signal BL.
The B-phase offset OSB is calculated by B = (BH + BL) / 2. The A-subtractor subtracts the A-phase offset signal OSA from the A-phase signal f 0 to obtain an A-phase signal output f 0 ′ with the offset signal removed, and the B-subtractor subtracts OSB from the B-phase signal g 0. And the offset signal is removed to form a B-phase signal output g 0 ′. By inputting and multiplying the A-phase signal and the B-phase signal from which this offset has been removed to the signal analyzer, the rotational position within one magnetized pitch can be accurately detected.

【0003】[0003]

【発明が解決しようとする課題】ところが、従来技術で
はオフセットを検出するためのオフセット補正用信号A
H、AL、BH、BLを検出するためには少なくとも着
磁1ピッチの回転子の移動が必要であり着磁1ピッチの
移動の間はオフセットの補正がきかないという問題点が
ある。又、検出信号であるオフセット信号OSA、OS
Bは雰囲気温度などの環境により変化し回転子が停止中
に雰囲気温度などが変化するとオフセットを検出するた
めのオフセット補正用信号AH、AL、BH、BLを新
たに測定、記憶し直す必要がありやはりオフセットの補
正をするためには着磁1ピッチの移動が必要となるとい
う問題があった。オプティカルエンコーダの場合も磁気
エンコーダと同様、1スリットピッチの移動の間はオフ
セットの補正ができなかった。そこで、本発明は磁気エ
ンコーダの場合は、着磁1ピッチの移動をすることなく
オフセット電圧信号を除去し、オプティカルエンコーダ
の場合は、1スリットピッチの移動をすることなくオフ
セット電圧を除去し、1ピッチ内の高精度な位置信号を
出力するエンコーダのオフセット補正方法を提供するこ
とを目的とするものである。
However, in the prior art, the offset correction signal A for detecting the offset is used.
In order to detect H, AL, BH, and BL, it is necessary to move the rotor at least one pitch of magnetization, and there is a problem that offset correction cannot be performed during the movement of one pitch of magnetization. Also, the offset signals OSA and OS which are detection signals
B changes depending on the environment such as the ambient temperature, and when the ambient temperature changes while the rotor is stopped, it is necessary to newly measure and store the offset correction signals AH, AL, BH, and BL for detecting the offset. After all, there was a problem that it was necessary to move the magnetized 1 pitch in order to correct the offset. In the case of the optical encoder as well as the magnetic encoder, the offset could not be corrected during the movement of one slit pitch. Therefore, in the present invention, in the case of a magnetic encoder, the offset voltage signal is removed without moving one pitch of magnetization, and in the case of an optical encoder, the offset voltage is removed without moving one slit pitch. An object is to provide an offset correction method for an encoder that outputs a highly accurate position signal within a pitch.

【0004】[0004]

