JPH08338260A - Power generating method - Google Patents

Power generating method

Info

Publication number
JPH08338260A
JPH08338260A JP7141983A JP14198395A JPH08338260A JP H08338260 A JPH08338260 A JP H08338260A JP 7141983 A JP7141983 A JP 7141983A JP 14198395 A JP14198395 A JP 14198395A JP H08338260 A JPH08338260 A JP H08338260A
Authority
JP
Japan
Prior art keywords
gas
hydrogen
gas turbine
fuel cell
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7141983A
Other languages
Japanese (ja)
Other versions
JP3453218B2 (en
Inventor
Hirokuni Oota
洋州 太田
Yoshinori Shirasaki
義則 白▲崎▼
Kyoichi Inoue
恭一 井上
Kennosuke Kuroda
健之助 黒田
Masaki Iijima
正樹 飯島
Yoshiyuki Takeuchi
竹内  善幸
Hiroshi Makihara
洋 牧原
Yoshimasa Fujimoto
芳正 藤本
Isamu Osada
勇 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Tokyo Gas Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Tokyo Gas Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP14198395A priority Critical patent/JP3453218B2/en
Publication of JPH08338260A publication Critical patent/JPH08338260A/en
Application granted granted Critical
Publication of JP3453218B2 publication Critical patent/JP3453218B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Fuel Cell (AREA)
  • Control Of Eletrric Generators (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE: To improve the power generating efficiency by working steam and oxygen to coal to manufacture combustible gas and using it for gas turbine generation, or reforming hydrocarbon by a reforming device by use of combustible gas and high temperature combustion gas to manufacture high purity hydrogen, and supplying it to a fuel cell to generate electricity. CONSTITUTION: Coal, steam and oxygen are supplied to a gas making furnace 1 to gasify the coal, the resulting combustible gas is passed to and treated by a reforming device 3 and a desulfurizing device 5 through a line 2, and then supplied to a combustor 7 constituting a gas turbine generating device by a line 6. The combustible gas is burnt under supply of compressed air, and the generated high temperature and high pressure combustion gas is introduced to a gas turbine 9, which is then rotated to drive a generator 23. The combustion waste gas leaving the gas turbine 9 is sent to a waste heat recovering boiler 11, a natural gas 16 is reformed by a reforming device 12 in the boiler 11, high purity hydrogen is generated by the action of a hydrogen separating penetrating film, and the resulting hydrogen is supplied to a fuel cell 19 to generate electricity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は単位燃料当たりの発電効
率に優れる発電方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generation method having excellent power generation efficiency per unit fuel.

【0002】[0002]

【従来の技術】燃焼によるエネルギを原動機を通じて電
気エネルギに変換する方法には、スチームタービンによ
る発電方法とガスタービンによる発電方法とがある。ガ
スタービンによる場合の熱効率はスチームタービンのそ
れを上回る利点がある。また、火力発電は天然に多量に
埋蔵されている石炭を燃料として使用することができ
る。ただし、石炭そのままでは利用しにくいため石炭を
ガス化して使用する必要があるが、石炭のガス化には種
々の方法が知られている。最も一般的な方法としては、
高温高圧下で石炭にスチームと酸素を作用させ、主成分
が一酸化炭素及び水素からなる水成ガスを得る方法があ
る。
2. Description of the Related Art As a method of converting energy from combustion into electric energy through a prime mover, there are a power generation method using a steam turbine and a power generation method using a gas turbine. The thermal efficiency with a gas turbine has the advantage over that of a steam turbine. Further, thermal power generation can use coal, which is abundant in nature, as fuel. However, since it is difficult to use coal as it is, it is necessary to gasify the coal for use, but various methods are known for gasifying coal. The most common way is
There is a method in which steam and oxygen are allowed to act on coal under high temperature and high pressure to obtain an aqueous gas whose main components are carbon monoxide and hydrogen.

