JPH083546A - Production of thermochromic material - Google Patents

Production of thermochromic material

Info

Publication number
JPH083546A
JPH083546A JP16618294A JP16618294A JPH083546A JP H083546 A JPH083546 A JP H083546A JP 16618294 A JP16618294 A JP 16618294A JP 16618294 A JP16618294 A JP 16618294A JP H083546 A JPH083546 A JP H083546A
Authority
JP
Japan
Prior art keywords
molybdenum
target
vanadium
thermochromic material
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16618294A
Other languages
Japanese (ja)
Other versions
JP2764539B2 (en
Inventor
Taira Kin
平 金
Sakae Tanemura
栄 種村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6166182A priority Critical patent/JP2764539B2/en
Publication of JPH083546A publication Critical patent/JPH083546A/en
Application granted granted Critical
Publication of JP2764539B2 publication Critical patent/JP2764539B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

PURPOSE:To provide the method for producing the thermochromic material capable of automatically controlling a solar energy transmittance, am IR rays transmittance, etc., in response to an environmental temperature, because a transition temperature can freely set in a range of -38 to 67 deg.C. CONSTITUTION:The method for producing the thermochromic material comprises subjecting a vanadium target and a molybdenum target to a reactive two-dimensional simultaneous spattering treatment. The method for producing the thermochromic material comprises subjecting a vanadium molybdenum alloy target containing 0.06-10 atom % of molybdenum to a reactive spattering treatment. The material is utilized for uses requiring the automatic control of an infrared light transmittance in response to the change of temperature in addition to the coating of building window glass, automotive window glass and green house window glass.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、太陽光エネルギーや赤
外透過率制御のための材料技術に関するものであり、更
に詳しくは、環境温度によって自動的に調光するサーモ
クロミック薄膜材料の新規製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material technology for controlling solar energy and infrared transmittance, and more specifically, a novel production of a thermochromic thin film material that automatically adjusts the light according to the ambient temperature. It is about the method.

【0002】[0002]

【従来の技術】温度の変化によって透過率、反射率等の
光学特性が可逆的に変化することをサーモクロミック
(TC)現象と言う。このようなサーモクロミック特性
を有するTC材料を、例えば、窓コーティング材として
使えば、環境温度によって自動的に入射太陽光エネルギ
ーの制御が可能となり、快適な住居空間を確保できると
同時に、冷房負荷の低減にもつながることから、近年、
このような“スマートな窓コーティング材料”に関する
研究が種々行われている〔例えば、1) C.G. Granqvist:
Materials Science for Solar Energy Conversion Sys
tems, ed. Granqvist (Pergamon Press. (1991) 、2)
C.G. Granqvist: Thin Solid Films 193/194(1990) 73
0、3) G.V. Jorgenson and J.C. Lee: Sol. Energy Mat
er. 14 (1986)205、4) S.M. Babulanam, T.S. Eriksso
n, G.A. Niklasson and C.G. Granqvist: Sol. Energy
Mater. 16 (1987) 347 、5) K.A. Khan, G.A. Niklasso
n and C.G. Granqvist: J. Appl. Phys. 64 (1988) 332
7、6) K.A. Khan and C.G. Granqvist: Appl. Phys. Le
tt. 55 (1989) 4、7) S.J. Jiang, C.B. Ye, M.S.R. Kh
an and C.G. Granqvist: Appl. Opt. 30 (1991) 84
7〕。
2. Description of the Related Art Reversible changes in optical characteristics such as transmittance and reflectance due to changes in temperature are called thermochromic (TC) phenomenon. If a TC material having such thermochromic properties is used as, for example, a window coating material, incident solar energy can be automatically controlled according to the environmental temperature, and a comfortable living space can be secured, and at the same time, cooling load can be secured. Since it also leads to reduction,
Various studies have been conducted on such "smart window coating materials" (eg 1) CG Granqvist:
Materials Science for Solar Energy Conversion Sys
tems, ed. Granqvist (Pergamon Press. (1991), 2)
CG Granqvist: Thin Solid Films 193/194 (1990) 73
0, 3) GV Jorgenson and JC Lee: Sol. Energy Mat
er. 14 (1986) 205, 4) SM Babulanam, TS Eriksso
n, GA Niklasson and CG Granqvist: Sol. Energy
Mater. 16 (1987) 347, 5) KA Khan, GA Niklasso
n and CG Granqvist: J. Appl. Phys. 64 (1988) 332
7, 6) KA Khan and CG Granqvist: Appl. Phys. Le
tt. 55 (1989) 4, 7) SJ Jiang, CB Ye, MSR Kh
an and CG Granqvist: Appl. Opt. 30 (1991) 84
7].