【課題を解決するための手段】上記問題を解決するた
め、本発明は正弦波のA相信号と前記A相信号に対して
位相が90°ずれたB相信号を発生するエンコーダのオ
フセット補正方法において、前記A相信号と前記B相信
号を高周波発振器から出力される正弦波信号により各々
振幅変調し、前記の振幅変調された両信号を各々微分器
により微分し、前記の微分された両信号を各々、前記高
周波発振器から出力される前記正弦波信号により再度振
幅変調し、前記再度振幅変調された両信号を各々ローパ
スフィルタに通す。また、前記ローパスフィルタを通さ
れた両信号の比を演算し、前記両信号の比の逆正接を演
算する。また、正弦波のA相信号と前記A相信号に対し
て位相が90°ずれたB相信号を発生するエンコーダの
オフセット補正方法において、前記A相信号と前記B相
信号を高周波発振器から出力される正弦波信号により各
々振幅変調し、前記の振幅変調された両信号を各々微分
器により微分し、前記の微分された両信号を各々、前記
高周波発振器から出力される前記正弦波信号により再度
振幅変調し、前記再度振幅変調された両信号を各々ロー
パスフィルタに通し、前記ローパスフィルタを通された
両信号を各々積分器により積分し、前記積分器により積
分された両信号の比を演算し、前記積分器により積分さ
れた両信号の比の逆正接を演算する。
In order to solve the above problems, the present invention provides an offset correction method for an encoder for generating a sinusoidal A-phase signal and a B-phase signal having a phase difference of 90 ° with respect to the A-phase signal. In A., the A-phase signal and the B-phase signal are respectively amplitude-modulated by a sine wave signal output from a high-frequency oscillator, the amplitude-modulated both signals are differentiated by differentiators, and the differentiated both signals are generated. Are again amplitude-modulated by the sine wave signal output from the high-frequency oscillator, and the both amplitude-modulated signals are passed through low-pass filters. Also, the ratio of both signals passed through the low-pass filter is calculated, and the arctangent of the ratio of both signals is calculated. Further, in the offset correction method of the encoder that generates a sine wave A-phase signal and a B-phase signal whose phase is shifted by 90 ° with respect to the A-phase signal, the A-phase signal and the B-phase signal are output from a high-frequency oscillator. Amplitude-modulates each with a sine-wave signal, differentiates each of the amplitude-modulated signals with a differentiator, and amplitudes each of the differentiated signals with the sine-wave signal output from the high-frequency oscillator. Modulate, the amplitude-modulated both signals are respectively passed through a low-pass filter, both signals passed through the low-pass filter are respectively integrated by an integrator, and a ratio of both signals integrated by the integrator is calculated, The arctangent of the ratio of the two signals integrated by the integrator is calculated.

【0005】[0005]