【0003】一方、騒音や振動がなくかつ大気汚染の心
配が少ない電源として、発電効率が60%と極めて高い
燃料電池の開発が行われている。燃料電池は燃料の酸化
反応と酸素の還元反応を別々に行い、電子及びイオンが
それぞれ外部回路及び電解質内を移動することにより、
直接反応させれば熱になるエネルギを電気エネルギとし
て取り出せるようにした装置である。燃料電池の燃料と
して用いる水素リッチなガスを供給するために改質装置
を備えれば、全体として効率のよい燃料電池による発電
を行うことができる。なお、改質装置を用いた水素の製
造方法として、膜分離の併用技術も提案されている。例
えば、米国特許第5,229,102号明細書には、触
媒を充填したチューブ状の多孔質セラミック膜に炭化水
素を供給することにより、生成した水素を選択的に透過
させる改質器が記載されている。
On the other hand, as a power source that is free from noise and vibration and less likely to cause air pollution, a fuel cell having an extremely high power generation efficiency of 60% is being developed. In a fuel cell, an oxidation reaction of fuel and a reduction reaction of oxygen are separately performed, and electrons and ions move in an external circuit and an electrolyte, respectively,
This is a device that can take out the energy that becomes heat when directly reacted as electric energy. If the reforming device is provided to supply the hydrogen-rich gas used as the fuel of the fuel cell, the fuel cell as a whole can perform efficient power generation. As a method for producing hydrogen using a reformer, a combined technique of membrane separation has been proposed. For example, U.S. Pat. No. 5,229,102 describes a reformer which selectively permeates generated hydrogen by supplying hydrocarbon to a tubular porous ceramic membrane filled with a catalyst. Has been done.

【0004】[0004]

【発明が解決しようとする課題】ガスタービン発電は熱
効率が比較的高いが、熱効率のさらなる向上は発電原価
の低減、化石燃料の使用量減少、燃焼廃ガスによる大気
汚染の低減にも関連する重要な問題であり、特に電力に
変換されなかった熱エネルギの有効利用は重要な問題で
ある。
Gas turbine power generation has relatively high thermal efficiency, but further improvement in thermal efficiency is important in connection with reduction of power generation cost, reduction of fossil fuel usage, and reduction of air pollution due to combustion exhaust gas. This is a serious problem, and particularly the effective use of heat energy that has not been converted into electric power is an important problem.

【0005】一方、燃料電池は総合熱効率がよいもの
の、それ単独では改質装置の加熱のための熱源を新たに
設けなければならず、設備費の上昇並びにエネルギ効率
の低下を招く欠点がある。従ってこれら従来技術の利点
を生かし、なお抱える問題を解決し、かつ、より一層の
発電効率が向上した発電方法の開発が望まれている。
On the other hand, although the fuel cell has a high total thermal efficiency, it has a drawback that it requires a new heat source for heating the reformer, which increases equipment cost and lowers energy efficiency. Therefore, there is a demand for development of a power generation method that takes advantage of these conventional techniques, solves the problems still existing, and further improves power generation efficiency.

【0006】[0006]

【課題を解決するための手段】このような技術の現状に
鑑み、本発明者らは既存のガス化炉設備及び発電設備を
所定方法で総合的に組合わせることにより、これまで知
られていた以上の高い発電効率が達成され得ることに想
到し、本発明を完成させることができた。
In view of the current state of the art, the present inventors have hitherto been known by comprehensively combining existing gasification furnace equipment and power generation equipment by a predetermined method. The present invention has been completed based on the idea that the above high power generation efficiency can be achieved.

【0007】すなわち本発明は (1)石炭にスチーム及び
酸素を作用させて一酸化炭素及び水素を主成分とする高
温の可燃性ガスを製造し、この可燃性ガスをガスタービ
ン発電の燃料としてガスタービン発電装置に供給して発
電すると共に、前記ガスタービン発電装置に供給する前
の前記可燃性ガス及び前記ガスタービンを駆動させた後
の高温燃焼ガスを各々加熱源として、水素分離透過膜を
有する改質装置により各々炭化水素を水蒸気改質させて
高純度水素を製造し、得られた高純度水素を燃料電池に
供給して発電することを特徴とするガスタービン及び燃
料電池による発電方法、 (2)上記水素分離透過膜が無機
多孔体の表面にパラジウム含有合金の薄膜を形成させた
構造を有するものであることを特徴とする上記(1) 記載
の発電方法、及び(3) 上記燃料電池が固体高分子型燃料
電池であることを特徴とする上記(1)または(2) 記載の
発電方法である。
That is, the present invention is as follows: (1) A high temperature combustible gas containing carbon monoxide and hydrogen as main components is produced by reacting coal with steam and oxygen, and the combustible gas is used as a fuel for gas turbine power generation. A hydrogen separation permeable membrane is provided with the combustible gas before being supplied to the gas turbine power generator and the high temperature combustion gas after driving the gas turbine as heating sources, respectively, while supplying power to the turbine power generator. A high-purity hydrogen is produced by steam reforming each hydrocarbon by a reformer, and the obtained high-purity hydrogen is supplied to a fuel cell to generate electric power. 2) The hydrogen separation permeable membrane has a structure in which a thin film of a palladium-containing alloy is formed on the surface of an inorganic porous body, (1) the power generation method according to, and (3) above The power generation method according to (1) or (2) above, wherein the fuel cell is a polymer electrolyte fuel cell.

【0008】本発明では既存のガス化炉を使用すること
ができる。ガス化炉は、一例として温度1300〜14
00℃、圧力50〜60kg/cm2 の高温高圧状態で
石炭にスチーム及び酸素を作用させ、生成物として一酸
化炭素が約50vol%、水素が約40vol%の可燃
性ガスを得るものである。生成された可燃性ガスは温度
1350℃、圧力65kg/cm2 程度の高温・高圧を
維持している。
Existing gasifiers can be used in the present invention. The gasification furnace has a temperature of 1300 to 14 as an example.
Steam and oxygen are caused to act on coal under high temperature and high pressure conditions of 00 ° C. and a pressure of 50 to 60 kg / cm 2 to obtain a combustible gas of about 50 vol% carbon monoxide and about 40 vol% hydrogen as a product. The generated combustible gas maintains a temperature of 1350 ° C. and a high temperature and high pressure of about 65 kg / cm 2 .

【0009】本発明で採用される水素分離透過膜を有す
る改質装置は高純度の水素、例えばCO濃度が10pp
m以下の高純度水素を供給でき、改質が400〜650
℃またはそれ以上の温度範囲で行えるものであれば、特
に限定されるところはない。改質装置内で起こる改質反
応は吸熱反応であるため、改質装置を加熱する必要があ
る。前記生成された可燃性ガスの有する温度は水素分離
透過膜を使用しない通常の天然ガスの改質装置でも十分
改質可能な温度であるが、水素分離透過膜を有する改質
装置を用いることにより一層改質率が向上する。同様に
ガスタービンを駆動した後の燃焼廃ガスを加熱源として
用いられる改質装置においては水素分離透過膜を有する
意義がより高まる。これは生成した水素を水素分離透過
膜の作用により系外に取出すことにより、後記の化学反
応が水素生成系に移行するからである。
The reformer having a hydrogen permeable membrane employed in the present invention has a high purity hydrogen, for example, a CO concentration of 10 pp.
High-purity hydrogen of m or less can be supplied, and reforming is 400 to 650.
There is no particular limitation as long as it can be performed in a temperature range of ℃ or higher. Since the reforming reaction that occurs in the reformer is an endothermic reaction, it is necessary to heat the reformer. Although the temperature of the generated combustible gas is a temperature that can be sufficiently reformed by a normal natural gas reformer that does not use a hydrogen separation permeable membrane, by using a reformer having a hydrogen separation permeable membrane The reforming rate is further improved. Similarly, in a reformer that uses combustion waste gas after driving a gas turbine as a heat source, the significance of having a hydrogen separation permeable membrane becomes higher. This is because the generated hydrogen is taken out of the system by the action of the hydrogen separation / permeable membrane, and the chemical reaction described below is transferred to the hydrogen generation system.

【0010】このような水素分離透過膜を備えた改質装
置は熱効率を考慮してより経済的な形状が種々工夫され
ている。水素分離透過膜には水素を選択的に透過する膜
で、かつ耐熱性を有する膜が用いられる。例えば膜厚1
00μm以上のパラジウム含有合金膜あるいは膜厚50
μm以下のパラジウム含有合金薄膜を無機多孔体、例え
ば金属やセラミックの多孔体あるいは金属不織布上にコ
ーティングしたものが用いられる。無機多孔体としては
シールなどの加工性、耐衝撃性、水素透過性などの観点
から金属多孔体が好ましい。前記パラジウム含有合金と
してはパラジウム単独またはパラジウムを10重量%以
上含有するものが好ましく、パラジウム以外にPtなど
周期律表の10族元素、Rh,Irなどの9族元素、R
uなどの8族元素、Cu,Ag,Auなどの11族元素
を有するものが好ましい。この他、バナジウム(V)を
含有する合金膜、例えばNi−Co−V合金にパラジウ
ムをコーティングした膜などが用いられる。
The reforming apparatus provided with such a hydrogen permeable membrane is variously devised in a more economical shape in consideration of thermal efficiency. As the hydrogen separation / permeable membrane, a membrane that selectively permeates hydrogen and has heat resistance is used. For example, film thickness 1
Palladium-containing alloy film with a thickness of 00 μm or more or film thickness 50
An inorganic porous body, for example, a porous body of metal or ceramic, or a non-woven fabric of metal, coated with a palladium-containing alloy thin film having a thickness of μm or less is used. As the inorganic porous body, a metal porous body is preferable from the viewpoint of workability such as sealing, impact resistance, hydrogen permeability and the like. The palladium-containing alloy is preferably palladium alone or an alloy containing 10% by weight or more of palladium. In addition to palladium, Group 10 elements of the periodic table such as Pt, Group 9 elements such as Rh and Ir, R
Those having a Group 8 element such as u and a Group 11 element such as Cu, Ag and Au are preferable. Besides, an alloy film containing vanadium (V), for example, a film obtained by coating palladium on a Ni—Co—V alloy is used.

【0011】炭化水素を水蒸気改質する改質触媒として
は、周期律表の8〜10族金属(Fe,Co,Ni,R
u,Pd,Ptなど)を含有するものが好ましく、N
i,Ru,Rhを担持した触媒またはNiO含有触媒が
特に好ましい。
As a reforming catalyst for steam reforming hydrocarbons, metals of groups 8 to 10 (Fe, Co, Ni, R) of the periodic table are used.
u, Pd, Pt, etc.) are preferred, and N
A catalyst supporting i, Ru, Rh or a NiO-containing catalyst is particularly preferable.

【0012】本発明で使用する具体的な改質装置として
は特に限定はなく公知のものが使用できる。例えば、特
開平2−311301号公報には、触媒を充填した反応
管内に水素分離機能を有する分離膜を、さらに前記反応
管外側に外筒を設け、触媒を充填した反応管内に改質原
料を供給して水素を発生させ、分離膜の内側に不活性ガ
ス(スイープガス)を流入させて分離膜を透過した水素
をスイープガスに同伴させて系外に取出し、燃料電池に
供給する技術が記載されている。すなわち改質部を同心
状の三重管とし、中間層に触媒を充填して水素を製造
し、分離膜を通して管の中心部に分離された水素をスイ
ープガスに同伴させて排出するものである。なお、改質
装置から水素を分離した残りのオフガスにはCO2 や未
反応天然ガス、水素、CO、スチーム、副生するメタン
などが含まれるので、これをガスタービン稼働のための
燃料の一部として再利用することができ、発電効率の向
上にも役立つ。改質装置として好ましいものは上記のと
おりであるが、この他に前記米国特許明細書に記載され
ているようなセラミック水素分離透過膜を用いることも
できる。
The specific reforming apparatus used in the present invention is not particularly limited, and known ones can be used. For example, in Japanese Unexamined Patent Publication No. 2-311301, a separation membrane having a hydrogen separation function is provided in a reaction tube filled with a catalyst, an outer cylinder is further provided outside the reaction tube, and a reforming raw material is provided in the reaction tube filled with the catalyst. Described is the technology of supplying hydrogen to generate hydrogen, flowing an inert gas (sweep gas) into the inside of the separation membrane, entraining hydrogen that has permeated the separation membrane into the sweep gas, taking it out of the system, and supplying it to the fuel cell. Has been done. That is, the reforming section is a concentric triple tube, the intermediate layer is filled with a catalyst to produce hydrogen, and the hydrogen separated in the central portion of the tube through the separation membrane is accompanied by the sweep gas and discharged. The off gas remaining after hydrogen has been separated from the reformer contains CO 2 , unreacted natural gas, hydrogen, CO, steam, and methane produced as a by-product. It can be reused as a part, which also helps improve power generation efficiency. The preferred reformer is as described above, but it is also possible to use a ceramic hydrogen separation / permeable membrane as described in the above-mentioned US Pat.