【0003】このように、従来、各種の材料に関する研
究が行われているが、その中でも、二酸化バナジウム
は、サーモクロミック特性を示すことがよく知られてい
る。二酸化バナジウムの結晶は、68℃で可逆的に半導
体−金属相転移が発生し、昇温時に相転移を伴って赤外
透過率が大幅に減少する。また、二酸化バナジウムのバ
ナジウムを他の金属(W、Mo、Nb、Ta、Re等)
で置換することにより、転移温度が下げられることか
ら、例えば、室温付近での転移温度を有する二酸化バナ
ジウム薄膜を開発すること、そして、それを太陽光エネ
ルギーの自動制御用調光素子として応用することが検討
されている〔例えば、C. G. Granqvist; Thin Solid Fi
lms 193/194 (1990) 730〕。
As described above, various kinds of materials have been studied so far, and among them, it is well known that vanadium dioxide exhibits thermochromic properties. The crystal of vanadium dioxide reversibly undergoes a semiconductor-metal phase transition at 68 ° C., and the infrared transmittance greatly decreases with the phase transition when the temperature rises. In addition, vanadium dioxide vanadium is used as another metal (W, Mo, Nb, Ta, Re, etc.)
, The transition temperature can be lowered. Therefore, for example, to develop a vanadium dioxide thin film having a transition temperature near room temperature, and to apply it as a dimming element for automatic control of solar energy. Are being considered [eg CG Granqvist; Thin Solid Fi
lms 193/194 (1990) 730].

【0004】しかし、これまでのところ、実用化を可能
とするような太陽光エネルギー制御のための二酸化バナ
ジウム薄膜の形成に関する知識が極めて少なく、当該二
酸化バナジウム薄膜について、その転移温度を下げるた
めの有効な金属添加法はいまだ確立されていない状況に
ある。従来の金属添加法について、例えば、スパッタ法
によるタングステンの添加例があったが〔1) G. Jorgen
son et al, Solar Energy Materials 14 (1986) 205 、
2) M. Fukuma et al, Applied Optics 22 (1983) 26
5〕、いずれも添加量範囲が非常に狭く、薄膜の組成の
均一性や添加量の精密な制御ができていない、等の問題
点があった。一方、スパッタ法によるモリブデンの添加
例がほとんど見られていない状況にあった。
However, so far, there is very little knowledge about the formation of a vanadium dioxide thin film for solar energy control that enables practical use, and the vanadium dioxide thin film is effective for lowering its transition temperature. The method of adding metals is not yet established. Regarding the conventional metal addition method, for example, there was an example of addition of tungsten by the sputtering method, but [1) G. Jorgen
son et al, Solar Energy Materials 14 (1986) 205,
2) M. Fukuma et al, Applied Optics 22 (1983) 26
5], however, the addition amount range was very narrow, and there was a problem that the composition uniformity of the thin film and precise control of the addition amount could not be performed. On the other hand, there was almost no example of addition of molybdenum by the sputtering method.

【0005】[0005]

【発明が解決しようとする課題】本発明者等は、このよ
うな状況の中で、モリブデンの添加により転移温度を精
密に設定することができると共に、上記問題点を確実に
解決することが可能な新しい金属添加法を確立すること
を目標として鋭意研究を積み重ねた結果、反応性二元同
時スパッタ法等によりモリブデンを添加した二酸化バナ
ジウム薄膜を作製することにより所期の目的を達成でき
ることを見いだし、本発明を完成するに至った。
Under the circumstances, the present inventors can precisely set the transition temperature by adding molybdenum, and surely solve the above problems. As a result of intensive research aimed at establishing a new metal addition method, it was found that the intended purpose can be achieved by producing a molybdenum-containing vanadium dioxide thin film by a reactive binary co-sputtering method. The present invention has been completed.

【0006】本発明は、転移温度を下げるための有効な
モリブデン添加方法を確立することを目的とするもので
ある。
The present invention aims to establish an effective molybdenum addition method for lowering the transition temperature.

【0007】また、本発明は、そのようなモリブデン添
加法によって、転移温度が精密に設定できるサーモクロ
ミック材料を製造する方法を提供することを目的とする
ものである。
It is another object of the present invention to provide a method for producing a thermochromic material whose transition temperature can be precisely set by such a molybdenum addition method.

【0008】[0008]

【課題を解決するための手段】本発明は、バナジウムタ
ーゲットとモリブデンターゲットを反応性二元同時スパ
ッタ(Dual-target sputtering)することによって、−
38℃〜67℃の間で相転移を示し、かつ転移温度が任
意に、かつ、精密に設定できるV1-xMox2(x=0.
0006〜0.098)組成を持つサーモクロミック材
料の作製を達成するものであり、又は、モリブデンを
0.06〜10原子%含有するバナジウムモリブデン合
金のターゲットを反応性スパッタすることによって−3
8℃〜67℃の間で相転移を示し、かつ特定の転移温度
を持つV1-xMox2(x=0.0006〜0.098)
組成を有するサーモクロミック材料の作製を達成するも
のである。
The present invention provides a reactive dual-target sputtering of a vanadium target and a molybdenum target.
V 1-x Mo x O 2 (x = 0.0), which exhibits a phase transition between 38 ° C. and 67 ° C., and whose transition temperature can be set arbitrarily and precisely.
0006-0.098) to produce a thermochromic material, or by reactively sputtering a vanadium molybdenum alloy target containing 0.06 to 10 atomic% molybdenum-3.
V 1-x Mo x O 2 (x = 0.006 to 0.098) that exhibits a phase transition between 8 ° C. and 67 ° C. and has a specific transition temperature
It is intended to achieve the production of a thermochromic material having a composition.

【0009】本発明においては、反応性二元同時スパッ
タ法に関しては、多成分同時スパッタ装置を用いて、バ
ナジウムターゲットを酸素を含むアルゴンガス中にて反
応性スパッタして二酸化バナジウム薄膜を生成するとと
もに、もう一つのターゲットのモリブデンメタルをスパ
ッタしてモリブデンの添加を行う方法が使用される。こ
うしてスパッタされたモリブデンの原子が、バナジウム
原子の一部と置換して基板に蒸着した二酸化バナジウム
薄膜の結晶格子に入る。この場合、二酸化バナジウム単
一結晶相を形成するために、全圧0.5〜5Pa、基板
温度250〜500℃、印加電力2.5〜15W/cm
2 、とすることが重要であり、特に、電力に応じた酸素
ガス比率の精密な制御が重要である。また、モリブデン
の添加量は、モリブデンターゲットへの印加電力をバナ
ジウムのそれの0〜15%範囲で調節することによって
制御する。
In the present invention, the reactive binary co-sputtering method uses a multi-component co-sputtering apparatus to reactively sputter a vanadium target in argon gas containing oxygen to form a vanadium dioxide thin film. Another method is used in which molybdenum metal, which is another target, is sputtered to add molybdenum. The thus-sputtered molybdenum atoms replace some of the vanadium atoms and enter the crystal lattice of the vanadium dioxide thin film deposited on the substrate. In this case, in order to form a vanadium dioxide single crystal phase, the total pressure is 0.5 to 5 Pa, the substrate temperature is 250 to 500 ° C., and the applied power is 2.5 to 15 W / cm.
2 is important, and in particular, precise control of the oxygen gas ratio according to the electric power is important. The amount of molybdenum added is controlled by adjusting the power applied to the molybdenum target within the range of 0 to 15% of that of vanadium.

【0010】モリブデンの添加によって、二酸化バナジ
ウム単一相薄膜の形成条件が変動するが、印加電力や酸
素比率などを精密に調節することによって、単一相薄膜
を生成することが可能である。本発明者等が実験を繰り
返した結果によれば、単斜晶の二酸化バナジウム単一相
の形成が、印加電力が10W/cm2 、全圧が1.5P
aの場合、2.7%付近の極めて狭い酸素流量域にしか
出来ないことが判明した。また、基板の回転によって、
生成した膜の均一性を保証することが可能となる。
Although the formation conditions of the vanadium dioxide single-phase thin film vary depending on the addition of molybdenum, it is possible to form the single-phase thin film by precisely adjusting the applied power and the oxygen ratio. According to the results of repeated experiments by the present inventors, the formation of a monoclinic vanadium dioxide single phase showed that the applied power was 10 W / cm 2 and the total pressure was 1.5 P.
In the case of a, it was found that the oxygen flow rate range could be limited to an extremely narrow oxygen flow rate range of about 2.7%. Also, by rotating the substrate,
It is possible to guarantee the uniformity of the produced film.

【0011】本発明において、モリブデンを0.06〜
10原子%含有するバナジウムモリブデン合金ターゲッ
トを用いる場合に関しては、当該バナジウムモリブデン
合金ターゲットを反応性スパッタすることによって、全
圧0.5〜5Pa、基板温度250〜500℃、印加電
力2.5〜15W/cm2 、特に、電力に応じた酸素ガ
ス比率などを精密に制御することにより、−38℃〜6
7℃の間で特定の転移温度を持つ、ターゲット組成とよ
く対応した均質なV1-xMox2(x=0.0006〜
0.098)単一相薄膜が作製される。
In the present invention, molybdenum is added in an amount of 0.06 to 0.06.
In the case of using the vanadium molybdenum alloy target containing 10 atom%, the total pressure is 0.5 to 5 Pa, the substrate temperature is 250 to 500 ° C., and the applied power is 2.5 to 15 W by reactively sputtering the vanadium molybdenum alloy target. / Cm 2 , in particular, by precisely controlling the oxygen gas ratio depending on the electric power, -38 ° C to 6
A homogeneous V 1-x Mo x O 2 (x = 0.0006-
0.098) Single phase thin films are produced.

【0012】本発明においては、上記により作製される
薄膜の結晶相について、薄膜X線回析法(XRD)によ
って同定した。また、組成及び添加量は、ラザフォード
後方散乱分光法(RBS)によって精密に測定した。そ
して、分光光度計により、昇温時に薄膜が比較的にシャ
ープな調光性を示す波長領域内のある波長での透過率−
温度変化曲線を記録し、その温度変化曲線の中間点の温
度を転移温度と定義した。尚、転移温度は、昇温時にお
ける電気伝導率−温度変化曲線の中間点の温度と定義す
ることもできる。
In the present invention, the crystal phase of the thin film produced as described above was identified by the thin film X-ray diffraction method (XRD). The composition and the amount added were precisely measured by Rutherford backscattering spectroscopy (RBS). Then, with a spectrophotometer, the transmittance at a certain wavelength within a wavelength range where the thin film exhibits relatively sharp dimming property at the time of temperature increase-
The temperature change curve was recorded and the temperature at the midpoint of the temperature change curve was defined as the transition temperature. The transition temperature can also be defined as the temperature at the midpoint of the electric conductivity-temperature change curve during temperature increase.

【0013】上記のV1-xMox2(x=0.0006〜
0.098)薄膜に関して、添加量と温度降下との関係
を精密に決定したところ、xを0.010とするモリブ
デンの添加量に対して、約11℃の比率で直線的な温度
降下となることが判明した。モリブデンの添加量を制御
することによって、約11℃/原子%モリブデンの比率
で、−38℃〜67℃の間で転移温度が任意に設定され
る。
The above V 1-x Mo x O 2 (x = 0.0006-
0.098) Regarding the thin film, when the relationship between the added amount and the temperature drop was precisely determined, a linear temperature drop was obtained at a ratio of about 11 ° C. with respect to the added amount of molybdenum where x was 0.010. It has been found. By controlling the addition amount of molybdenum, the transition temperature is arbitrarily set between −38 ° C. and 67 ° C. at a ratio of about 11 ° C./atomic% molybdenum.

【0014】組成V1-xMox2に対して、モリブデンの
添加量がx≦0.098では相転移とともに調光性が認
められるが、x>0.098では相転移が認められず、
調光性が示されない。
With respect to the composition V 1-x Mo x O 2 , when the amount of molybdenum added is x ≦ 0.098, a dimming property is observed with a phase transition, but when x> 0.098, no phase transition is observed. ,
Dimming is not shown.

【0015】太陽光エネルギーの自動制御用調光素子を
目的とするV1-xMox2(x=0.0006〜0.09
8)薄膜については、最適な厚さが50nm〜100n
mとされる。本発明によって作製されるサーモクロミッ
ク材料は、その目的によって最適な膜厚に適宜変えられ
ることはいうまでもない。
V 1-x Mo x O 2 (x = 0.006 to 0.09) for a light control element for automatic control of solar energy
8) For thin films, the optimum thickness is 50 nm-100 n
m. It goes without saying that the thermochromic material produced by the present invention can be appropriately changed to have an optimum film thickness depending on its purpose.

【0016】また、V1-xMox2(x=0.0006〜
0.098)組成を有するサーモクロミック材料を保護
するための保護膜や、調光性能向上のための薄膜、例え
ば反射防止膜などで、適宜、サーモクロミック材料を更
に被膜することができる。
Further, V 1-x Mo x O 2 (x = 0.0006-
0.098) The thermochromic material can be further coated with a protective film for protecting the thermochromic material having a composition or a thin film for improving the dimming performance, for example, an antireflection film.

【0017】前記したように、本発明において、スパッ
タ条件、特に、酸素比率を精密制御することによって、
単斜晶の二酸化バナジウム単一相膜を形成し得ることが
分かった。また、モリブデンターゲットへの印加電力を
調整することによって、電力に応じた添加量が得られ、
あるいはモリブデンを特定量含有するバナジウムモリブ
デン合金のターゲットを使用することによって、合金タ
ーゲットの組成に応じた添加量が得られることが分かっ
た。更に、モリブデンの添加により、約11℃/原子%
モリブデンの比率で、転移温度を引き下げることができ
ることが分かった。
As described above, in the present invention, by precisely controlling the sputtering conditions, especially the oxygen ratio,
It has been found that a monoclinic vanadium dioxide single phase film can be formed. Also, by adjusting the power applied to the molybdenum target, the addition amount according to the power is obtained,
Alternatively, it was found that by using a vanadium molybdenum alloy target containing a specific amount of molybdenum, the addition amount according to the composition of the alloy target can be obtained. Furthermore, by adding molybdenum, approximately 11 ° C / atomic%
It was found that the transition temperature can be lowered by the ratio of molybdenum.

【0018】このように、本発明の製造方法によって作
製される材料は、優れたサーモクロミック特性を示すも
のであり、しかも、印加電力、及び酸素流量等を精密に
制御することにより、転移温度を−38℃〜67℃の間
で任意に調節し、設定することが可能であることから、
例えば、従来、その実用化が困難であった、窓コーティ
ング材などをはじめとする各種の太陽光エネルギーの自
動制御用調光素子などとして、極めて広範な領域での応
用を可能とするものである。尚、本発明者等の知るとこ
ろによれば、従来、薄膜の組成の均一性や添加量の精密
な制御を可能にするモリブデンの添加方法について具体
的に報告された例は見当たらず、本発明の方法により製
造されるサーモクロミック材料の上記の特性は、本発明
者等が各種実験を積み重ねた結果、一定の条件の下に得
られるものであることが分かったものであり、上記特性
の存在については、このような実験の結果、はじめて実
証されたものである。
As described above, the material produced by the production method of the present invention exhibits excellent thermochromic properties, and moreover, the transition temperature can be controlled by precisely controlling the applied power, the oxygen flow rate and the like. Since it is possible to arbitrarily adjust and set between -38 ° C and 67 ° C,
For example, it can be applied in an extremely wide range as a dimmer element for automatic control of various solar energy such as a window coating material, which has been difficult to put into practical use in the past. . According to the knowledge of the inventors of the present invention, no specific example of a method for adding molybdenum that enables precise control of the uniformity of the composition of the thin film and the addition amount has been found in the past. The above-mentioned characteristics of the thermochromic material produced by the method described above have been found to be obtained under certain conditions as a result of various experiments conducted by the present inventors. Was first demonstrated as a result of such an experiment.

【0019】[0019]

【実施例】続いて、本発明を実施例に基づいて具体的に
説明する。 実施例1 反応性マグネトロンスパッタ装置を用いて、反応性二元
同時スパッタ法により、スパッタ蒸着を行った。当該装
置には、2個のターゲットが設置され、それぞれのター
ゲットに高周波電源又は直流電源で任意に電力制御がで
きるものである。水冷されたターゲットには、純度9
9.9%、直径50mmの金属板を使い、基板との距離
は、100mmに保った。基板には、目的に応じて、ガ
ラス及びシリコン単結晶を使った。基板の加熱には、S
iCヒーターを使うことにより、酸素を含有する雰囲気
でも800℃まで加熱可能とした。真空系を1×10-4
Pa以下に排気し、アルゴンガスでプレ・スパッタした
後、独立したマスフローコントローラで所定の割合でア
ルゴンと酸素を導入して、全圧、酸素流量比、基板温度
及び印加電力などの主なスパッタ条件を制御しながら、
反応性スパッタを行った。
EXAMPLES Next, the present invention will be specifically described based on Examples. Example 1 Sputter deposition was performed by a reactive binary simultaneous sputtering method using a reactive magnetron sputtering device. Two targets are installed in the device, and each target can be arbitrarily controlled in power by a high frequency power source or a direct current power source. A water-cooled target has a purity of 9
A metal plate of 9.9% and a diameter of 50 mm was used, and the distance from the substrate was kept at 100 mm. Glass and silicon single crystal were used for the substrate depending on the purpose. To heat the substrate, use S
By using an iC heater, it was possible to heat up to 800 ° C even in an atmosphere containing oxygen. Vacuum system 1 × 10 -4
After evacuating to less than Pa and pre-sputtering with argon gas, argon and oxygen are introduced at a predetermined ratio by an independent mass flow controller, and the main sputtering conditions such as total pressure, oxygen flow rate ratio, substrate temperature and applied power. While controlling
Reactive sputtering was performed.

【0020】すなわち、直径50mm、純度99.9%
のバナジウムターゲットと同様規格のモリブデンターゲ
ットを、2.7%の酸素を含むアルゴンガス中にて、基
板温度400℃、全圧1.5Paで、スパッタを行っ
た。バナジウムターゲットにRF電力を200W、モリ
ブデンターゲットに8Wを印加することによって、ガラ
ス及びシリコン基板上に蒸着した厚さ80nmの膜から
なり、組成がV0.960Mo0.0402 であり、転移温度が
25℃の特性を有するサーモクロミック材料が得られ
た。V0.960Mo0.0402 膜のX線回析パターンを二酸
化バナジウムのそれと対比させて図1に示す。
That is, the diameter is 50 mm and the purity is 99.9%.
A molybdenum target having the same specifications as the vanadium target in Example 1 was sputtered in an argon gas containing 2.7% oxygen at a substrate temperature of 400 ° C. and a total pressure of 1.5 Pa. By applying RF power of 200 W to a vanadium target and 8 W to a molybdenum target, the film is composed of a film having a thickness of 80 nm deposited on glass and silicon substrates, has a composition of V 0.960 Mo 0.040 O 2 , and has a transition temperature of 25 ° C. A thermochromic material having the following characteristics was obtained. The X-ray diffraction pattern of the V 0.960 Mo 0.040 O 2 film is shown in FIG. 1 in contrast to that of vanadium dioxide.

【0021】得られたV0.960Mo0.0402 サーモクロ
ミック材料の透過率及び反射率スペクトルを図2に示
す。モリブデンを4.0原子%添加したことにより、薄
膜の転移温度が25℃となった。尚、転移温度より低い
温度(0℃)では、透過率、特に赤外透過率が高いとい
う半導体的特性を示したが、転移温度以上では(60
℃)、金属特性を示し、赤外透過率が大きく減少した。
更に、転移に際して可視光透過率がほとんど変りがな
く、つまり、目視では色が変らないという実用的観点か
ら非常に有用な特性を示した。
The transmittance and reflectance spectra of the V 0.960 Mo 0.040 O 2 thermochromic material obtained are shown in FIG. By adding 4.0 atom% of molybdenum, the transition temperature of the thin film became 25 ° C. At a temperature lower than the transition temperature (0 ° C.), semiconductor characteristics such as high transmissivity, especially infrared transmissivity were shown, but above the transition temperature (60 ° C.).
℃), showing the metal characteristics, the infrared transmittance was greatly reduced.
Further, it showed a very useful characteristic from the practical viewpoint that the visible light transmittance hardly changed during the transition, that is, the color did not change visually.

【0022】実施例2 合金ターゲットの反応性スパッタによるサーモクロミッ
ク材料の作製 合金ターゲットの反応性スパッタ法により、モリブデン
を3.5原子%含むバナジウムモリブデン合金ターゲッ
トを、RF電力200W、全圧1.5Pa、基板温度4
00℃、酸素比率2.7%の条件で、スパッタを行っ
た。ガラス及びシリコン基板上に蒸着した厚さ82nm
の膜からなり、組成がV0.965Mo0.0352であり、転移
温度が30℃の特性を有するサーモクロミック材料が得
られた。
Example 2 Preparation of Thermochromic Material by Reactive Sputtering of Alloy Target A vanadium molybdenum alloy target containing 3.5 atom% of molybdenum was produced by reactive sputtering of an alloy target, RF power of 200 W, total pressure of 1.5 Pa. , Substrate temperature 4
Sputtering was performed under the conditions of 00 ° C. and an oxygen ratio of 2.7%. 82 nm thickness deposited on glass and silicon substrates
A thermochromic material having a composition of V 0.965 Mo 0.035 O 2 and a transition temperature of 30 ° C. was obtained.

【0023】比較例1 上記実施例1において、バナジウムターゲットのみを使
って反応性スパッタ法を行った結果、RF電力200
W、全圧1.5Pa、基板温度400℃、酸素比率2.
7%の条件で、ガラス及びシリコン基板上に蒸着した厚
さ65nmの二酸化バナジウム単一相膜を作製した。得
られた二酸化バナジウム単一相膜は、転移温度が68℃
であった。
Comparative Example 1 As a result of carrying out the reactive sputtering method using only the vanadium target in the above Example 1, an RF power of 200 was obtained.
W, total pressure 1.5 Pa, substrate temperature 400 ° C., oxygen ratio 2.
Under the condition of 7%, a vanadium dioxide single-phase film having a thickness of 65 nm was deposited on glass and silicon substrates. The obtained vanadium dioxide single phase film has a transition temperature of 68 ° C.
Met.

【0024】比較例2 上記比較例1において、二酸化バナジウム単一相薄膜の
形成について、基板温度200℃にした場合、あるいは
全圧を6Paにした場合、いずれも酸化物の混合相が認
められ、二酸化バナジウム単一相の生成が認められなか
った。
Comparative Example 2 In Comparative Example 1 above, when forming the vanadium dioxide single-phase thin film at a substrate temperature of 200 ° C. or at a total pressure of 6 Pa, an oxide mixed phase was observed, No formation of a single phase of vanadium dioxide was observed.

【0025】以上、本発明を実施例に基づいて説明した
が、本発明は、前記した実施例に限定されるものではな
く、特許請求の範囲に記載した構成を変更しない限りど
のようにでも実施することができるものであることはい
うまでもない。
Although the present invention has been described above based on the embodiments, the present invention is not limited to the above-mentioned embodiments and can be carried out in any manner as long as the configuration described in the claims is not changed. It goes without saying that it can be done.

【0026】[0026]

【発明の効果】以上に説明したように、本発明は、バナ
ジウムとモリブデンのターゲットを反応性二元同時スパ
ッタ法により、また、バナジウムモリブデン合金のター
ゲットを反応性スパッタ法により、各々スパッタするこ
とにより、サーモクロミック材料を製造する方法に係る
ものであり、本発明によれば、モリブデンを添加した二
酸化バナジウムサーモクロミック調光材料について、確
実な金属添加法によって転移温度を−38〜67℃の間
で自由に調節、設定することを可能とすることができ
る。また、環境温度によって太陽光エネルギー透過率や
赤外透過率などが自動的に制御できるため、建築物の窓
ガラス、自動車の窓ガラス、更に温室窓ガラス用コーテ
ィングなどのほか、赤外透過率を温度変化によって自動
的に制御する必要のある種々の用途への利用など、広範
な分野での利用が期待されるものとなる。
As described above, according to the present invention, a target of vanadium and molybdenum is sputtered by a reactive binary simultaneous sputtering method, and a target of vanadium molybdenum alloy is sputtered by a reactive sputtering method. The present invention relates to a method for producing a thermochromic material, and according to the present invention, for a vanadium dioxide thermochromic dimming material to which molybdenum is added, a transition temperature between −38 to 67 ° C. is obtained by a reliable metal addition method. It is possible to freely adjust and set. In addition, the solar energy transmittance and infrared transmittance can be automatically controlled according to the ambient temperature, so it can be used for building window glass, automobile window glass, and greenhouse window glass coating, as well as infrared transmittance. It is expected to be used in a wide range of fields such as use in various applications that need to be automatically controlled by temperature changes.

【図面の簡単な説明】[Brief description of drawings]

【図1】VO2 及び本発明の実施例で作製したV0.960
Mo0.0402 薄膜のX線回析パターンを示す。
FIG. 1 VO 2 and V 0.960 prepared in an example of the present invention.
3 shows an X-ray diffraction pattern of a Mo 0.040 O 2 thin film.

【図2】本発明の実施例により作製されたV1-xMox2
(x=0.040)薄膜の透過率及び反射率スペクトル
を示す。
FIG. 2 is a V 1-x Mo x O 2 prepared according to an embodiment of the present invention.
2 shows the transmittance and reflectance spectra of a (x = 0.040) thin film.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 バナジウムターゲットとモリブデンター
ゲットを反応性二元同時スパッタすることを特徴とする
サーモクロミック材料の製造方法。
1. A method for producing a thermochromic material, which comprises subjecting a vanadium target and a molybdenum target to reactive binary co-sputtering.
【請求項2】 モリブデンを0.06〜10原子%含有
するバナジウムモリブデン合金のターゲットを反応性ス
パッタすることを特徴とするサーモクロミック材料の製
造方法。
2. A method for producing a thermochromic material, which comprises subjecting a target of a vanadium molybdenum alloy containing 0.06 to 10 atomic% of molybdenum to reactive sputtering.
【請求項3】 反応性スパッタを行う際の基板温度が2
50〜500℃の範囲であることを特徴とする請求項1
又は請求項2記載のサーモクロミック材料の製造方法。
3. The substrate temperature during the reactive sputtering is 2
The temperature is in the range of 50 to 500 ° C.
Alternatively, the method for producing the thermochromic material according to claim 2.
【請求項4】 反応性スパッタを行う際のスパッタ全圧
が0.5〜5Paの範囲であることを特徴とする請求項
1又は請求項2記載のサーモクロミック材料の製造方
法。
4. The method for producing a thermochromic material according to claim 1 or 2, wherein the total sputtering pressure during the reactive sputtering is in the range of 0.5 to 5 Pa.
JP6166182A 1994-06-24 1994-06-24 Method for producing thermochromic material Expired - Lifetime JP2764539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6166182A JP2764539B2 (en) 1994-06-24 1994-06-24 Method for producing thermochromic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6166182A JP2764539B2 (en) 1994-06-24 1994-06-24 Method for producing thermochromic material

Publications (2)

Publication Number Publication Date
JPH083546A true JPH083546A (en) 1996-01-09
JP2764539B2 JP2764539B2 (en) 1998-06-11

Family

ID=15826599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6166182A Expired - Lifetime JP2764539B2 (en) 1994-06-24 1994-06-24 Method for producing thermochromic material

Country Status (1)

Country Link
JP (1) JP2764539B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0800097A2 (en) * 1996-04-02 1997-10-08 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Solar protection glazing
JP2006030327A (en) * 2004-07-13 2006-02-02 National Institute Of Advanced Industrial & Technology Method for determining film thickness of light control layer of high-performance automatic light control and heat insulating glass
JP2007171759A (en) * 2005-12-26 2007-07-05 National Institute Of Advanced Industrial & Technology High performance vanadium dioxide-based automatic light control material and method for improving performance of light control material
JP2013028473A (en) * 2011-07-27 2013-02-07 Institute Of Physical & Chemical Research Electric control dimmer element
KR101278059B1 (en) * 2011-12-12 2013-06-24 삼성코닝정밀소재 주식회사 Manufacturing method of thermochromic glass

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5050294A (en) * 1973-08-01 1975-05-06
JPS62256743A (en) * 1982-02-01 1987-11-09 ピ−ピ−ジ−・インダストリ−ズ・インコ−ポレ−テツド Manufacture of thermochromic window glass

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2735147B2 (en) 1994-06-08 1998-04-02 工業技術院長 Manufacturing method of thermochromic material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5050294A (en) * 1973-08-01 1975-05-06
JPS62256743A (en) * 1982-02-01 1987-11-09 ピ−ピ−ジ−・インダストリ−ズ・インコ−ポレ−テツド Manufacture of thermochromic window glass

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0800097A2 (en) * 1996-04-02 1997-10-08 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Solar protection glazing
EP0800097A3 (en) * 1996-04-02 1998-06-10 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Solar protection glazing
JP2006030327A (en) * 2004-07-13 2006-02-02 National Institute Of Advanced Industrial & Technology Method for determining film thickness of light control layer of high-performance automatic light control and heat insulating glass
JP4665153B2 (en) * 2004-07-13 2011-04-06 独立行政法人産業技術総合研究所 Method for determining the film thickness of the light control layer
JP2007171759A (en) * 2005-12-26 2007-07-05 National Institute Of Advanced Industrial & Technology High performance vanadium dioxide-based automatic light control material and method for improving performance of light control material
JP2013028473A (en) * 2011-07-27 2013-02-07 Institute Of Physical & Chemical Research Electric control dimmer element
KR101278059B1 (en) * 2011-12-12 2013-06-24 삼성코닝정밀소재 주식회사 Manufacturing method of thermochromic glass

Also Published As

Publication number Publication date
JP2764539B2 (en) 1998-06-11

Similar Documents

Publication Publication Date Title
Jin et al. Formation and thermochromism of VO 2 films deposited by RF magnetron sputtering at low substrate temperature
Parkin et al. Intelligent thermochromic windows
Gagaoudakis et al. The influence of deposition parameters on room temperature ozone sensing properties of InOx films
US6132568A (en) Manufacturing method of samarium sulfide thin films
Chen et al. Blue shift of optical band gap in Er-doped ZnO thin films deposited by direct current reactive magnetron sputtering technique
Cui et al. Thermochromic properties of vanadium oxide films prepared by dc reactive magnetron sputtering
CN100406917C (en) Optical coatings and associated methods
Jin et al. V1− xMoxO2 thermochromic films deposited by reactive magnetron sputtering
JP2006206398A (en) Highly heat insulating dimming glass and method of manufacturing the same
Armstrong et al. Properties of zinc sulfur selenide deposited using a close-spaced sublimation method
JP2735147B2 (en) Manufacturing method of thermochromic material
Zhou et al. Microstructures and thermochromic characteristics of low-cost vanadium–tungsten co-sputtered thin films
Yang et al. Transmittance change with thickness for polycrystalline VO2 films deposited at room temperature
Chen et al. Influence of oxygen partial pressure on structural, electrical, and optical properties of Al-doped ZnO film prepared by the ion beam co-sputtering method
Sivakumar et al. Studies on the effect of substrate temperature on (VI–VI) textured tungsten oxide (WO3) thin films on glass, SnO2: F substrates by PVD: EBE technique for electrochromic devices
Chandra et al. Optical properties of transparent nanocrystalline Cu2O thin films synthesized by high pressure gas sputtering
CN107779820B (en) A kind of vanadium dioxide film and its low temperature deposition method
JP2764539B2 (en) Method for producing thermochromic material
Li et al. Effects of zirconium ions doping on the structural and thermochromic properties of VO 2 thin films
Ammar et al. Heat treatment effect on the structural and optical properties of AgInSe2 thin films
CN112331555A (en) Preparation method of vanadium dioxide film with adjustable thermal hysteresis loop
CN108796452B (en) Vanadium dioxide thin film and preparation method and application thereof
JP2023155281A (en) Composite tungsten oxide film, and film formation base material having the film, and article
JP7395826B2 (en) Composite tungsten oxide film, method for producing the same, and film-forming substrate and article having the film
Ji et al. Durability of VO2-based thin films at elevated temperature: Towards thermochromic fenestration

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term