【作用】A相信号、B相信号の振幅をA0 、A相信号の
オフセットをa、B相信号のオフセットをb、着磁1ピ
ッチ内の回転位相角をθとするとオフセットを持つA相
信号はf0 =A0・sinθ+a、オフセットを持つB相
信号はg0 =A0・cosθ+bと表され周波数ωの高周
波信号により振幅変調を加えることによりA相信号は f1 =A0・sinθ・ sinωt+a・ sinωt、 B相信号は g1 =A0・cosθ・ sinωt+b・ sinωtとな
る。 この信号f1 、g1 を微分器を通すことによりA相信号
は f2 =A0・cosθ・ (dθ/dt)・ sinωt+A
0・ω・ sinθ・ cosωt+a・ ω・ cosωt B相信号は g2 =−A0・sinθ・ (dθ/dt)・ sinωt+
0・ω・ cosθ・ cosωt+b・ ω・ cosωt 高周波発振器で前記f2 、g2 を各々再変調することに
よりA相信号は f3 =A0・cosθ・ (dθ/dt)・ sin2 ωt+
0・ω・ sinθ・ cosωt・ sinωt+a・ ω・
cosωt・sinωt =A0・cosθ・ (dθ/dt)・ (1−cos2ω
t)/2+(1/2)・ ω・ (A0・sinθ+a)・ s
in2ωt B相信号は g3 =−A0・sinθ・ (dθ/dt)・ sin2 ωt
+A0・ω・ cosθ・ cosωt・ sinωt+b・ ω
・ cosωt・sinωt =−A0・sinθ・ (dθ/dt)・ (1−cos2ω
t)/2+(1/2)・ ω・ (A0・cosθ+b)・ s
in2ωt このA相信号f3 、B相信号g3 を各々周波数2ω成分
を落とすローパスフィルタを通すことにより低周波信号
成分として、 f4 =(1/2)・ A0・cosθ・ (dθ/dt) g4 =−(1/2)・ A0・sinθ・ (dθ/dt) を得る。この2信号を除算器を通し、−(g4 /f4
を求めることによりtanθを得ることができる。又、
この2信号f4 、g4 を各々積分器を通すことにより f5 =(1/2)・ A0・sinθ g5 =(1/2)・ A0・cosθ なるオフセットが除去された2信号を得ることができ
る。
The amplitude of the A-phase signal and the B-phase signal is A 0 , the offset of the A-phase signal is a, the offset of the B-phase signal is b, and the rotation phase angle within one pitch of magnetization is θ. The signal is expressed as f 0 = A 0 · sin θ + a, and the B-phase signal having an offset is expressed as g 0 = A 0 · cos θ + b. By applying amplitude modulation with a high-frequency signal of frequency ω, the A-phase signal is f 1 = A 0 · sin θ. Sin ωt + a · sin ωt, and the B-phase signal is g 1 = A 0 · cos θ · sin ωt + b · sin ωt. By passing these signals f 1 and g 1 through a differentiator, the A-phase signal is f 2 = A 0 · cos θ · (dθ / dt) · sin ωt + A
0 · ω · sin θ · cos ωt + a · ω · cos ωt The B-phase signal is g 2 = −A 0 · sin θ · (dθ / dt) · sin ωt +
A 0 · ω · cos θ · cos ωt + b · ω · cos ωt A high-frequency oscillator remodulates f 2 and g 2 respectively, so that the A-phase signal is f 3 = A 0 · cos θ · (dθ / dt) · sin 2 ωt +
A 0 · ω · sin θ · cos ωt · sin ωt + a · ω ·
cos ωt · sin ωt = A 0 · cos θ · (dθ / dt) · (1-cos2ω
t) / 2 + (1/2) · ω · (A 0 · sin θ + a) · s
In2omegati B-phase signal g 3 = -A 0 · sinθ · (dθ / dt) · sin 2 ωt
+ A 0 · ω · cos θ · cos ωt · sin ωt + b · ω
・ Cos ωt ・ sin ωt = -A 0・ sin θ ・ (dθ / dt) ・ (1-cos2ω
t) / 2 + (1/2) · ω · (A 0 · cos θ + b) · s
in2ωt A low-frequency signal component is obtained by passing the A-phase signal f 3 and the B-phase signal g 3 through a low-pass filter that drops the frequency 2ω component, and f 4 = (1/2) · A 0 · cos θ · (dθ / dt ) g 4 = - obtaining (1/2) · a 0 · sinθ · (dθ / dt). The two signals through a divider, - (g 4 / f 4 )
It is possible to obtain tan θ by obtaining or,
These two signals f 4 and g 4 are passed through an integrator, respectively, so that the offset of f 5 = (1/2) · A 0 · sin θ g 5 = (1/2) · A 0 · cos θ is removed. Can be obtained.

【0006】[0006]

【実施例】図1に本発明の第1の実施例を示す。オフセ
ットを有するA相入力信号f0 、B相入力信号g0 が磁
気エンコーダからの信号として信号処理回路に入力され
る。f0 及びg0 は掛算器21・22において高周波発
振器1の信号sinωtにより変調がかけられる(f
1 ,g1 )。信号f1 、g1 は微分器31、32により
各々微分される(f2 、g2 )。f2 、g2 は掛算器2
3、24により再び高周波発振器1の信号sinωtに
より変調がかけられる(f3 、g3 )。f3 、g3 はロ
ーパスフィルタ41、42により周波数の2ω成分が落
とされる(f4 、g4 )。f4 及びg4 を割算器5に入
力することによりtanθを得ることができる。この信
号をさらに逆正接回路6(arctan)を通すことに
より着磁1ピッチ内の回転位置θを高精度に求めること
ができる。図2に本発明の第2の実施例を示す。信号f
4 、g4 は第1の実施例と同じ処理により得られる。本
実施例ではf4 、g4 を積分することによりオフセット
電圧成分が除去されたA相信号、B相信号f5 、g5
得る。この信号を信号解析器に入力することにより着磁
1ピッチ内の回転位置θを高精度に得ることができる。
この信号解析器は、従来の位相差検出法や抵抗逓倍法な
どどれを用いてもよい。また本発明は、正弦波のA相信
号と90°位相のづれたB相信号を取り扱うため、磁気
エンコーダに限らず、光学式エンコーダにもちろん適用
できるものである。
FIG. 1 shows the first embodiment of the present invention. The A-phase input signal f 0 and the B-phase input signal g 0 having an offset are input to the signal processing circuit as signals from the magnetic encoder. f 0 and g 0 are modulated by the signal sinωt of the high frequency oscillator 1 in the multipliers 21 and 22 (f
1 , g 1 ). The signals f 1 and g 1 are differentiated by the differentiators 31 and 32, respectively (f 2 , g 2 ). f 2 and g 2 are multipliers 2
The signals 3 and 24 again modulate the signal sinωt of the high frequency oscillator 1 (f 3 , g 3 ). f 3, g 3 is 2ω component of the frequency is dropped by the low-pass filter 41,42 (f 4, g 4) . By inputting f 4 and g 4 to the divider 5, tan θ can be obtained. By further passing this signal through the arctangent circuit 6 (arctan), the rotational position θ within one pitch of magnetization can be obtained with high accuracy. FIG. 2 shows a second embodiment of the present invention. Signal f
4 and g 4 are obtained by the same process as in the first embodiment. In this embodiment, by integrating f 4 and g 4 , A-phase signal and B-phase signal f 5 and g 5 from which the offset voltage component is removed are obtained. By inputting this signal to the signal analyzer, the rotational position θ within one pitch of magnetization can be obtained with high accuracy.
This signal analyzer may use any of the conventional phase difference detection method and resistance multiplication method. Further, since the present invention handles a sinusoidal A-phase signal and a B-phase signal having a 90 ° phase, it is not limited to a magnetic encoder and can be applied to an optical encoder.

【0007】[0007]

【発明の効果】以上述べたように、本発明によれば1ピ
ッチの移動(A相信号で言えば、電気角で0から360
°の範囲に相当)をせずにエンコーダ信号からオフセッ
ト電圧成分を取り除くことができ、オフセット電圧成分
を含まないA相信号、B相信号が得られるため1ピッチ
内の回転位置を高精度に逓倍することができる。従来は
1ピッチ(電気角:360度)以上動かさなければ信号
処理できなかったが、本発明では百分の1ピッチ程度
(電気角:数度)動けば、オフセット補正ができるとい
う効果がある。オフセット補正ができるので、高精度な
回転角位置を得ることができる。
As described above, according to the present invention, movement of one pitch (speaking of the phase A signal, 0 to 360 in electrical angle).
The offset voltage component can be removed from the encoder signal without compensating for the angle range), and the A-phase signal and B-phase signal that do not include the offset voltage component can be obtained, so the rotational position within one pitch can be multiplied with high accuracy. can do. Conventionally, signal processing could not be performed without moving by one pitch (electrical angle: 360 degrees) or more, but in the present invention, there is an effect that offset correction can be performed by moving about one-hundredth pitch (electrical angle: several degrees). Since offset correction can be performed, a highly accurate rotation angle position can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例FIG. 1 is a first embodiment of the present invention.

【図2】本発明の第2の実施例FIG. 2 is a second embodiment of the present invention.

【図3】従来のオフセット除去回路FIG. 3 Conventional offset removal circuit

【符号の説明】 1 高周波発振器 21、22、23、24 掛算器 31、32 微分器 41、42 ローパスフィルタ 5 割算器 6 逆正接回路 7 エンコーダ 71、72 積分器 f0 A相入力信号 f1 変調されたA相信号 f2 微分器を通った後のA相信号 f3 再変調されたA相信号 f4 ローパスフィルタを通ったA相信号 g0 B相入力信号 g1 変調されたB相信号 g2 微分器を通った後のB相信号 g3 再変調されたB相信号 g4 ローパスフィルタを通ったB相信号 θ 着磁1ピッチ内の回転角 tanθ 着磁1ピッチ内の回転角θの正接 TAH、TAL、TBH、TBLタイミング信号 AH、AL、BH、BLオフセット補正用信号 f’0 オフセットが除去されたA相信号 g’0 オフセットが除去されたB相信号[Description of Reference Signs] 1 high-frequency oscillator 21, 22, 23, 24 multiplier 31, 32 differentiator 41, 42 low-pass filter 5 divider 6 arctangent circuit 7 encoder 71, 72 integrator f 0 A-phase input signal f 1 Modulated A-phase signal f 2 A-phase signal after passing the differentiator f 3 Re-modulated A-phase signal f 4 Low-pass filtered A-phase signal g 0 B-phase input signal g 1 Modulated B-phase Signal g 2 B-phase signal after passing through differentiator g 3 Re-modulated B-phase signal g 4 B-phase signal after passing through low-pass filter θ Rotation angle within 1 pitch of magnetization tan θ Rotation angle within 1 pitch of magnetization Tangent of θ T AH , T AL , T BH , T BL timing signal AH, AL, BH, BL offset correction signal f ′ 0 A-phase signal with offset removed g ′ 0 B-phase signal with offset removed

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正弦波のA相信号と前記A相信号に対し
て位相が90°ずれたB相信号を発生するエンコーダの
オフセット補正方法において、 前記A相信号と前記B相信号を高周波発振器から出力さ
れる正弦波信号により各々振幅変調し、 前記の振幅変調された両信号を各々微分器により微分
し、 前記の微分された両信号を各々、前記高周波発振器から
出力される前記正弦波信号により再度振幅変調し、 前記再度振幅変調された両信号を各々ローパスフィルタ
に通すことを特徴とするエンコーダのオフセット補正方
法。
1. An offset correction method for an encoder that generates a sinusoidal A-phase signal and a B-phase signal that is 90 ° out of phase with respect to the A-phase signal, wherein the A-phase signal and the B-phase signal are high-frequency oscillators. Amplitude-modulates each sine-wave signal output from the sine-wave signal, and differentiates each of the amplitude-modulated signals by a differentiator. The sine-wave signal output from the high-frequency oscillator. A method of correcting an offset of an encoder, characterized in that the signal is amplitude-modulated again by, and both of the signals amplitude-modulated again are passed through a low-pass filter.
【請求項2】 前記ローパスフィルタを通された両信号
の比を演算し、 前記両信号の比の逆正接を演算することを特徴とする請
求項1記載のエンコーダのオフセット補正方法。
2. The offset correction method for an encoder according to claim 1, wherein a ratio of the two signals passed through the low-pass filter is calculated, and an arctangent of the ratio of the two signals is calculated.
【請求項3】 正弦波のA相信号と前記A相信号に対し
て位相が90°ずれたB相信号を発生するエンコーダの
オフセット補正方法において、 前記A相信号と前記B相信号を高周波発振器から出力さ
れる正弦波信号により各々振幅変調し、 前記の振幅変調された両信号を各々微分器により微分
し、 前記の微分された両信号を各々、前記高周波発振器から
出力される前記正弦波信号により再度振幅変調し、 前記再度振幅変調された両信号を各々ローパスフィルタ
に通し、 前記ローパスフィルタを通された両信号を各々積分器に
より積分し、 前記積分器により積分された両信号の比を演算し、 前記積分器により積分された両信号の比の逆正接を演算
することを特徴とするエンコーダのオフセット補正方
法。
3. An offset correction method for an encoder, which generates a sinusoidal A-phase signal and a B-phase signal whose phase is shifted by 90 ° with respect to the A-phase signal, wherein the A-phase signal and the B-phase signal are high-frequency oscillators. Amplitude-modulates each sine-wave signal output from the sine-wave signal, and differentiates each of the amplitude-modulated signals by a differentiator. The sine-wave signal output from the high-frequency oscillator. Amplitude-modulate again by means of, the two signals that have been amplitude-modulated again are respectively passed through a low-pass filter, both signals passed through the low-pass filter are respectively integrated by an integrator, and the ratio of both signals integrated by the integrator is calculated. An offset correction method for an encoder, wherein the arc tangent of the ratio of both signals calculated and calculated by the integrator is calculated.
JP19362194A 1994-07-25 1994-07-25 Encoder offset correction method Expired - Fee Related JP3407413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19362194A JP3407413B2 (en) 1994-07-25 1994-07-25 Encoder offset correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19362194A JP3407413B2 (en) 1994-07-25 1994-07-25 Encoder offset correction method

Publications (2)

Publication Number Publication Date
JPH0835858A true JPH0835858A (en) 1996-02-06
JP3407413B2 JP3407413B2 (en) 2003-05-19

Family

ID=16310990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19362194A Expired - Fee Related JP3407413B2 (en) 1994-07-25 1994-07-25 Encoder offset correction method

Country Status (1)

Country Link
JP (1) JP3407413B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011152445A (en) * 2003-08-04 2011-08-11 Carefusion 203 Inc Compressor control system for portable ventilator
KR101335162B1 (en) * 2012-11-19 2013-12-02 한밭대학교 산학협력단 Position aberration correction device and method for resolver
JP2019135556A (en) * 2019-04-18 2019-08-15 株式会社ニコン Lens driving device, lens driving method, and imaging device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011152445A (en) * 2003-08-04 2011-08-11 Carefusion 203 Inc Compressor control system for portable ventilator
KR101335162B1 (en) * 2012-11-19 2013-12-02 한밭대학교 산학협력단 Position aberration correction device and method for resolver
JP2019135556A (en) * 2019-04-18 2019-08-15 株式会社ニコン Lens driving device, lens driving method, and imaging device

Also Published As

Publication number Publication date
JP3407413B2 (en) 2003-05-19

Similar Documents

Publication Publication Date Title
US5444639A (en) Angular rate sensing system and method, with digital synthesizer and variable-frequency oscillator
CN111609790B (en) High-precision frequency and phase discrimination signal processing method and device in laser offset frequency locking
CN110411486B (en) PGC-DCDM demodulation method insensitive to phase delay and modulation depth
US5893054A (en) Amplitude detection and automatic gain control of a sparsely sampled sinusoid by computation including a hilbert transform
CN111595468B (en) PGC phase demodulation method for compensating carrier phase delay nonlinear error
CN110426025B (en) Real-time automatic mode matching method for micromechanical gyroscope
GB2276000A (en) Laser gyroscopes
CN107209028A (en) Analyser device
US5463393A (en) Method and apparatus for correcting errors in an amplitude encoded signal
US4430611A (en) Frequency spectrum analyzer with phase-lock
Park et al. A linear compensation method for improving the accuracy of an absolute multipolar magnetic encoder
US20220163605A1 (en) Electronic circuit for measuring an angle and an intensity of an external magnetic field
CN111609791B (en) Method for extracting and compensating modulation depth in PGC phase demodulation method
JP3407413B2 (en) Encoder offset correction method
CN116683997A (en) Method for demodulating low-frequency signal by improving phase generation carrier algorithm
CN101311702A (en) Sensing apparatus
CN115834312A (en) PGC-Arctan-based modulation method and device for eliminating carrier phase delay and compensating modulation depth demodulation
EP0412825B1 (en) Signal compensator
KR100431706B1 (en) Method and system for correcting the non-linearity error in a two-frequency laser interferometer
KR100189937B1 (en) Rotation angle estimation device and method using sinusoidal wave
JPH07239247A (en) Signal processor for magnetic encoder
JPS62144021A (en) Resolver detection apparatus
CN114964001A (en) Linear PGC demodulation signal processing method based on hybrid phase modulation
CN116526926A (en) Closed-loop tracking decoding method and device for reluctance type rotary transformer
JP3683071B2 (en) Motor rotation speed control device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080314

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees