JPH0835156A - Fiber mixture and fiber molded product and method for producing fiber molded product - Google Patents

Fiber mixture and fiber molded product and method for producing fiber molded product

Info

Publication number
JPH0835156A
JPH0835156A JP6163740A JP16374094A JPH0835156A JP H0835156 A JPH0835156 A JP H0835156A JP 6163740 A JP6163740 A JP 6163740A JP 16374094 A JP16374094 A JP 16374094A JP H0835156 A JPH0835156 A JP H0835156A
Authority
JP
Japan
Prior art keywords
fiber
crimp
composite
fibers
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6163740A
Other languages
Japanese (ja)
Inventor
Masuki Fujimoto
倍己 藤本
Isao Aoyanagi
功 青柳
Yoshihiro Konno
吉宏 近野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP6163740A priority Critical patent/JPH0835156A/en
Publication of JPH0835156A publication Critical patent/JPH0835156A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To obtain the lightweight and soft cushion material little in permanent set in fatigue setting and in compression residual strain, having good air permeability and moisture permeability, and comfortable in touch. CONSTITUTION:A modified PET as a thermoplastic polymer R1, PET as R2 and a modified PET having a melting point of 80-170 deg.C which is lower by at least 20 deg.C than the melting points of R1 and R2, as R3, are subjected to a bicomponent spinning treatment to obtain the latent crimping conjugate fiber having a fineness of 1-10 denier and a fiber length of 10-100mm, giving a crimp number N of 3-20 mountains / 25 mm and a crimping degree number ratio y expressed by an inequality of -0.07N+1.8<=y<=-0.07N+2 and also giving a crimp number of at least 30 mountains / 25mm and a crimping degree of at least 20% under a thermal treatment of 80-200 deg.C wherein R1 and R2 are adhered to each other in a R1/R2 weight ratio of 30/70 to 70/30 to form the core of the conjugate fiber, and wherein R3 is used in a R3/(R1+R2) weight ratio of 20/80 to 60/40 to form the sheath. 80-40wt.% of fibers having a melting point higher by at least 20 deg.C than that of the polymer R3, a fineness of 0.5-30 denier, a fiber length of 10-100mm, a crimp number of at least 3 mountains / 25mm, and a crimping degree of at least 5%, and 20-60wt.% of the conjugate are blended with each other, opened, blow-charged into an air-permeable mold frame, and subsequently thermally treated to obtain the molded product in which contact points between the fibers are fused.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電車・自動車などの車
両用シート中材・パット材・ドアトリム・サンバイザ
ー、寝装用ベッド中材・マットレス・こたつ、家具用ソ
ファー・クッション、その他フィルター・衣料用パッド
の素材など、主にクッション材として使用される、繊維
混合物およびこれを用いた繊維成形体並びに繊維成形体
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seat material, a pad material, a door trim, a sun visor, a seat bed material, a mattress, a kotatsu, a sofa for a furniture, a cushion, and other filters and clothes for vehicles such as trains and automobiles. The present invention relates to a fiber mixture mainly used as a cushioning material such as a pad material, a fiber molded body using the same, and a method for producing the fiber molded body.

【0002】[0002]

【従来の技術】従来、クッション材としては、一般にポ
リウレタンなどの樹脂発泡体が主に使用されてきた。し
かし、樹脂発泡体は発泡時にフロンガスまたはその代替
ガスを使用し、燃焼時には有毒ガスを発生するなど、環
境面で問題があった。また、通気性や透湿性が低く蒸れ
やすいうえに、雨や水飛沫のあたる場所に設置されたシ
ートなどに用いると、透水性が低いためにシートにあた
った雨や水飛沫が溜まり、シートの腐食や着座時に水が
滲みだして不快感を与えることがあった。
2. Description of the Related Art Conventionally, resin foam such as polyurethane has been mainly used as a cushion material. However, the resin foam has a problem in terms of environment, such as using CFC gas or its substitute gas during foaming and generating toxic gas during combustion. In addition, it has low breathability and moisture permeability, and it easily gets damp, and when it is used for a sheet installed in a place where rain or water splashes, rain and water splash hitting the sheet accumulates due to low water permeability, Water sometimes exuded when corroded or when sitting, causing discomfort.

【0003】これらの問題を解消するクッション材(繊
維詰め物材)が、特公昭62−2155号公報、特公平
1−18183号公報、特公平4−33478号公報、
特開平3−140185号公報などに提案されている。
これらのクッション材は、熱接着性の繊維として低融点
の繊維を使用したり、高融点の熱可塑性樹脂を芯部と
し、低融点の熱可塑性樹脂を鞘部とする、芯−鞘構造の
複合繊維を使用することにより、ある程度の成果をもた
らしはしたが、さらに向上が望まれている。
Cushion materials (fiber filling materials) for solving these problems are disclosed in Japanese Examined Patent Publication Nos. 62-2155, 1-18183, and 4-33478.
It is proposed in Japanese Patent Laid-Open No. 3-140185.
These cushioning materials use a low-melting point fiber as a heat-adhesive fiber, or use a high-melting point thermoplastic resin as a core part and a low-melting point thermoplastic resin as a sheath part. Although the use of fibers has produced some results, further improvement is desired.

【0004】[0004]

【発明が解決しようとする課題】本発明は、ソフトでへ
たりにくく快適な使用感を有し、しかも環境面で問題を
生じない繊維成形体を製造するのに適した繊維混合物、
繊維成形体の製造方法およびその繊維成形体を提供す
る。
DISCLOSURE OF THE INVENTION The present invention provides a fiber mixture suitable for producing a fiber molded product which is soft and has a comfortable feeling when used, and which does not cause environmental problems.
Provided are a method for producing a fiber molded body and the fiber molded body.

【0005】[0005]

【課題を解決するための手段】本発明は、前記の課題を
解決するために、2種の異なる成分の熱可塑性重合体R
1,R2 が、互いに重量比30/70〜70/30の範囲
で貼り合わされて複合繊維を構成し、さらに、融点が熱
可塑性重合体R1 およびR2 の融点よりも少なくとも2
0℃低く、かつ80〜170℃である、熱可塑性重合体
R3 が、重量比R3 /(R1 +R2 )を20/80〜6
0/40の範囲で、前記貼り合された複合繊維の表面側
に複合されている、潜在捲縮複合繊維Aを20〜60重
量%と、熱可塑性重合体R3 の融点より少なくとも20
℃高い融点を有する、繊維Bを80〜40重量%とから
構成されることを特徴とする、繊維混合物を提供する。
この繊維混合物の熱可塑性重合体R1 、R2 、R3 およ
び繊維Bにポリエステルを用いると、繊維成形体の製造
に好適である。また、複合繊維Aおよび繊維Bが共に捲
縮を付与され、複合繊維Aは、捲縮数Nが3〜20山/
25mm、卷縮度数比Yが−0.07N+1.8≦Y≦
−0.07N+2であり、かつ、温度80〜200℃の
熱処理により捲縮数が少なくとも30山/25mmおよ
び捲縮度が少なくとも25%に発現する、潜在捲縮複合
繊維であり、繊維Bは、捲縮数が少なくとも3山/25
mmで捲縮度が少なくとも5%であると、ソフトでへた
りにくい繊維成形体の製造に好適である。さらに、複合
繊維Aが、繊度1〜10デニール、繊維長10〜100
mmの短繊維であり、繊維Bが、繊度0.5〜30デニ
ール、繊維長10〜100mmの短繊維であると、良好
な繊維成形体を得ることができる。
In order to solve the above-mentioned problems, the present invention provides a thermoplastic polymer R of two different components.
1, R2 are bonded to each other in a weight ratio of 30/70 to 70/30 to form a composite fiber, and the melting point is at least 2 higher than the melting points of the thermoplastic polymers R1 and R2.
The thermoplastic polymer R3, which is 0 ° C lower and 80-170 ° C, has a weight ratio R3 / (R1 + R2) of 20 / 80-6.
In the range of 0/40, the latent crimped conjugate fiber A, which is compounded on the surface side of the laminated conjugate fiber, is 20 to 60% by weight, and at least 20 from the melting point of the thermoplastic polymer R3.
Provided is a fiber mixture, characterized in that it comprises 80 to 40% by weight of fiber B, which has a high melting point of ° C.
The use of polyester for the thermoplastic polymers R1, R2, R3 and fiber B of this fiber mixture is suitable for the production of fiber moldings. Further, both the composite fiber A and the fiber B are crimped, and the composite fiber A has a crimp number N of 3 to 20 peaks /
25 mm, shrinkage frequency ratio Y is -0.07N + 1.8 ≦ Y ≦
-0.07N + 2, which is a latent crimped composite fiber in which the number of crimps is at least 30 peaks / 25 mm and the crimping degree is expressed by at least 25% by heat treatment at a temperature of 80 to 200 ° C., and the fiber B is The number of crimps is at least 3 threads / 25
When the crimping degree in mm is at least 5%, it is suitable for the production of a soft and durable fiber molding. Further, the composite fiber A has a fineness of 1 to 10 denier and a fiber length of 10 to 100.
When the fiber B is a short fiber having a fineness of 0.5 to 30 denier and a fiber length of 10 to 100 mm, a good fiber molded product can be obtained.

【0006】また、本発明は、前記繊維混合物を熱処理
することにより、複合繊維A相互間および複合繊維Aと
繊維Bとの間の接触点の一部が、接着して成形されてい
ることを特徴とする繊維成形体を提供する。この繊維成
形体を構成する、複合繊維Aが少なくとも30山/25
mmの捲縮数と少なくとも25%の捲縮度とを有し、繊
維Bが少なくとも3山/25mmの捲縮数と少なくとも
5%の捲縮度とを有し、かつ、繊維成形体の密度が0.
02〜0.1g/cm3 であると、ソフトで良好な繊維
成形体を実現できるので好ましい。
Further, according to the present invention, a part of the contact points between the composite fibers A and between the composite fibers A and the fibers B are bonded and formed by heat-treating the fiber mixture. A characteristic fiber molding is provided. At least 30 peaks / 25 of composite fibers A constituting this fiber molded body
mm crimp number and at least 25% crimp degree, the fiber B has at least 3 peaks / 25 mm crimp number and at least 5% crimp degree, and the density of the fiber molded body. Is 0.
It is preferable that it is from 02 to 0.1 g / cm 3 because a soft and excellent fiber molded body can be realized.

【0007】さらに、本発明は、前記の繊維混合物を開
繊し、気体と共に通気性型枠内に吹き込んで充填し、密
度を0.02〜0.1g/cm3 としたものを、温度8
0〜200℃で熱処理することを特徴とする、繊維成形
体の製造方法を提供する。
Further, according to the present invention, the above-mentioned fiber mixture is opened, and is blown into the air-permeable mold together with gas to be filled therein, and the density is set to 0.02 to 0.1 g / cm 3.
Provided is a method for producing a fiber molded body, which comprises performing heat treatment at 0 to 200 ° C.

【0008】[0008]

【作用および実施態様例】以下、図面を参照しつつ、本
発明について実施態様例を挙げながら詳細に説明する。
本発明の繊維混合物は、複合繊維Aと繊維Bとから構成
され、繊維成形体は、複合繊維Aの相互間あるいは複合
繊維Aと繊維Bとの間の接触点の一部が融着して成形さ
れている。図1は、本発明に用いる複合繊維Aの一実施
態様例の横断面の模式図であって、(a)は同心型、
(b),(c)は偏心型、(d)はR3 がR1 とR2 と
の複合繊維の表面の一部を構成する形態、図2は、本発
明の繊維成形体の製造方法に用いられる金型の一例の斜
視図であって、図3は、図2に示す装置の縦断面図であ
る。
Actions and Embodiments The present invention will be described in detail below with reference to the drawings and embodiments.
The fiber mixture of the present invention is composed of the composite fiber A and the fiber B, and the fiber molded body has some contact points between the composite fibers A or between the composite fibers A and B fused together. It is molded. FIG. 1 is a schematic cross-sectional view of an embodiment of the conjugate fiber A used in the present invention, in which (a) is a concentric type,
(B) and (c) are eccentric types, (d) is a form in which R3 constitutes a part of the surface of the composite fiber of R1 and R2, and FIG. 2 is used in the method for producing a fiber molded body of the present invention. It is a perspective view of an example of a metal mold | die, FIG. 3 is a longitudinal cross-sectional view of the apparatus shown in FIG.

【0009】本発明に用いる複合繊維Aは、主に熱可塑
性重合体R1,R2,R3 の3成分からなり、2種の異なる
成分の熱可塑性重合体R1 とR2 を貼り合わせた複合繊
維の表面側に、さらに熱可塑性重合体R3 を複合した構
造を持ち、熱処理により高い捲縮を発現する。また、熱
処理により、他の繊維にあるいは複合繊維Aに融着する
性質、すなわち熱接着性を有している。ここで、2種の
異なる成分の熱可塑性重合体R1 およびR2 の組合せ
は、熱処理により高い捲縮を発現させるために、繊維状
に形成された後、熱水や乾熱処理で収縮率差が発揮され
る組合せであることが望ましい。
The composite fiber A used in the present invention is mainly composed of three components of thermoplastic polymers R1, R2 and R3, and the surface of the composite fiber obtained by laminating two different components of the thermoplastic polymer R1 and R2. It has a structure in which a thermoplastic polymer R3 is further compounded on the side, and develops a high crimp by heat treatment. Further, it has a property of being fused to another fiber or to the composite fiber A by heat treatment, that is, thermal adhesiveness. Here, the combination of two different kinds of thermoplastic polymers R1 and R2, after being formed into a fibrous shape in order to develop a high crimp by heat treatment, shows a difference in shrinkage rate with hot water or dry heat treatment. It is desirable that the combination is

【0010】熱可塑性重合体R1 としては、例えば、ポ
リエチレンテレフタレート、ポリブチレンテレフタレー
ト、ポリヘキサメチレンテレフタレート等の炭素数2〜
8のメチレン基を有するポリアルキレンテレフタレー
ト;4−又は5−ナトリウムスルホイソフタル酸、5−
カリウムスルホイソフタル酸、4−ナトリウムスルホ
2,6−ナフタレンジカルボン酸等の金属スルホネート
基を有する芳香族ジカルボン酸;イソフタル酸、フタル
酸、2,6−ナフタレンジカルボン酸等の芳香族ジカル
ボン酸;アジピン酸、セバチン酸等の脂肪族ジカルボン
酸等を共重合したポリアルキレンテレフタレート;プロ
ピレングリコール、1,4−ブタンジオール、ジエチレ
ングリコール等のグリコールを共重合したポリアルキレ
ンテレフタレート;ペンタエリスリトール等のポリオー
ルを共重合したポリアルキレンテレフタレート;ポリエ
チレングリコール、ポリプロピレングリコール、ポリテ
トラメチレングリコール等のポリアルキレングリコール
を共重合したポリアルキレンテレフタレート;ヒドロキ
シ安息香酸等のオキシ酸を共重合したポリアルキレンテ
レフタレート等、種々のポリエステルを挙げることがで
きる。これらの共重合成分による変性率は15モル%以
下であることが好ましい。上記のなかでも、好ましく用
いられるのは、エチレンテレフタレート単位を主たる構
成単位とする共重合ポリエステルである。さらに好まし
いものは、共重合成分として、イソフタル酸、フタル
酸、オキシ安息香酸、ビスフェノールA等を用いたポリ
エチレンテレフタレート系共重合ポリエステルである。
Examples of the thermoplastic polymer R1 include, for example, polyethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate and the like having 2 to 2 carbon atoms.
Polyalkylene terephthalate having 8 methylene groups; 4- or 5-sodium sulfoisophthalic acid, 5-
Aromatic dicarboxylic acids having a metal sulfonate group such as potassium sulfoisophthalic acid and 4-sodium sulfo-2,6-naphthalenedicarboxylic acid; aromatic dicarboxylic acids such as isophthalic acid, phthalic acid and 2,6-naphthalenedicarboxylic acid; adipic acid , Polyalkylene terephthalate copolymerized with aliphatic dicarboxylic acid such as sebacic acid; polyalkylene terephthalate copolymerized with glycol such as propylene glycol, 1,4-butanediol, diethylene glycol; polycopolymerized with polyol such as pentaerythritol Alkylene terephthalate; Polyalkylene terephthalate obtained by copolymerizing polyalkylene glycol such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol; Hydroxybenzoic acid, etc. Polyalkylene terephthalate obtained by copolymerizing acid, and various polyesters. The modification ratio with these copolymerization components is preferably 15 mol% or less. Among the above, preferably used is a copolyester having an ethylene terephthalate unit as a main constituent unit. More preferred is a polyethylene terephthalate-based copolyester using isophthalic acid, phthalic acid, oxybenzoic acid, bisphenol A or the like as a copolymerization component.

【0011】熱可塑性重合体R2 としては、R1 との組
み合わせにより十分な潜在捲縮を繊維に付与せしめるも
のであれば特に限定されない。ポリエステルの他にも、
例えば、6−ナイロン、66−ナイロン、610−ナイ
ロン、109−ナイロン、11−ナイロン、12−ナイ
ロン等のポリアミドを挙げることができるが、ポリエチ
レンテレフタレートが好ましく用いられる。
The thermoplastic polymer R2 is not particularly limited as long as it can give a sufficient latent crimp to the fiber in combination with R1. Besides polyester,
Examples thereof include polyamides such as 6-nylon, 66-nylon, 610-nylon, 109-nylon, 11-nylon and 12-nylon, but polyethylene terephthalate is preferably used.

【0012】熱可塑性重合体R1,R2 の組み合わせは、
高い潜在捲縮を繊維に付与せしめるものであれば任意に
選択できる。好ましくはポリエステル同志の組み合わせ
がよい。また、熱可塑性重合体R1 およびR2 の固有粘
度は、特に限定されるものではないが、R1 で0.45
〜0.65、R2 で0.55〜0.7程度が好ましい。
The combination of the thermoplastic polymers R1 and R2 is
Any material can be selected as long as it can impart a high latent crimp to the fiber. A combination of polyesters is preferable. The intrinsic viscosity of the thermoplastic polymers R1 and R2 is not particularly limited, but R1 is 0.45
˜0.65, and R2 is preferably about 0.55 to 0.7.

【0013】熱可塑性重合体R3 としては、例えば、ポ
リエチレン、ポリプロピレン、エチレンプロピレン共重
合体、エチレンブテン共重合体、エチレンブテン共重合
体、エチレン酢酸ビニル共重合体等のポリオレフィンあ
るいはオレフィン共重合体;ポリヘキサメチレンテレフ
タレート、ポリヘキサメチレンブチレンテレフタレー
ト、ポリヘキサメチレンテレフタレートイソフタレート
等のポリエステルあるいは共重合ポリエステル等の熱可
塑性ポリマーから選ばれる、少なくとも一種類のポリマ
ーを挙げることができる。熱可塑性重合体R3 の選択に
おいて、その融点は、前記の熱可塑性重合体R1 ,R2
の融点より20℃以上低いことが必要である。融点が高
すぎると、繊維成形体の製造において熱処理を施した場
合に、熱融着による繊維間の熱接着性が十分に得られな
いことがある。
Examples of the thermoplastic polymer R3 include polyolefins such as polyethylene, polypropylene, ethylene propylene copolymer, ethylene butene copolymer, ethylene butene copolymer, ethylene vinyl acetate copolymer and olefin copolymers; At least one polymer selected from thermoplastic polymers such as polyesters such as polyhexamethylene terephthalate, polyhexamethylene butylene terephthalate and polyhexamethylene terephthalate isophthalate or copolymerized polyesters can be mentioned. In selecting the thermoplastic polymer R3, its melting point depends on the thermoplastic polymer R1, R2 described above.
It is necessary to be 20 ° C. or more lower than the melting point of If the melting point is too high, when the heat treatment is performed in the production of the fiber molded body, the thermal adhesion between the fibers due to the heat fusion may not be sufficiently obtained.

【0014】複合繊維Aにおける熱可塑性重合体の重量
比R1 /R2 は、好ましくは30/70〜70/30、
さらに好ましくは40/60〜60/40である。R1
またはR2 のいずれかが30重量%未満になると、R1,
R2 の捲縮発現能力が低下し、目的とするソフトで応力
損失の低い繊維成形体が得られにくくなる傾向にある。
また、重量比が50/50から外れるに従って、紡糸口
金の吐出部でニーリング現象を起こす傾向にあるので、
重量比R1 /R2 を45/55〜55/45とすること
が、紡糸安定性および品質面で好ましい。
The weight ratio R1 / R2 of the thermoplastic polymer in the composite fiber A is preferably 30/70 to 70/30,
More preferably, it is 40/60 to 60/40. R1
Or if either of R2 is less than 30% by weight, R1,
The crimping ability of R2 is lowered, and it tends to be difficult to obtain a desired fiber molding having a low stress loss.
In addition, as the weight ratio deviates from 50/50, a kneading phenomenon tends to occur at the discharge part of the spinneret,
The weight ratio R1 / R2 of 45/55 to 55/45 is preferable in terms of spinning stability and quality.

【0015】熱可塑性重合体R1,R2,R3 の重量比R3
/(R1 +R2 )は、好ましくは20/80〜60/4
0、さらに好ましくは20/80〜50/50の範囲が
よい。熱可塑性重合体R3 の重量比が20%未満になる
と、繊維間の熱接着性が十分に得られなくなり、製造し
た繊維成形体の形態安定性が悪くなる。一方、60%を
越えると、繊維成形体のソフト感が得られにくくなると
同時に圧縮残留歪が大きくなる。
Weight ratio R3 of the thermoplastic polymers R1, R2, R3
/ (R1 + R2) is preferably 20/80 to 60/4
0, and more preferably 20/80 to 50/50. When the weight ratio of the thermoplastic polymer R3 is less than 20%, the thermal adhesiveness between the fibers cannot be sufficiently obtained, and the morphological stability of the produced fiber molding is deteriorated. On the other hand, if it exceeds 60%, it becomes difficult to obtain the soft feeling of the fiber molded body, and at the same time, the compression residual strain increases.

【0016】熱可塑性重合体R1,R2 の複合形態は、R
1,R2 を貼り合わせた構造、特にサイドバイサイド型の
構造にすると、潜在三次元捲縮が発現しやすいので好ま
しい。熱可塑性重合体R3 は、R1 とR2 との複合繊維
の表面側に複合されていればよい。例えば、R1 とR2
との複合繊維を芯としR3 を鞘とする、同心型芯−鞘構
造(図1a)または偏心型芯−鞘構造(図1b,c)、
あるいは熱可塑性重合体R3 がR1 とR2 との複合繊維
の表面の一部を構成する構造(図1d)とすることがで
きる。複合繊維Aには、この他必要に応じてR1 〜R3
以外の重合体成分、顔料、耐候剤などを、本来の機能を
喪失しないかぎり、複合や混合などにより添加すること
ができる。このような複合繊維Aは、複合紡糸によって
製造することができる。
The composite form of the thermoplastic polymers R1 and R2 is R
A structure in which 1, R 2 are bonded together, particularly a side-by-side structure, is preferable because latent three-dimensional crimps are easily developed. The thermoplastic polymer R3 may be compounded on the surface side of the composite fiber of R1 and R2. For example, R1 and R2
A concentric core-sheath structure (Fig. 1a) or an eccentric core-sheath structure (Figs. 1b, c) in which the composite fiber of Fig.
Alternatively, the structure may be such that the thermoplastic polymer R3 constitutes a part of the surface of the composite fiber of R1 and R2 (FIG. 1d). In addition to the above, the composite fiber A may have R1 to R3 as necessary.
Other polymer components, pigments, weatherproofing agents, etc. can be added by complexing or mixing unless the original function is lost. Such a composite fiber A can be manufactured by composite spinning.

【0017】次に、本発明の繊維成形体にソフト感を付
与し、圧縮に対する応力損失を低くするためには、複合
繊維Aが、三次元捲縮を発現する必要がある。その捲縮
の発現の目安は、複合繊維Aに無加重下で温度80℃以
上の熱処理を施すことにより発現する、構造差による三
次元捲縮−例えばスパイラル状の捲縮−を、捲縮数30
山/25mm以上、捲縮度25%以上とすることが望ま
しい。しかし、この捲縮は潜在タイプにすることが望ま
しい。繊維成形体を製造する前の繊維の状態でこの捲縮
が発現していると、繊維同志の絡み合いが強すぎて、均
一な密度の繊維成形体が得られにくい。しかし、繊維成
形体の製造工程での繊維の取り扱い性をよくし、潜在捲
縮の発現性を高めるために、捲縮発現処理前に一定の範
囲で捲縮を付与しておくことが好ましい。その捲縮数N
(この捲縮は機械捲縮が主体で、その他に若干の発現捲
縮を含むが、以下、単に機械捲縮という)を、3〜20
山/25mm、好ましくは3〜15山/25mm、捲縮
度数比Yを、−0.07N+1.8≦Y≦−0.07N
+2に限定することにより、目標の三次元捲縮を発現さ
せることができる。複合繊維Aの機械捲縮数Nが3山/
25mmより少ないと、繊維成形体の製造工程での繊維
の取り扱い性が悪く、潜在捲縮の捲縮発現性も悪くな
る。また、20山/25mmを越えると、繊維同志の絡
み合いが強すぎて、均一な密度の繊維成形体が得られ難
くなる。また、機械捲縮の捲縮度数比Yが−0.07N
+1.8を下まわると、繊維成形体の製造工程での繊維
の取り扱い性が悪く、潜在捲縮の発現性も悪くなる。一
方、−0.07N+2を越えると、繊維同志の絡み合い
が強すぎて、均一な密度の繊維成形体が得られ難くな
る。
Next, in order to impart a soft feeling to the fiber molded article of the present invention and reduce the stress loss due to compression, the composite fiber A must exhibit three-dimensional crimps. The crimp is expressed by the number of crimps, which is a three-dimensional crimp due to a structural difference, for example, a spiral crimp, which is developed by subjecting the composite fiber A to a heat treatment at a temperature of 80 ° C. or more without weighting. Thirty
It is preferable that the height is 25 mm or more and the crimping degree is 25% or more. However, it is desirable to make this crimp a latent type. When this crimp is developed in the state of the fibers before the fiber molded body is manufactured, the entanglement of the fibers is too strong, and it is difficult to obtain a fiber molded body having a uniform density. However, in order to improve the handleability of the fibers in the manufacturing process of the fiber molded body and enhance the latent crimp development, it is preferable to provide crimps within a certain range before the crimp development treatment. The crimp number N
(This crimp is mainly a mechanical crimp, and in addition to this, some crimps are expressed, but hereinafter, it is simply referred to as a mechanical crimp).
Crests / 25 mm, preferably 3 to 15 crests / 25 mm, and crimp frequency ratio Y of -0.07N + 1.8≤Y≤-0.07N
By limiting to +2, the target three-dimensional crimp can be expressed. The number of mechanical crimps N of the composite fiber A is 3 peaks /
When it is less than 25 mm, the handling property of the fiber in the manufacturing process of the fiber molded product is poor and the crimp expression of the latent crimp is also poor. On the other hand, when it exceeds 20 peaks / 25 mm, the entanglement of the fibers is too strong, and it becomes difficult to obtain a fiber molded body having a uniform density. Further, the crimp frequency ratio Y of the mechanical crimp is -0.07N.
When it is less than +1.8, the handleability of the fiber in the manufacturing process of the fiber molded product is poor, and the latent crimp developability is also poor. On the other hand, when it exceeds -0.07N + 2, the entanglement of fibers is too strong, and it becomes difficult to obtain a fiber molded product having a uniform density.

【0018】このような潜在捲縮複合繊維Aは、熱可塑
性重合体R1,R2 の固有粘度差、延伸工程での定長熱処
理条件、機械捲縮付与時のトウ温度、押圧、機械捲縮付
与後の捲縮固定のための弛緩熱処理条件などを適正に選
ぶことによって得ることができる。例えば、熱可塑性重
合体R1 として極限粘度0.65〜0.69のポリエス
テルを、R2 として極限粘度0.53〜0.69のポリ
エステルを、R3 として極限粘度0.50〜0.60の
ポリエステルを用い、これら3成分を複合紡糸して、適
正倍率で延伸後、R3 の融点より20℃以上低い温度で
定長熱処理を行って、発現捲縮を潜在化させる。その
後、スタフィングボックス型クリンパなどのクリンパを
用いて機械捲縮を付与し、次いでR3 の融点より20℃
以上低い温度で弛緩熱処理を行って、機械捲縮を固定さ
せる。なお、弛緩熱処理工程で潜在化させた三次元捲縮
を顕在化させないためには、トウ温度を常温から95℃
の範囲として機械捲縮を付与した後、トウの集束性を乱
さないように弛緩熱処理する必要がある。また、弛緩熱
処理温度を定長熱処理温度より低めに設定することは、
繊維成形体の製造において、三次元捲縮が繊維段階では
潜在化していて、繊維成形体の段階で顕在化するために
重要である。
The latent crimped conjugate fiber A has such a difference in intrinsic viscosity of the thermoplastic polymers R1 and R2, a constant length heat treatment condition in the stretching step, a tow temperature at the time of mechanical crimping, pressure, mechanical crimping. It can be obtained by appropriately selecting the relaxation heat treatment conditions for the subsequent crimp fixing. For example, a polyester having an intrinsic viscosity of 0.65 to 0.69 is used as the thermoplastic polymer R1, a polyester having an intrinsic viscosity of 0.53 to 0.69 is used as R2, and a polyester having an intrinsic viscosity of 0.50 to 0.60 is used as R3. These three components are subjected to composite spinning, stretched at an appropriate ratio, and then subjected to a constant length heat treatment at a temperature 20 ° C. or more lower than the melting point of R3 to make the expression crimp latent. After that, mechanical crimping is applied using a crimper such as a stuffing box type crimper, and then 20 ° C from the melting point of R3.
Relaxing heat treatment is performed at the above low temperature to fix the mechanical crimp. In addition, in order to prevent the three-dimensional crimp hidden in the relaxation heat treatment step from being revealed, the tow temperature is changed from room temperature to 95 ° C.
After the mechanical crimping is applied in the above range, it is necessary to perform a relaxation heat treatment so as not to disturb the focusing property of the tow. Also, setting the relaxation heat treatment temperature lower than the constant length heat treatment temperature
In the production of fiber molded products, three-dimensional crimps are latent at the fiber stage and are important because they become apparent at the fiber molded product stage.

【0019】繊維混合物を構成する複合繊維Aとして
は、繊度が1〜10デニール、繊維長が10〜100m
mの短繊維が好ましく用いられる。1デニールより細い
場合は、繊維と繊維の接触点において、低融点成分であ
る熱可塑性重合体R3 の量が相対的に少なくなり、熱接
着による形態安定性が悪くなると同時に、潜在捲縮が十
分発現せず、繊維成形体のソフト感が損なわれたり、圧
縮に対する応力損失を少なくできなくなる。10デニー
ルを超えると、融点の高い繊維Bの短繊維と複合繊維A
の短繊維との接触点および複合繊維Aの短繊維間の接触
点が相対的に減少し、熱接着ムラにより均質な繊維成形
体が得られ難くなる。また、繊維長が10mmより短い
と、繊維間の絡合性が悪くなり、繊維成形体を薄くした
場合に形状を保持しにくくなる。100mmより長い
と、繊維が絡み合い過ぎて、開繊・混綿性が悪くなり、
均一な密度の繊維成形体が得られにくい。
The composite fiber A constituting the fiber mixture has a fineness of 1 to 10 denier and a fiber length of 10 to 100 m.
m short fibers are preferably used. If the thickness is less than 1 denier, the amount of the thermoplastic polymer R3, which is a low-melting point component, becomes relatively small at the contact points between fibers, and the morphological stability due to heat adhesion deteriorates, and at the same time the latent crimping is sufficient. It does not occur, the soft feeling of the fiber molded product is impaired, and the stress loss due to compression cannot be reduced. If it exceeds 10 denier, the short fiber of the fiber B having a high melting point and the composite fiber A
The contact points with the short fibers and the contact points between the short fibers of the composite fiber A are relatively decreased, and it becomes difficult to obtain a homogeneous fiber molded body due to uneven thermal bonding. When the fiber length is shorter than 10 mm, the entanglement between the fibers is deteriorated, and it becomes difficult to maintain the shape when the fiber molded body is made thin. If it is longer than 100 mm, the fibers will be entangled too much, resulting in poor spreadability / blendability,
It is difficult to obtain a fiber molded body having a uniform density.

【0020】複合繊維Aと混合する繊維Bは、熱可塑性
重合体R3 より20℃以上高い融点を有するものであれ
ば、他に特別の制限はない。例えば、ポリエステル、ポ
リアミド、ポリアクリル、ポリプロピレン、ポリ塩化ビ
ニルなどの合成繊維;アセテートなどの半合成繊維;レ
ーヨン、キュプラなどの再生繊維;木綿、麻、絹、羊毛
などの天然繊維;あるいはこれらの繊維を混用したもの
を使用することができる。なかでも、ポリエステルは、
圧縮特性(圧縮回復性)、熱接着形態固定性、難燃性に
優れ、燃焼ガスの毒性が低く、リサイクルできるなどの
総合的な面で、好ましい材料である。
The fiber B to be mixed with the conjugate fiber A is not particularly limited as long as it has a melting point higher than that of the thermoplastic polymer R3 by 20 ° C. or more. For example, synthetic fibers such as polyester, polyamide, polyacryl, polypropylene and polyvinyl chloride; semi-synthetic fibers such as acetate; regenerated fibers such as rayon and cupra; natural fibers such as cotton, hemp, silk and wool; or these fibers Can be used as a mixture. Among them, polyester is
It is a preferable material in terms of overall characteristics such as excellent compression characteristics (compression recovery property), heat-bonding form fixing property, flame retardancy, low toxicity of combustion gas, and recyclability.

【0021】繊維Bの捲縮は、繊維成形体の用途によっ
て適宜選択すればよく、嵩高性、ソフト感、圧縮に対す
る回復性を良くするためには、捲縮数が3山/25mm
以上、捲縮度が5%以上であると好ましい。
The crimp of the fiber B may be appropriately selected depending on the use of the fiber molding, and the number of crimps is 3 ridges / 25 mm in order to improve the bulkiness, softness and recovery property against compression.
As described above, the crimping degree is preferably 5% or more.

【0022】繊維Bとしては、繊度が0.5〜30デニ
ール、繊維長が10〜100mmの短繊維が好ましく用
いられる。0.5デニールより細いと、繊維の嵩が低く
なったり、繊維成形体の密度のわりに圧縮に対する抵抗
が低くなり、かつ圧縮回復性も低下する。また、30デ
ニールより太くなると、触感が粗硬になりがちである。
繊維長が10mmより短いと、繊維間の絡合性が悪くな
り、繊維成形体を薄くした場合に形状を保持しにくくな
る。繊維長が100mmより長いと、開綿、混綿性が悪
くなり、均一な密度の繊維成形体を得にくくなる。
As the fiber B, a short fiber having a fineness of 0.5 to 30 denier and a fiber length of 10 to 100 mm is preferably used. When it is thinner than 0.5 denier, the bulk of the fiber becomes low, the resistance to compression becomes low in spite of the density of the fiber molded body, and the compression recovery property also deteriorates. If it is thicker than 30 denier, the texture tends to be coarse and hard.
When the fiber length is shorter than 10 mm, the entanglement between the fibers deteriorates, and it becomes difficult to maintain the shape when the fiber molded body is thin. If the fiber length is longer than 100 mm, the ability to open and mix is deteriorated, and it becomes difficult to obtain a fiber molded product having a uniform density.

【0023】本発明の繊維混合物は、前記の潜在捲縮複
合繊維Aを20〜60重量%と繊維Bを80〜40重量
%とから構成される。複合繊維Aが20重量%未満であ
ると、繊維同志の熱接着が不十分になって形態安定性が
悪くなる。また、60重量%以上では、繊維成形体のソ
フト感が低下し、感触が粗硬になる。前記の重量比の複
合繊維Aと繊維Bとを、通常の紡績工程で使用する給綿
機、混綿機、開繊機を通して、十分に混綿、開繊し、繊
維混合物を得る。十分に混綿、開繊することにより、繊
維成形体の密度や硬度を均一にし、かつ、複合繊維Aの
潜在捲縮を十分に発現させてソフト感、対圧縮疲労性を
高めることができる。
The fiber mixture of the present invention comprises 20 to 60% by weight of the latently crimped composite fiber A and 80 to 40% by weight of the fiber B. When the content of the composite fiber A is less than 20% by weight, the thermal adhesion between the fibers becomes insufficient and the morphological stability becomes poor. On the other hand, when it is 60% by weight or more, the soft feeling of the fiber molded article is deteriorated and the feel becomes coarse and hard. The composite fiber A and the fiber B having the above weight ratio are sufficiently mixed and opened through a cotton feeding machine, a cotton mixing machine and a fiber opening machine used in a usual spinning process to obtain a fiber mixture. By sufficiently mixing and opening the fibers, the density and hardness of the fiber molded body can be made uniform, and the latent crimp of the composite fiber A can be sufficiently expressed to enhance the soft feeling and the compression fatigue resistance.

【0024】このようにして得られた本発明の繊維混合
物は、目的に応じた形状の型枠に充填し、熱処理して、
本発明の繊維成形体に加工することができる。好ましい
具体的な加工方法としては、例えば、目的に応じた形状
の形枠に、送綿ファンによる空気流などの気体と共に、
繊維混合物を吹き込んで充填するとよい。吹き込んで充
填するためには、型枠が、適度の通気性を有する必要が
ある。通気性は、例えば、JIS L1079−196
6フラジール型通気性試験機により測定した場合、5〜
200cc/cm2 ・secの範囲が好ましい。このよ
うな型枠としては、例えば、図2に示すパンチング金属
板を用いた金型4,5を用いることができる。通気性型
枠内に吹き込まれた繊維は、タテ、ヨコ、厚み方向にラ
ンダムに配列した状態となる。
The fiber mixture of the present invention thus obtained is filled in a mold having a shape suitable for the purpose, heat-treated,
The fiber molded body of the present invention can be processed. As a preferred specific processing method, for example, in a frame having a shape according to the purpose, together with a gas such as an air flow by a cotton feeding fan,
It is advisable to blow and fill the fiber mixture. In order to blow and fill, it is necessary that the formwork has an appropriate air permeability. Breathability is, for example, JIS L1079-196.
6 When measured with Frazier type breathability tester,
The range of 200 cc / cm 2 · sec is preferable. As such a mold, for example, the molds 4 and 5 using the punching metal plate shown in FIG. 2 can be used. The fibers blown into the air-permeable mold are vertically, horizontally and randomly arranged in the thickness direction.

【0025】次に、充填した繊維混合物を圧縮して、得
ようとする繊維成形体の用途に応じた適当な密度にす
る。密度は、0.02〜0.10g/cm3 であると好
ましい。密度が0.02g/cm3 未満では、繊維成形
体がソフトすぎて形態安定性が悪くなり、希望の形状に
裁断、成型し難くなる。また、0.10g/cm3 を越
えると、繊維成形体のソフト感が低下する。
Next, the filled fiber mixture is compressed to a suitable density according to the intended use of the fiber molded body to be obtained. The density is preferably 0.02 to 0.10 g / cm 3 . When the density is less than 0.02 g / cm 3 , the fiber molded body is too soft and the shape stability is deteriorated, and it becomes difficult to cut and mold it into a desired shape. On the other hand, when it exceeds 0.10 g / cm 3 , the soft feeling of the fiber molded product is deteriorated.

【0026】圧縮した充填物を熱処理して、複合繊維A
相互および複合繊維Aと繊維Bとの接触点の一部を接着
して形態を固定する。熱処理の温度は、複合繊維Aが接
着し、潜在捲縮が十分発現する温度であればよく、一般
的には、80〜200℃が好ましい。また、複合繊維A
の潜在捲縮が、捲縮数30山/25mm以上、捲縮度2
5%以上に発現すると、ソフトでへたりにくい繊維成形
体となる。
The compressed packing is heat treated to give a composite fiber A.
The morphology is fixed by adhering some of the contact points between each other and the composite fiber A and the fiber B. The temperature of the heat treatment may be a temperature at which the composite fiber A is bonded and the latent crimp is sufficiently developed, and generally 80 to 200 ° C. is preferable. In addition, composite fiber A
The latent crimp of 30 crimps / 25 mm or more, crimp degree 2
When it is expressed in 5% or more, it becomes a soft and hard fiber molding.

【0027】[0027]

【実施例】次に本発明を実施例によりさらに具体的に説
明する。本発明に記述した諸特性の測定法は次の通りで
ある。
EXAMPLES Next, the present invention will be described more specifically by way of examples. The measuring methods of various characteristics described in the present invention are as follows.

【0028】(1)複合繊維Aの構造差捲縮の捲縮数お
よび捲縮度 複合繊維Aの短繊維100gをオープナーで開繊後、ロ
ーラーカードでカーディングしてウエッブを作り、この
ウエッブを20×20cmの大きさに切断し、該ウエッ
ブ25gを180℃のオーブンで3分間熱処理した。熱
処理後、ウエッブの中央部から、10〜20本の短繊維
を、機械捲縮が引き伸ばされないように取りだし、JI
S L1015−7−12−1およびJIS L101
5−7−12−2の方法に準じて測定した。
(1) Structure difference of composite fiber A Number of crimps and crimp degree 100 g of short fibers of composite fiber A are opened with an opener and carded with a roller card to make a web. It was cut into a size of 20 × 20 cm, and 25 g of the web was heat-treated in an oven at 180 ° C. for 3 minutes. After the heat treatment, 10 to 20 short fibers were taken out from the center of the web so that the mechanical crimp would not be stretched.
S L1015-7-12-1 and JIS L101
It measured according to the method of 5-7-12-2.

【0029】(2)機械捲縮の捲縮数および機械捲縮の
捲縮度数比 機械捲縮の捲縮数および機械捲縮の捲縮度は、JIS
L1015−7−12−1およびJIS L1015−
7−12−2の方法に準じて測定した。機械捲縮の捲縮
度数比は前記方法で測定した機械捲縮の捲縮度を機械捲
縮の捲縮数で除した値とした。
(2) Ratio of crimp number of mechanical crimp and crimp frequency of mechanical crimp The crimp number of mechanical crimp and crimp degree of mechanical crimp are JIS.
L1015-7-12-1 and JIS L1015
It measured according to the method of 7-12-2. The crimp frequency ratio of the mechanical crimp was a value obtained by dividing the crimp degree of the mechanical crimp measured by the above method by the crimp number of the mechanical crimp.

【0030】(3)極限粘度 O−クロロフェノール溶液中25℃で常法に従い測定し
た。
(3) Intrinsic viscosity Measured in an O-chlorophenol solution at 25 ° C. according to a conventional method.

【0031】(4)繊度 JIS L1015−7−51Aの方法に準じて測定し
た。
(4) Fineness The fineness was measured according to the method of JIS L1015-7-51A.

【0032】(5)平均繊維長(カット長) JIS L1015A法(ステープルダイヤグラム法)
に準じて測定した。
(5) Average fiber length (cut length) JIS L1015A method (staple diagram method)
It measured according to.

【0033】(6)収縮率 JIS L1015−7−15−2の方法に準じて測定
した。
(6) Shrinkage ratio Measured according to the method of JIS L1015-7-15-2.

【0034】(7)圧縮残留歪 一辺が100cmの正方形、厚さ100mmの試験片
を、厚み方向に50%圧縮した状態で、70±1℃の温
度の恒温層中で22時間処理した後、圧縮を解き室温で
30分間放置した。その後、厚さ(t1 mm)を測定
し、次式により圧縮残留歪を求めた。
(7) Compressive Residual Strain A test piece having a side of 100 cm and a thickness of 100 mm was compressed by 50% in the thickness direction and treated in a constant temperature layer at a temperature of 70 ± 1 ° C. for 22 hours. It was decompressed and left at room temperature for 30 minutes. Then, the thickness (t 1 mm) was measured, and the compressive residual strain was determined by the following equation.

【0035】圧縮残留歪(%)={(100−t1 )/
100}×100 (実施例1〜11および比較例1〜9)熱可塑性重合体
R1 としてイソフタル酸7モル%と、ビスフェノールA
4.5モル%とを共重合した、極限粘度が0.65のポ
リエチレンテレフタレート系ポリエステルを、R2 とし
て、極限粘度が0.65の通常のポリエチレンテレフタ
レートを、R3 として、イソフタル酸40モル%共重合
した、極限粘度が0.55のポリエチレンテレフタレー
ト系ポリエステルを用い、紡糸温度285℃、紡糸口金
孔数24孔、引取り速度1350m/分、吐出量18.
11g/分、重量比{R3 /(R1 +R2 )}を90/
10〜30/70、重量比(R1 /R2 )を80/20
〜20/80、R1 とR2 とを貼り合わせ構造とした複
合繊維を芯とし、R3 を鞘とする3成分複合繊維Aを紡
糸した。
Compressive residual strain (%) = {(100-t 1 ) /
100} × 100 (Examples 1 to 11 and Comparative Examples 1 to 9) 7 mol% of isophthalic acid as a thermoplastic polymer R1 and bisphenol A
Polyethylene terephthalate type polyester having an intrinsic viscosity of 0.65 copolymerized with 4.5 mol% is copolymerized with R2 as a normal polyethylene terephthalate having an intrinsic viscosity of 0.65, and with R3 as 40 mol% of isophthalic acid. Polyethylene terephthalate polyester having an intrinsic viscosity of 0.55 was used, the spinning temperature was 285 ° C., the number of spinneret holes was 24, the take-up speed was 1350 m / min, and the discharge rate was 18.
11 g / min, weight ratio {R3 / (R1 + R2)} 90 /
10-30 / 70, weight ratio (R1 / R2) 80/20
.About.20 / 80, a three-component composite fiber A having a core of composite fiber having a laminated structure of R1 and R2 and a sheath of R3 was spun.

【0036】次いで、該未延伸糸を延伸後のトウデニー
ルが10万デニールとなるべく合糸して、延伸倍率3.
0倍、延伸浴温度80℃で延伸し、クリンパで機械捲縮
を付与した。さらに、70℃の熱セッターで乾燥した
後、仕上げ油剤を付与して、カット長64mmに切断し
て、繊度1.9デニール、捲縮数10山/25mm、捲
縮度7.2%、表面層の融点が約110℃の複合短繊維
Aを得た。
Then, the unstretched yarns are combined to obtain a tow denier of 100,000 denier after stretching, and a draw ratio of 3.
It was stretched 0 times at a stretching bath temperature of 80 ° C., and mechanical crimping was applied with a crimper. Furthermore, after drying with a heat setter at 70 ° C., a finishing oil agent is applied and cut into a cut length of 64 mm, a fineness of 1.9 denier, a crimp number of 10 threads / 25 mm, a crimp degree of 7.2%, a surface. A composite short fiber A having a layer melting point of about 110 ° C. was obtained.

【0037】これとは別に、極限粘度0.65のポリエ
チレンテレフタレートを用い、通常の紡糸・延伸し、カ
ット長64mmに切断して、繊度6.1デニール、捲縮
数7.8山/25mm、捲縮度26.4%の中空(中空
率38%)丸断面の短繊維を繊維Bとして用いた。
Separately from this, polyethylene terephthalate having an intrinsic viscosity of 0.65 was used, ordinary spinning and drawing were performed, and cut into a cut length of 64 mm, a fineness of 6.1 denier, a crimp number of 7.8 threads / 25 mm, A hollow fiber having a crimp degree of 26.4% (hollowness 38%) and a circular cross section was used as a fiber B.

【0038】表1に示す複合比率の複合短繊維Aと、短
繊維Bとを混綿し、ローラカードでさらに混綿・開繊
し、繊維混合物を得た。この繊維混合物を、金型の吹込
口6から、各面にパンチングが施された、内面が500
×500mmの下金型4に、空気流と共に吹き込んだ。
各面にパンチングが施された上金型5で吹き込まれた繊
維混合物7を圧縮して、厚さ100mm、目標の密度ま
で圧縮し固定した。金型に圧縮固定した繊維混合物7
を、通常、紡績糸のセットに使用するヒートセッターを
用いて、蒸熱130℃×30分間熱処理し、複合短繊維
Aと短繊維Bとの接触点および複合短繊維A間の接触点
で熱接着した繊維成形体を得た。表2に、得られた繊維
成形体の性質を示す。
Composite short fibers A and short fibers B having the composite ratios shown in Table 1 were mixed and further mixed and opened with a roller card to obtain a fiber mixture. This fiber mixture was punched on each side from the blow-in port 6 of the mold, and the inner surface was 500
It was blown into the lower mold 4 of × 500 mm together with the air flow.
The fiber mixture 7 blown by the upper mold 5 having each surface punched was compressed to a thickness of 100 mm and fixed to a target density. Fiber mixture 7 compressed and fixed in the mold
Is usually heat-steamed at 130 ° C. for 30 minutes using a heat setter used for setting spun yarns, and heat-bonded at the contact points between the composite short fibers A and the short fibers B and the contact points between the composite short fibers A. A fiber molded product was obtained. Table 2 shows the properties of the obtained fiber molding.

【0039】複合短繊維Aの鞘部R3 の重量比が20%
未満では形態固定性が悪く(比較例1)、60%を越え
るとソフトな繊維成形体が得られにくかった(比較例
2)。また、複合短繊維Aの芯部において、R1 の重量
比が30%未満、あるいは70%を越えると、複合短繊
維Aの捲縮が発現し難く、ソフトな繊維成形体が得られ
にくかった(比較例3〜5)。さらに、複合短繊維Aの
混合割合が20重量%未満では、熱接着による形態安定
性が悪く、また多方向裁断性も悪かった(比較例6)。
一方、60%を越えるとソフトな繊維成形体が得られに
くかった(比較例7)。また、繊維成形体の密度が0.
02g/cm3 未満では、熱接着による形態安定性およ
び多方向裁断性が悪かった(比較例8)。0.1g/c
3 を越えるとソフトな繊維成形体が得られにくかった
(比較例9)。
The weight ratio of the sheath R3 of the composite short fiber A is 20%.
When it is less than 60%, the shape fixability is poor (Comparative Example 1), and when it exceeds 60%, it is difficult to obtain a soft fiber molding (Comparative Example 2). If the weight ratio of R1 in the core of the composite short fiber A is less than 30% or more than 70%, crimping of the composite short fiber A is difficult to occur and it is difficult to obtain a soft fiber molding ( Comparative Examples 3-5). Further, when the mixing ratio of the composite short fibers A was less than 20% by weight, the morphological stability due to heat adhesion was poor and the multidirectional cutting property was also poor (Comparative Example 6).
On the other hand, if it exceeds 60%, it is difficult to obtain a soft fiber molding (Comparative Example 7). Further, the density of the fiber molded body is 0.
When it was less than 02 g / cm 3 , the morphological stability by heat adhesion and the multidirectional cutting property were poor (Comparative Example 8). 0.1 g / c
If it exceeds m 3 , it is difficult to obtain a soft fiber molding (Comparative Example 9).

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【0042】[0042]

【発明の効果】本発明の繊維混合物は、複合繊維Aの三
次元捲縮を潜在化させているので、繊維同志が絡み合う
ことがなく、製造工程における繊維の取扱いが容易であ
り、かつ、均一な密度の繊維成形体を製造することがで
きる。
EFFECT OF THE INVENTION Since the fiber mixture of the present invention makes the three-dimensional crimp of the conjugate fiber A latent, the fibers do not become entangled with each other, the fibers are easy to handle in the manufacturing process, and the fibers are uniform. It is possible to produce a fiber molded body having various densities.

【0043】本発明の繊維成形体は、複合繊維Aの三次
元捲縮が顕在化し、繊維同志が接着しているので、形態
が安定し、軽くてソフトであり、へたりにくく、圧縮残
留歪も低い。また、通気性、透湿性が大きく蒸れにくい
繊維成形体であり、快適な使い心地を有する。さらに、
多方向裁断性に優れ、使用目的に応じて成形が容易であ
る。
In the fiber molded product of the present invention, the three-dimensional crimp of the composite fiber A becomes apparent and the fibers are bonded to each other, so that the morphology is stable, light and soft, it is hard to set, and the compression residual strain is small. Is also low. Further, it is a fiber molded body having a large air permeability and a high moisture permeability and being hard to stuff, and has a comfortable use feeling. further,
It has excellent multidirectional cutting properties and is easy to mold according to the purpose of use.

【0044】本発明にかかる繊維成形体の製造方法は、
複合繊維の三次元捲縮を潜在化することで、製造工程に
おける作業性が向上し、また、均一な密度の繊維成形体
を製造することができる。繊維が繊維成形体のタテ、ヨ
コ、厚み方向に比較的ランダムに配列されるため、カー
ドウエッブを積層した繊維成形体などに比べて、厚み方
向への圧縮性とヨコ方向への圧縮性との差が少なく、い
わゆる方向性が比較的少ない良好な繊維成形体を得るこ
とができる。さらに、製造工程において、有毒ガスを発
生するなどの環境面での問題を生じることもない。
The method for producing a fiber molding according to the present invention is
By making the three-dimensional crimp of the conjugate fiber latent, workability in the manufacturing process is improved, and a fiber molded body having a uniform density can be manufactured. Since the fibers are arranged relatively randomly in the vertical direction, the horizontal direction, and the thickness direction of the fiber molded body, the compressibility in the thickness direction and the compressibility in the horizontal direction are different from those of the fiber molded body in which the card web is laminated. It is possible to obtain a good fiber molded product having a small difference and a relatively small so-called directionality. Furthermore, no environmental problems such as generation of toxic gas occur in the manufacturing process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に用いる複合繊維Aの一実施態様例の横
断面の模式図。 (a)同心型芯−鞘構造。 (b)偏心型芯−鞘構
造。 (c)偏心型芯−鞘構造。 (d)熱可塑性重合体R3 がR1 とR2 との複合繊維の
表面の一部を構成する構造
FIG. 1 is a schematic view of a cross section of an embodiment of a conjugate fiber A used in the present invention. (A) Concentric core-sheath structure. (B) Eccentric core-sheath structure. (C) Eccentric core-sheath structure. (D) Structure in which the thermoplastic polymer R3 constitutes a part of the surface of the composite fiber of R1 and R2

【図2】本発明の繊維成形体の製造方法に用いられる金
型の一例の斜視図
FIG. 2 is a perspective view of an example of a mold used in the method for producing a fiber molded body of the present invention.

【図3】図2に示す装置の縦断面図3 is a vertical cross-sectional view of the device shown in FIG.

【符号の説明】[Explanation of symbols]

1:熱可塑性重合体R1 2:熱可塑性重合体R2 3:熱可塑性重合体R3 4:下金型 5:上金型 6:気体の吹き込み口 7:繊維
混合物
1: Thermoplastic polymer R1 2: Thermoplastic polymer R2 3: Thermoplastic polymer R3 4: Lower mold 5: Upper mold 6: Gas blowing port 7: Fiber mixture

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】2種の異なる成分の熱可塑性重合体R1,R
2 が、互いに重量比30/70〜70/30の範囲で貼
り合わされて複合繊維を構成し、さらに、融点が熱可塑
性重合体R1 およびR2 の融点よりも少なくとも20℃
低く、かつ80〜170℃である熱可塑性重合体R3
が、重量比R3 /(R1 +R2 )を20/80〜60/
40の範囲で、前記複合繊維の表面側に複合されてい
る、潜在捲縮複合繊維Aを20〜60重量%と、 熱可塑性重合体R3 の融点より少なくとも20℃高い融
点を有する、繊維Bを80〜40重量%とから構成され
ることを特徴とする、繊維混合物。
1. Thermoplastic polymers R1 and R of two different components
2 are bonded to each other in a weight ratio of 30/70 to 70/30 to form a composite fiber, and the melting point is at least 20 ° C. higher than the melting points of the thermoplastic polymers R1 and R2.
Thermoplastic polymer R3 having a low temperature of 80 to 170 ° C
However, the weight ratio R3 / (R1 + R2) is 20 / 80-60 /
In the range of 40, the fiber B having 20 to 60% by weight of the latent crimped composite fiber A, which is composited on the surface side of the composite fiber, and the melting point of which is at least 20 ° C. higher than the melting point of the thermoplastic polymer R3. A fiber mixture, characterized in that it is composed of 80 to 40% by weight.
【請求項2】熱可塑性重合体R1 ,R2 ,R3 および繊
維Bがいずれもポリエステルであることを特徴とする、
請求項1に記載の繊維混合物。
2. The thermoplastic polymer R1, R2, R3 and the fiber B are all polyesters,
The fiber mixture according to claim 1.
【請求項3】複合繊維Aおよび繊維Bが共に捲縮を付与
され、複合繊維Aは、捲縮数Nが3〜20山/25mm
で捲縮度数比Yが−0.07N+1.8≦Y≦−0.0
7N+2であり、かつ、温度80〜200℃の熱処理に
より捲縮数が少なくとも30山/25mmで捲縮度が少
なくとも25%に発現する、潜在捲縮複合繊維であり、
繊維Bは、捲縮数が少なくとも3山/25mmで捲縮度
が少なくとも5%であることを特徴とする、請求項1ま
たは2に記載の繊維混合物。
3. A composite fiber A and a fiber B are both crimped, and the composite fiber A has a crimp number N of 3 to 20 threads / 25 mm.
And the crimp frequency ratio Y is -0.07N + 1.8≤Y≤-0.0.
A latent crimped composite fiber which is 7N + 2 and which has a crimp number of at least 30 peaks / 25 mm and a crimping degree of at least 25% by heat treatment at a temperature of 80 to 200 ° C.,
The fiber mixture according to claim 1 or 2, wherein the fiber B has a crimp number of at least 3 peaks / 25 mm and a crimp degree of at least 5%.
【請求項4】複合繊維Aは、繊度が1〜10デニール、
繊維長が10〜100mmの短繊維であり、繊維Bは、
繊度が0.5〜30デニール、繊維長が10〜100m
mの短繊維であることを特徴とする、請求項1,2また
は3に記載の繊維混合物。
4. The composite fiber A has a fineness of 1 to 10 denier,
Fibers are short fibers having a length of 10 to 100 mm, and the fiber B is
Fineness of 0.5 to 30 denier, fiber length of 10 to 100 m
Fiber mixture according to claim 1, 2 or 3, characterized in that it is m short fibers.
【請求項5】請求項1,2,3または4に記載の繊維混
合物の、複合繊維A相互間および複合繊維Aと繊維Bと
の間の接触点の一部が、熱処理により接着して成形され
ていることを特徴とする、繊維成形体。
5. A part of contact points between the composite fibers A and between the composite fibers A and the fibers B of the fiber mixture according to claim 1, 2, 3 or 4 are bonded by heat treatment to form A fiber molding, characterized in that
【請求項6】複合繊維Aが少なくとも30山/25mm
の捲縮数と少なくとも25%の捲縮度とを有し、繊維B
が少なくとも3山/25mmの捲縮数と少なくとも5%
の捲縮度とを有し、かつ、密度が0.02〜0.1g/
cm3 であることを特徴とする、請求項5に記載の繊維
成形体。
6. The composite fiber A has at least 30 peaks / 25 mm.
Fiber B having a number of crimps of at least 25% and a degree of crimp of at least 25%.
Has at least 3 peaks / 25 mm crimps and at least 5%
And a density of 0.02 to 0.1 g /
The fiber molded body according to claim 5, wherein the fiber molded body is cm 3 .
【請求項7】請求項1,2,3または4に記載の繊維混
合物を開繊し、気体と共に通気性型枠内に吹き込んで充
填し、密度を0.02〜0.1g/cm3 としたもの
を、温度80〜200℃で熱処理することを特徴とす
る、繊維成形体の製造方法。
7. The fiber mixture according to claim 1, 2, 3 or 4 is opened, and the mixture is blown into a breathable mold together with a gas to fill it with a density of 0.02 to 0.1 g / cm 3 . A method for producing a fiber molded body, characterized in that the obtained product is heat-treated at a temperature of 80 to 200 ° C.
JP6163740A 1994-07-15 1994-07-15 Fiber mixture and fiber molded product and method for producing fiber molded product Pending JPH0835156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6163740A JPH0835156A (en) 1994-07-15 1994-07-15 Fiber mixture and fiber molded product and method for producing fiber molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6163740A JPH0835156A (en) 1994-07-15 1994-07-15 Fiber mixture and fiber molded product and method for producing fiber molded product

Publications (1)

Publication Number Publication Date
JPH0835156A true JPH0835156A (en) 1996-02-06

Family

ID=15779783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6163740A Pending JPH0835156A (en) 1994-07-15 1994-07-15 Fiber mixture and fiber molded product and method for producing fiber molded product

Country Status (1)

Country Link
JP (1) JPH0835156A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7732357B2 (en) 2000-09-15 2010-06-08 Ahlstrom Nonwovens Llc Disposable nonwoven wiping fabric and method of production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7732357B2 (en) 2000-09-15 2010-06-08 Ahlstrom Nonwovens Llc Disposable nonwoven wiping fabric and method of production

Similar Documents

Publication Publication Date Title
US5646077A (en) Binder fiber and nonwoven fabrics using the fiber
KR0125494B1 (en) Binder fiber and nonwoven fabric produced therefrom
JPH10310965A (en) Polyester short fiber nonwoven fabric
JPH0835156A (en) Fiber mixture and fiber molded product and method for producing fiber molded product
JP3654366B2 (en) Fibrous wadding material and method for producing the same
JP3352022B2 (en) Solid cotton with excellent sag resistance under high temperature atmosphere using binder fiber
JP2002000408A (en) Vehicle seat
JPH08170256A (en) Yarn mixture, molded article of yarn and production of molded article of yarn
JP3872203B2 (en) Binder fiber and non-woven fabric using this fiber
JP2001061605A (en) Seat for vehicle
JPH08188946A (en) Formed article of fiber and its production
JPH08158222A (en) Fiber mixture and fiber shaped body and production of fiber shaped body
JPH08188944A (en) Fiber mixture, formed article of fiber and production of the formed article of fiber
JPH0978425A (en) Fiber formed body and its production
JP2002030555A (en) Ball-like staple fiber comprising thermally adhesive fiber and fiber structure
JP2001207360A (en) Ball-like wadding and fiber structure
JP2820321B2 (en) Binder fiber and non-woven fabric using this fiber
JP3526041B2 (en) Mat and its manufacturing method
JP3431096B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JPH08188945A (en) Formed article of fiber and its production
JPH09228219A (en) Fiber formed product
JP3351489B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3351490B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP2001200428A (en) Polyester-based staple fiber and fiber structure
JP3431092B2 (en) Nonwoven laminated net, manufacturing method and product using the same