【0013】本発明で使用される燃料電池としては、リ
ン酸型、高分子型、アルカリ型、溶融炭酸塩型などが挙
げられるが、これらの中では特に高分子型燃料電池が好
ましい。
Examples of the fuel cell used in the present invention include phosphoric acid type, polymer type, alkali type, molten carbonate type and the like. Among these, polymer type fuel cell is particularly preferable.

【0014】[0014]

【実施例】以下、本発明を実施例を挙げて説明するが、
本発明はこれに限定されるところはない。 〔実施例1〕図1は本実施例において採用した本発明に
係る発電装置の一例の概略説明図であり、主要装置や主
要生成物のみを示し、付属装置の多くは省略してある。
図1において、石炭のガス化はガス化炉1に石炭、スチ
ーム及び酸素を供給して行われる。ガス化炉では一例と
して温度1300〜1400℃、圧力50〜60kg/
cm2 の高温高圧状態で石炭にスチーム及び酸素を作用
させ、ガス化した可燃性ガスを得る。この可燃性ガスは
温度1350℃、圧力65kg/cm2 程度に高圧・高
温を維持しており、ライン2による改質装置3に移送さ
れる。改質装置3において、高温・高圧の可燃性ガスは
天然ガス16の改質のための熱源として用いられる。す
なわち、改質装置3において、前記した水素分離透過膜
を用いて天然ガスから水素ガスを生成するが、この反応
は吸熱反応だからである。改質装置3の加熱源として使
用された可燃性ガスは450℃程度に冷却された後、ラ
イン4を経て脱硫装置5に移送され硫化水素、SOX
どが除去される。
EXAMPLES The present invention will be described below with reference to examples.
The present invention is not limited to this. [Embodiment 1] FIG. 1 is a schematic explanatory view of an example of a power generator according to the present invention adopted in the present embodiment, showing only main devices and main products, and most of auxiliary devices are omitted.
In FIG. 1, coal gasification is performed by supplying coal, steam and oxygen to the gasifier 1. In the gasification furnace, for example, the temperature is 1300 to 1400 ° C and the pressure is 50 to 60 kg /
Steam and oxygen are made to act on coal in a high temperature and high pressure state of cm 2 to obtain a gasified combustible gas. This combustible gas is maintained at a high pressure and a high temperature of 1350 ° C. and a pressure of about 65 kg / cm 2 , and is transferred to the reformer 3 via the line 2. In the reformer 3, the high temperature and high pressure combustible gas is used as a heat source for reforming the natural gas 16. That is, in the reformer 3, hydrogen gas is produced from natural gas by using the hydrogen separation / permeable membrane described above, because this reaction is an endothermic reaction. The flammable gas used as the heating source of the reformer 3 is cooled to about 450 ° C., and then transferred to the desulfurizer 5 via the line 4 to remove hydrogen sulfide, SO X and the like.

【0015】脱硫処理がなされた可燃性ガスはライン6
によりガスタービン発電装置を構成する燃焼器7に導か
れる。なお、改質装置3から水素を分離した残りのオフ
ガス24にはCO2 や未反応天然ガス、水素、CO、ス
チームなどが含まれるので、このオフガスを改質装置3
から直接ライン24を経て燃焼器7に移送し燃料として
使用することも可能であり、燃料効率の向上にも役立
つ。
The flammable gas that has been desulfurized is in line 6
Is guided to the combustor 7 that constitutes the gas turbine power generator. The off gas 24 remaining after hydrogen is separated from the reformer 3 contains CO 2 , unreacted natural gas, hydrogen, CO, steam, etc.
It is also possible to transfer it directly to the combustor 7 via the line 24 and use it as a fuel, which is also useful for improving fuel efficiency.

【0016】ガスタービン9を回転させた後、ここから
排出される燃焼器7では、可燃性ガスを燃焼させること
により高温・高圧の燃焼ガスを発生させる。この燃焼ガ
スはライン8を経てガスタービン9に導かれガスタービ
ン9を回転する。この回転力は燃焼器7に圧縮空気を供
給する空気コンプレッサ18によって一部使用され、残
りは発電機23により電力に変換される。ガスタービン
9を回転させた後、ここから排出される燃焼廃ガスはガ
スタービン9を回転させた後もなお温度450〜650
℃と高温を維持しており、ライン10を経て廃熱回収ボ
イラ11に送られる。その後、煙突20より大気に放出
される。
After the gas turbine 9 is rotated, the combustor 7 discharged from the gas turbine 9 burns combustible gas to generate high-temperature and high-pressure combustion gas. This combustion gas is guided to the gas turbine 9 via the line 8 to rotate the gas turbine 9. This rotational force is partially used by the air compressor 18 that supplies compressed air to the combustor 7, and the rest is converted into electric power by the generator 23. After the gas turbine 9 is rotated, the combustion waste gas discharged from the gas turbine 9 still has a temperature of 450 to 650 even after the gas turbine 9 is rotated.
It is maintained at a high temperature of ℃ and is sent to the waste heat recovery boiler 11 via the line 10. After that, it is released from the chimney 20 into the atmosphere.

【0017】廃熱回収ボイラ11内には改質装置12が
設置され、高温の燃焼廃ガスにより加熱される。改質装
置12では前記改質装置3と同様に天然ガス16を改質
させ、水素分離透過膜の作用で高純度水素を生成する。
なお、天然ガス16は廃熱回収ボイラ11で予め加温さ
れた水17と共に、ライン22及び21を経て改質装置
3及び12に移送される。改質装置3及び12で生成さ
れた水素はライン14、ライン15を経て燃料電池19
に供給され発電に使用される。なお、改質装置12から
水素を分離した残りのオフガスにはCO2 や未反応天然
ガス、水素、CO、スチームなどが含まれるので、ライ
ン13を経て燃焼器7の燃料として使用する。
A reformer 12 is installed in the waste heat recovery boiler 11 and is heated by high temperature combustion waste gas. The reformer 12 reforms the natural gas 16 in the same manner as the reformer 3, and produces high-purity hydrogen by the action of the hydrogen separation / permeable membrane.
In addition, the natural gas 16 is transferred to the reformers 3 and 12 through the lines 22 and 21 together with the water 17 which has been preheated in the waste heat recovery boiler 11. The hydrogen generated in the reformers 3 and 12 passes through the line 14 and the line 15 and the fuel cell 19
And used for power generation. The off gas remaining after hydrogen is separated from the reformer 12 contains CO 2 , unreacted natural gas, hydrogen, CO, steam, etc., and is used as fuel for the combustor 7 via the line 13.

【0018】改質装置3及び12内で起こる改質反応は
主に下記の化1の反応
The reforming reaction that takes place in the reforming devices 3 and 12 is mainly the reaction of the following chemical formula 1.

【化1】 である。また、燃料電池19は生成する水素を消費でき
る容量が必要となるが、一部の水素は他の用途に使用す
ることもできる。ガスタービン9と燃料電池19との発
電効率を総合的に観察すると、使用石炭及び天然ガスに
対する発電効率は少なくとも50%前後を達成できるこ
ととなる。
Embedded image Is. Further, the fuel cell 19 needs to have a capacity capable of consuming generated hydrogen, but some hydrogen can be used for other purposes. Comprehensively observing the power generation efficiencies of the gas turbine 9 and the fuel cell 19, it is possible to achieve power generation efficiencies of at least about 50% for the coal and natural gas used.

【0019】[0019]

【発明の効果】本発明で提供される発電方法を採用する
ことにより、石炭のガス化炉から得られる可燃性ガスの
熱エネルギを、改質装置における天然ガス改質による水
素生成に利用することができるため、効率のよい燃料電
池の燃料の供給が可能となる。一方、ガスタービンによ
る発電において、燃料廃ガスの有する熱量を他の改質装
置に使用し、ここでも効率よく燃料電池の燃料となる天
然ガスの改質が可能となり、装置全体で発電効率を大幅
に向上することができる。
By adopting the power generation method provided by the present invention, the heat energy of the combustible gas obtained from the coal gasification furnace can be utilized for hydrogen generation by natural gas reforming in the reformer. Therefore, the fuel of the fuel cell can be efficiently supplied. On the other hand, in the power generation by the gas turbine, the heat quantity of the fuel waste gas is used for other reforming equipment, and it is possible to efficiently reform the natural gas used as the fuel of the fuel cell, and the power generation efficiency of the whole equipment is greatly improved. Can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の発電方法の一実施態様を示す概略説明
図である。
FIG. 1 is a schematic explanatory view showing an embodiment of a power generation method of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 恭一 神奈川県横浜市鶴見区岸谷1−3−25− 504 (72)発明者 黒田 健之助 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内 (72)発明者 飯島 正樹 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内 (72)発明者 竹内 善幸 広島県広島市観音新町四丁目6番22号 三 菱重工業株式会社広島研究所内 (72)発明者 牧原 洋 広島県広島市観音新町四丁目6番22号 三 菱重工業株式会社広島研究所内 (72)発明者 藤本 芳正 広島県広島市観音新町四丁目6番22号 三 菱重工業株式会社広島研究所内 (72)発明者 長田 勇 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kyoichi Inoue 1-3-25-504 Kishitani, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture (72) Kennosuke Kuroda 2-5-1, Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Co., Ltd. In-house (72) Inventor Masaki Iijima 2-5-1, Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Co., Ltd. (72) Inventor Yoshiyuki Takeuchi 4-6-22 Kannon Shinmachi, Hiroshima City, Hiroshima Prefecture Sanryo Heavy Industries Co., Ltd. Hiroshima Research Laboratory (72) Inventor Hiroshi Makihara 4-6-22 Kannon Shinmachi, Hiroshima City, Hiroshima Prefecture Sanryo Heavy Industries Ltd. Hiroshima Research Laboratory (72) Inventor Yoshimasa Fujimoto 4-6-22 Kannon Shinmachi, Hiroshima City, Hiroshima Prefecture (72) Inventor Isamu Nagata 2-5-1, Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industry Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 石炭にスチーム及び酸素を作用させて一
酸化炭素及び水素を主成分とする高温の可燃性ガスを製
造し、この可燃性ガスをガスタービン発電の燃料として
ガスタービン発電装置に供給して発電すると共に、前記
ガスタービン発電装置に供給する前の前記可燃性ガス及
び前記ガスタービンを駆動させた後の高温燃焼ガスを各
々加熱源として、水素分離透過膜を有する改質装置によ
り各々炭化水素を水蒸気改質させて高純度水素を製造
し、得られた高純度水素を燃料電池に供給して発電する
ことを特徴とするガスタービン及び燃料電池による発電
方法。
1. A high-temperature combustible gas containing carbon monoxide and hydrogen as main components is produced by reacting coal with steam and oxygen, and the combustible gas is supplied to a gas turbine power generator as a fuel for gas turbine power generation. And generate electric power, and each of the combustible gas before being supplied to the gas turbine power generator and the high temperature combustion gas after driving the gas turbine as a heating source, respectively, by a reformer having a hydrogen separation permeable membrane. A power generation method using a gas turbine and a fuel cell, which comprises steam reforming a hydrocarbon to produce high purity hydrogen, and supplying the obtained high purity hydrogen to a fuel cell to generate electricity.
【請求項2】 上記水素分離透過膜が無機多孔体の表面
にパラジウム含有合金の薄膜を形成させた構造を有する
ものであることを特徴とする請求項1記載の発電方法。
2. The power generation method according to claim 1, wherein the hydrogen permeable membrane has a structure in which a thin film of a palladium-containing alloy is formed on the surface of an inorganic porous body.
【請求項3】 上記燃料電池が固体高分子型燃料電池で
あることを特徴とする請求項1または請求項2記載の発
電方法。
3. The power generation method according to claim 1, wherein the fuel cell is a polymer electrolyte fuel cell.
JP14198395A 1995-06-08 1995-06-08 Power generation method Expired - Fee Related JP3453218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14198395A JP3453218B2 (en) 1995-06-08 1995-06-08 Power generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14198395A JP3453218B2 (en) 1995-06-08 1995-06-08 Power generation method

Publications (2)

Publication Number Publication Date
JPH08338260A true JPH08338260A (en) 1996-12-24
JP3453218B2 JP3453218B2 (en) 2003-10-06

Family

ID=15304675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14198395A Expired - Fee Related JP3453218B2 (en) 1995-06-08 1995-06-08 Power generation method

Country Status (1)

Country Link
JP (1) JP3453218B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998027004A1 (en) * 1996-12-19 1998-06-25 Siemens Westinghouse Power Corporation Goal gasification and hydrogen production system and method
EP0926756A1 (en) * 1997-12-11 1999-06-30 dbb fuel cell engines GmbH PEM fuel cell system as well as its method of operation
WO2000027951A1 (en) * 1998-11-05 2000-05-18 Ebara Corporation Power generation system based on gasification of combustible material
JP2007031256A (en) * 2005-07-29 2007-02-08 Toshiba Corp Hydrogen production system
KR100689336B1 (en) * 2000-12-30 2007-03-08 주식회사 엘지이아이 Generator for home having structure of connecting boiler

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229102A (en) 1989-11-13 1993-07-20 Medalert, Inc. Catalytic ceramic membrane steam-hydrocarbon reformer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998027004A1 (en) * 1996-12-19 1998-06-25 Siemens Westinghouse Power Corporation Goal gasification and hydrogen production system and method
US5955039A (en) * 1996-12-19 1999-09-21 Siemens Westinghouse Power Corporation Coal gasification and hydrogen production system and method
EP0926756A1 (en) * 1997-12-11 1999-06-30 dbb fuel cell engines GmbH PEM fuel cell system as well as its method of operation
US6190791B1 (en) 1997-12-11 2001-02-20 Xcellsis Gmbh Proton exchange membrane (PEM) fuel cell system and process of operating same
WO2000027951A1 (en) * 1998-11-05 2000-05-18 Ebara Corporation Power generation system based on gasification of combustible material
KR100689336B1 (en) * 2000-12-30 2007-03-08 주식회사 엘지이아이 Generator for home having structure of connecting boiler
JP2007031256A (en) * 2005-07-29 2007-02-08 Toshiba Corp Hydrogen production system

Also Published As

Publication number Publication date
JP3453218B2 (en) 2003-10-06

Similar Documents

Publication Publication Date Title
EP0723068B1 (en) Process for the generation of electrical power
KR102323734B1 (en) A production method and system of blue hydrogen
CN101616865B (en) Systems and processes for producing hydrogen and carbon dioxide
JP4190151B2 (en) Method for generating electrical energy, water vapor and carbon dioxide from a hydrocarbon feedstock
RU2343109C2 (en) Method for producing hydrogen-rich flow, method for electric current generation, method of hydrofining, device for hydrogen-rich flow creation
US20090123364A1 (en) Process for Hydrogen Production
JP4800919B2 (en) Method for producing electricity and high concentration carbon dioxide
RU96100851A (en) METHOD FOR ELECTRICITY PRODUCTION
JP2005512771A5 (en)
JP3297246B2 (en) Cogeneration method
JP4008051B2 (en) Power generation method
JP3453218B2 (en) Power generation method
CN1321136A (en) Apparatus for producing hydrogen gas and fuel cell system using same
JP3367790B2 (en) Power generation method
JP3690833B2 (en) Power generation method
JP2684297B2 (en) Carbon dioxide free cogeneration system with power recovery type fuel reforming reactor
JPH08261014A (en) Power generating method
JP2000001302A (en) Method to simultaneously produce hydrogen-rich gas and electric power
JP2003183004A (en) Method for manufacturing synthetic gas, and system for manufacturing liquid fuel and system for generating fuel cell-electric power utilizing this
JP2002321904A (en) Method for producing hydrogen
JPH08321321A (en) Fuel cell
JP2001202982A (en) Solid polymer fuel cell system
JP3947266B2 (en) Hydrogen production method and apparatus used therefor
TW202348548A (en) Process and plant for producing renewable fuels
CN115806271A (en) Natural gas reforming system and method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030624

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees