JPH08334687A - Optical scanning optical system - Google Patents

Optical scanning optical system

Info

Publication number
JPH08334687A
JPH08334687A JP16289395A JP16289395A JPH08334687A JP H08334687 A JPH08334687 A JP H08334687A JP 16289395 A JP16289395 A JP 16289395A JP 16289395 A JP16289395 A JP 16289395A JP H08334687 A JPH08334687 A JP H08334687A
Authority
JP
Japan
Prior art keywords
lens
scanning direction
optical
image forming
main scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16289395A
Other languages
Japanese (ja)
Other versions
JP3437331B2 (en
Inventor
Koji Toyoda
浩司 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP16289395A priority Critical patent/JP3437331B2/en
Publication of JPH08334687A publication Critical patent/JPH08334687A/en
Application granted granted Critical
Publication of JP3437331B2 publication Critical patent/JP3437331B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)

Abstract

PURPOSE: To excellently correct an fθ characteristic in the horizontal scanning direction and the curvature of field by making at least one lens surface an aspheric surface assymetric in the horizontal scanning direction and/or vertical scanning direction with respect to the optical axis center of an image-forming means. CONSTITUTION: The image forming means (fθ lens system) 10 is constituted of three lenses, that is, a toric lens 6 having negative refracting power on a horizontal scanning cross section and positive refracting power on a vertical scanning cross section, an anamorphic lens 7 arranged in the vicinity of the side of the surface to be scanned of the toric lens 6 and having the positive refracting power being mutually different on the horizontal scanning cross section and the vertical scanning cross section and the toric lens 8 arranged in the vicinity of the side of the surface to be scanned of the anamorphic lens 7 and having the positive refracting power on the horizontal scanning cross section and the negative refracting power on the vertical scanning cross section. The toric lens 8 is formed to be a concentric shape, and its lens surface on the side of a light deflector 5 in the horizontal scanning direction is made to be a symmetrical aspherical shape with respect to the optical axis center, and its lens surface on the side of the surface to be scanned is formed to be the asymmetrical aspherical shape with respect to the optical axis center.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光走査光学系に関し、特
に光源手段から射出された光ビームを回転多面鏡等の光
偏向器を介して記録媒体面である被走査面上に導光し光
走査することにより、文字や情報等を記録するようにし
た、例えばレーザービームプリンタ(LBP)やディジ
タル複写機等の装置に好適な光走査光学系に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical scanning optical system, and in particular, it guides a light beam emitted from a light source means onto a surface to be scanned, which is a recording medium surface, through an optical deflector such as a rotating polygon mirror. The present invention relates to an optical scanning optical system suitable for an apparatus such as a laser beam printer (LBP) or a digital copying machine, which records characters and information by optical scanning.

【0002】[0002]

【従来の技術】従来より回転多面鏡より成る光偏向器の
各反射面(偏向面)で偏向反射された光ビームを利用し
て被走査面上を光走査するようにした光走査光学系が、
例えば特公昭62−36210号公報や特開平4−15
3616号公報や米国特許第5062679号で種々と
提案されている。
2. Description of the Related Art Conventionally, an optical scanning optical system has been known which optically scans a surface to be scanned by using a light beam deflected and reflected by each reflection surface (deflection surface) of an optical deflector composed of a rotating polygon mirror. ,
For example, Japanese Examined Patent Publication No. 62-36210 and Japanese Patent Laid-Open No. 4-15
Various proposals have been made in Japanese Patent No. 3616 and US Pat. No. 5,062,679.

【0003】特公昭62−36210号公報で提案され
ている光走査光学系は光偏向器と被走査面との間に主走
査方向にfθ特性を有する光走査用の結像手段を設け、
該結像手段の1つであるトーリックレンズの副走査方向
の屈折力を適切に設定することにより、光偏向器の反射
面が回転軸に対して平行となっていなく倒れているとき
の角度誤差、所謂面倒れを補正している。
The optical scanning optical system proposed in Japanese Patent Publication No. 62-36210 is provided with an image forming means for optical scanning having an fθ characteristic in the main scanning direction between an optical deflector and a surface to be scanned.
By properly setting the refracting power of the toric lens, which is one of the image forming means, in the sub-scanning direction, an angular error when the reflecting surface of the optical deflector is tilted instead of being parallel to the rotation axis The so-called troublesomeness is corrected.

【0004】即ち、トーリックレンズを用いて光偏向器
の反射面と被走査面(被照射体面)とを光学的に共役関
係にして面倒れによる悪影響を除去している。これによ
り反射面により反射偏向された光ビームの走査面上の進
行方向が補正されて走査線のピッチにムラが生じないよ
うにしている。
That is, a toric lens is used to make the reflecting surface of the optical deflector and the surface to be scanned (the surface of the object to be irradiated) optically conjugate with each other to eliminate the adverse effect of the surface tilt. As a result, the traveling direction of the light beam reflected and deflected by the reflecting surface on the scanning surface is corrected to prevent unevenness in the pitch of the scanning lines.

【0005】又、特開平4−153616号公報で提案
されている光走査光学系では、結像手段の1つであるト
ーリックレンズの材質をプラスチック材より形成すると
共にその両レンズ面を非球面形状より形成している。
In the optical scanning optical system proposed in Japanese Patent Laid-Open No. 4-153616, the material of the toric lens, which is one of the image forming means, is made of a plastic material and both lens surfaces are aspherical. More formed.

【0006】一般にトーリックレンズは主走査方向と副
走査方向とで互いに曲率が異なる為、例えばガラス材で
加工する場合、加工方法が複雑になり、加工時間も非常
に長くかかる為、コスト高につながる要因となってい
た。
Generally, a toric lens has different curvatures in the main scanning direction and the sub-scanning direction. For example, when processing a glass material, the processing method is complicated and the processing time is very long, resulting in high cost. It was a factor.

【0007】そこでこのトーリックレンズをプラスチッ
ク化することにより、一体成形が可能となり、これによ
り加工方法の簡素化及び加工時間の短縮化が可能とな
り、大幅なコストダウンが図れる。
Therefore, by making this toric lens into a plastic, it becomes possible to integrally mold it, which simplifies the processing method and shortens the processing time, resulting in a significant cost reduction.

【0008】又、米国特許5062679号で提案され
ている光走査光学系では、結像手段の1つであるトーリ
ックレンズの副走査方向の曲率半径を光軸から離れるに
従い変化させて形成している。これはトーリックレンズ
をプラスチック化することにより加工が可能となり、こ
れにより副走査方向の像面湾曲を良好に補正することが
できる。
Further, in the optical scanning optical system proposed in US Pat. No. 5,062,679, the toric lens, which is one of the image forming means, is formed by changing the radius of curvature in the sub-scanning direction with distance from the optical axis. . This can be processed by making the toric lens plastic, and thereby the field curvature in the sub-scanning direction can be satisfactorily corrected.

【0009】[0009]

【発明が解決しようとする課題】特公昭62−3621
0号公報の光走査光学系におけるfθ特性を有した光走
査用の結像手段は光偏向器側より順に球面より成る単レ
ンズとトーリックレンズとより成っている。
[Problems to be Solved by the Invention] Japanese Patent Publication No. 62-3621
The image forming means for optical scanning having the f.theta. Characteristic in the optical scanning optical system of Japanese Patent No. 0 is composed of a single lens and a toric lens each having a spherical surface in order from the optical deflector side.

【0010】このようなレンズ構成での光走査光学系は
走査画角がさほど大きくない場合、収差補正が良好に行
なわれ、所望の光学性能が容易に得られる。しかしなが
らトーリックレンズは主走査方向と副走査方向とで互い
に異なる曲率を有する特殊レンズである為、前述した如
くその加工方法は複雑であり、非常に長い加工時間を要
する為に大きなコストアップの要因となり、又走査画角
が大きくなると収差が著しく悪化する傾向にあった。
In the optical scanning optical system having such a lens structure, when the scanning angle of view is not so large, the aberration is favorably corrected and the desired optical performance is easily obtained. However, since the toric lens is a special lens having different curvatures in the main scanning direction and the sub-scanning direction, the processing method is complicated as described above, and it takes a very long processing time, which causes a large cost increase. Also, when the scanning angle of view becomes large, the aberration tends to be significantly deteriorated.

【0011】そこで従来では前記の特開平4−1536
16号公報や米国特許5062679号等で提案されて
いるようにトーリックレンズをプラスチック化にすると
共にレンズ面を非球面形状より形成し、更にトーリック
レンズの副走査方向の曲率半径を光軸から離れるに従っ
て変化させることによって、低コスト化を図ると共に全
画角にわたり良好に収差を補正している。
Therefore, in the prior art, the above-mentioned Japanese Patent Laid-Open No. 1536 / 4-1536 is used.
As disclosed in Japanese Patent No. 16 and US Pat. No. 5,062,679, the toric lens is made plastic and the lens surface is formed of an aspherical surface, and the radius of curvature of the toric lens in the sub-scanning direction is further away from the optical axis. By changing it, the cost is reduced and the aberration is corrected well over the entire angle of view.

【0012】しかしながら更なる高画質化、広画角化を
図る場合には主走査方向における光偏向器の反射面の移
動、即ち該光偏向器の回転に伴なう光ビームの反射位置
の移動(入射瞳の移動)が無視できなくなってくる。そ
してこの結果生じるfθ特性及び主走査方向の像面湾曲
の光軸に対する非対称性を良好に補正することが困難と
なってくるという問題点があった。
However, in order to further improve image quality and widen the angle of view, the reflection surface of the optical deflector is moved in the main scanning direction, that is, the reflection position of the light beam is moved as the optical deflector rotates. (Movement of entrance pupil) cannot be ignored. Then, there is a problem that it is difficult to satisfactorily correct the resulting fθ characteristic and the asymmetry of the field curvature in the main scanning direction with respect to the optical axis.

【0013】本発明は結像手段のレンズ構成、レンズ形
状そしてレンズの材質等を適切に設定すると共に少なく
とも1つのレンズ面を該結像手段の光軸中心に対して主
走査方向又は主走査方向と副走査方向に関して非対称な
非球面形状より形成することにより、主走査方向のfθ
特性及び像面湾曲を良好に補正することができる光走査
光学系の提供を目的とする。
According to the present invention, the lens structure of the image forming means, the lens shape, the material of the lens and the like are properly set, and at least one lens surface is in the main scanning direction or the main scanning direction with respect to the optical axis center of the image forming means. And fθ in the main scanning direction by forming an aspherical shape asymmetric with respect to the sub scanning direction.
It is an object of the present invention to provide an optical scanning optical system that can satisfactorily correct characteristics and field curvature.

【0014】[0014]

【課題を解決するための手段】本発明の光走査光学系
は、 (1−1)光源手段から射出した光ビームを偏向手段に
導光し、該偏向手段で偏向反射させた該光ビームを結像
手段により被走査面上に導光し光走査する光走査光学系
において、該結像手段は該偏向手段側から順に主走査方
向と副走査方向とで互いに異なる曲率半径のレンズ面を
両面に持つトーリックレンズより成る第1レンズ、主走
査方向と副走査方向との双方に異なる正の屈折力を有す
るアナモフィックレンズより成る第2レンズ、そして主
走査方向と副走査方向とで互いに異なる曲率半径のレン
ズ面を両面に持つトーリックレンズより成る第3レンズ
との3枚のレンズを有し、少なくとも1つのレンズ面は
該結像手段の光軸中心に対して主走査方向又は主走査方
向と副走査方向に関して非対称な非球面形状よりなって
いることを特徴としている。
In the optical scanning optical system of the present invention, (1-1) a light beam emitted from a light source means is guided to a deflecting means, and the light beam deflected and reflected by the deflecting means is reflected. In an optical scanning optical system for guiding light onto a surface to be scanned by an image forming means and performing optical scanning, the image forming means has lens surfaces having different radii of curvature in order from the deflecting means side in the main scanning direction and the sub scanning direction. A toric lens having a first lens, a second lens having an anamorphic lens having positive refractive powers different in both the main scanning direction and the sub-scanning direction, and a radius of curvature different from each other in the main scanning direction and the sub-scanning direction. 3 lens including a toric lens having both lens surfaces on both sides and at least one lens surface with respect to the optical axis center of the image forming means in the main scanning direction or in the main scanning direction and the sub-direction. Scanning direction Is characterized by having an asymmetrical aspherical shape.

【0015】特に前記結像手段の光軸中心に対して非対
称な非球面形状より成るレンズの材質はプラスチック材
で形成されていることや、前記第3レンズの主走査方向
における焦点距離をf3a、前記結像手段全系の主走査
方向における合成焦点距離をfaとしたとき 0.02<|fa/f3a|<0.06 ‥‥‥‥(1) なる条件を満足することや、前記第3レンズの副走査方
向における焦点距離をf3b、前記結像手段全系の主走
査方向における合成焦点距離をfaとしたとき 0.08<|fa/f3b|<0.25 ‥‥‥‥(2) なる条件を満足することや、前記結像手段全系の主走査
方向における合成焦点距離をfa、前記第3レンズと前
記被走査面との間の距離をL3としたとき 0.7<|L3/fa|<1.8 ‥‥‥‥(3) なる条件を満足することや、前記第3レンズの副走査方
向における焦点距離をf3b、前記第3レンズの光軸方
向の最大肉厚をd3maxとしたとき |d3max/f3b|<0.025 ‥‥‥‥(4) なる条件を満足することや、前記第1レンズの副走査方
向における焦点距離をf1b、前記第3レンズの副走査
方向における焦点距離をf3bとしたとき |f3b/f1b|<5 ‥‥‥‥(5) なる条件を満足すること等を特徴としている。
Particularly, the material of the lens having an aspherical shape asymmetric with respect to the optical axis center of the image forming means is a plastic material, and the focal length of the third lens in the main scanning direction is f3a, When the combined focal length of the entire image forming unit system in the main scanning direction is fa, 0.02 <| fa / f3a | <0.06 (1) is satisfied, and the third condition is satisfied. When the focal length of the lens in the sub-scanning direction is f3b and the combined focal length of the entire image forming unit system in the main scanning direction is fa 0.08 <| fa / f3b | <0.25 (2) 0.7 <| L3 when the following conditions are satisfied, and the combined focal length of the entire image forming unit system in the main scanning direction is fa and the distance between the third lens and the surface to be scanned is L3. /Fa|<1.8 ‥‥‥‥ ( ) When the following conditions are satisfied, the focal length of the third lens in the sub-scanning direction is f3b, and the maximum thickness of the third lens in the optical axis direction is d3max: | d3max / f3b | <0.025. (4) When the following condition is satisfied, the focal length of the first lens in the sub-scanning direction is f1b, and the focal length of the third lens in the sub-scanning direction is f3b: | f3b / f1b | < It is characterized by satisfying the following condition (5).

【0016】(1−2)光源手段から射出した光ビーム
を偏向手段に導光し、該偏向手段で偏向反射させた該光
ビームを結像手段により被走査面上に導光し光走査する
光走査光学系において、該結像手段は該偏向手段側から
順に被走査面側に凸の曲率半径を有する球面レンズより
成る第1レンズ、被走査面側に主走査方向と副走査方向
の曲率半径が互いに異なるレンズ面を有するトーリック
レンズより成る第2レンズとの2枚のレンズを有し、少
なくとも1つのレンズ面は該結像手段の光軸中心に対し
て主走査方向又は主走査方向と副走査方向に関して非対
称な非球面形状よりなっていることを特徴としている。
(1-2) The light beam emitted from the light source means is guided to the deflecting means, and the light beam deflected and reflected by the deflecting means is guided to the surface to be scanned by the image forming means for optical scanning. In the optical scanning optical system, the image forming means has a first lens composed of a spherical lens having a convex radius of curvature in order from the deflecting means side to the surface to be scanned, and the curvature in the main scanning direction and the sub-scanning direction on the surface to be scanned. It has two lenses, a second lens composed of a toric lens having lens surfaces having different radii, and at least one lens surface is in the main scanning direction or the main scanning direction with respect to the optical axis center of the image forming means. It is characterized by having an aspherical shape which is asymmetric with respect to the sub-scanning direction.

【0017】特に前記結像手段の光軸中心に対して非対
称な非球面形状より成るレンズの材質はガラス材で形成
されていることや、前記第2レンズの主走査方向におけ
る焦点距離をf2a、前記結像手段全系の主走査方向に
おける合成焦点距離をfaとしたとき 0.4<|fa/f2a|<1.2 ‥‥‥‥(6) なる条件を満足することや、前記第2レンズの副走査方
向における焦点距離をf2b、前記結像手段全系の主走
査方向における合成焦点距離をfaとしたとき 1.7<|fa/f2b|<4.6 ‥‥‥‥(7) なる条件を満足することや、前記結像手段全系の主走査
方向における合成焦点距離をfa、前記第2レンズと前
記被走査面との間の距離をL2としたとき 0.8<|L2/fa|<2.2 ‥‥‥‥(8) なる条件を満足すること等を特徴としている。
In particular, the material of the lens having an aspherical shape which is asymmetric with respect to the optical axis center of the image forming means is a glass material, and the focal length of the second lens in the main scanning direction is f2a, When the combined focal length of the whole system of the image forming means in the main scanning direction is fa, 0.4 <| fa / f2a | <1.2 (6) is satisfied, and the second condition is satisfied. When the focal length of the lens in the sub-scanning direction is f2b and the combined focal length of the entire image forming unit in the main scanning direction is fa, 1.7 <| fa / f2b | <4.6 (7) When the following condition is satisfied, the combined focal length of the entire image forming unit system in the main scanning direction is fa, and the distance between the second lens and the surface to be scanned is L2, 0.8 <| L2 /Fa|<2.2 ... (8) It is characterized in that, etc. to foot.

【0018】[0018]

【実施例】図1は本発明の実施例1の光学系の要部平面
図(主走査断面図)、図2は図1の主走査断面において
垂直な要部断面図(副走査断面図)である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a plan view (main-scan sectional view) of an essential part of an optical system according to a first embodiment of the present invention, and FIG. 2 is a sectional view (sub-scan sectional view) of a main part perpendicular to the main-scan section of FIG. Is.

【0019】図中、1は光源手段としての例えば半導体
レーザである。2はコリメーターレンズであり、光源手
段1から射出された光ビームを平行光束としている。3
は開口絞りであり、通過光束径を整えている。4はシリ
ンドリカルレンズであり、主走査断面に関しては屈折力
は有しておらず副走査断面に関して所定の屈折力を有し
ている。5は偏向手段としての例えば回転多面鏡より成
る光偏向器であり、矢印A方向に一定速度で回転してい
る。
In the figure, 1 is a semiconductor laser as a light source means. A collimator lens 2 collimates the light beam emitted from the light source means 1 into a parallel light flux. Three
Is an aperture stop, which adjusts the diameter of the passing light beam. Reference numeral 4 denotes a cylindrical lens, which has no refracting power in the main scanning cross section and has a predetermined refracting power in the sub scanning cross section. Reference numeral 5 denotes an optical deflector as a deflecting means, which is composed of, for example, a rotating polygon mirror, and rotates at a constant speed in the direction of arrow A.

【0020】10は本発明に係る結像手段(fθレンズ
系)であり、光偏向器5側から順に主走査断面に負の屈
折力、副走査断面に正の屈折力を有するプラスチック材
料で形成された第1レンズとしてのトーリックレンズ6
と、該トーリックレンズ6の被走査面側近傍に配置され
主走査断面と副走査断面とで互いに異なる正の屈折力を
有するガラス材料で形成された第2レンズとしてのアナ
モフィックレンズ7と、該アナモフィックレンズ7の被
走査面側近傍に配置され主走査断面に正の屈折力、副走
査断面に負の屈折力を有するプラスチック材料で形成さ
れた第3レンズとしてのトーリックレンズ8との3枚の
レンズより構成している。
Reference numeral 10 denotes an image forming means (fθ lens system) according to the present invention, which is formed of a plastic material having a negative refracting power in the main scanning section and a positive refracting power in the sub-scanning section in order from the optical deflector 5 side. Toric lens 6 as the first lens
An anamorphic lens 7 as a second lens which is arranged near the surface to be scanned of the toric lens 6 and is formed of a glass material having positive refractive powers different from each other in the main scanning section and the sub scanning section; Three lenses, a toric lens 8 as a third lens, which is arranged near the surface to be scanned of the lens 7 and is made of a plastic material having a positive refractive power in the main scanning cross section and a negative refractive power in the sub scanning cross section It is made up of.

【0021】シリンドリカルレンズ4とアナモフィック
レンズ7はfθ特性と像面湾曲を良好に補正する為のレ
ンズ形状より形成している。トーリックレンズ8は広画
角にわたってfθ特性と像面湾曲を良好に微補正する為
にコンセントリックな形状(トーリックレンズ8の両レ
ンズ面の曲率半径の中心が光偏向器5の反射面近傍にあ
る)で形成し、かつ主走査方向に関して光偏向器5側の
レンズ面を光軸中心に対して対称な非球面形状とし、被
走査面側のレンズ面を光軸中心に対して非対称な非球面
形状より形成している。
The cylindrical lens 4 and the anamorphic lens 7 are formed in a lens shape for satisfactorily correcting the fθ characteristic and the field curvature. The toric lens 8 has a concentric shape in order to finely correct the fθ characteristic and the field curvature over a wide angle of view (the center of the radius of curvature of both lens surfaces of the toric lens 8 is near the reflecting surface of the optical deflector 5). ), And the lens surface on the optical deflector 5 side with respect to the main scanning direction has an aspherical shape symmetrical with respect to the optical axis center, and the lens surface on the scanned surface side is asymmetrical with respect to the optical axis center. It is formed from the shape.

【0022】又、トーリックレンズ6は温度変化が生じ
た場合のトーリックレンズ8のピント移動を補正する為
のレンズ形状より形成しており、該トーリックレンズ6
とトーリックレンズ8とのピント移動が全系として相殺
されるように最適な屈折力に設定している。9は被走査
面としての感光ドラムである。
The toric lens 6 is formed in a lens shape for correcting the focus movement of the toric lens 8 when the temperature changes.
The optimum refractive power is set so that the focus movement between the toric lens 8 and the toric lens 8 is canceled as a whole system. Reference numeral 9 is a photosensitive drum as a surface to be scanned.

【0023】本実施例において光源手段1より射出され
た光ビームはコリメータレンズ2により略平行光束とさ
れ、該平行光束は開口絞り3によってその光束断面の大
きさが制限されてシリンドリカルレンズ4に入射する。
In the present embodiment, the light beam emitted from the light source means 1 is made into a substantially parallel light beam by the collimator lens 2, and the parallel light beam is incident on the cylindrical lens 4 with the size of the light beam cross section being limited by the aperture stop 3. To do.

【0024】シリンドリカルレンズ4は入射した平行光
束のうち主走査断面においてはそのまま平行光束の状態
で射出させ、副走査断面においては集束して光偏向器5
の反射面5aにほぼ線像光束として結像させている。そ
して光偏向器5の反射面5aで高速に反射偏向してい
る。光偏向器5で反射偏向された光ビームはトーリック
レンズ6とアナモフィックレンズ7そしてトーリックレ
ンズ8を通過することによってその走査直線性が補正さ
れ感光ドラム9面上に結像されて略等速度直線運動で該
感光ドラム9面上を光走査する。
The cylindrical lens 4 causes the parallel light flux of the incident parallel light flux to be emitted as it is in the main scanning cross section, and is focused in the sub scanning cross section to be converged in the sub scanning cross section.
It is formed on the reflecting surface 5a of the above as an almost linear image light flux. The reflection surface 5a of the optical deflector 5 reflects and deflects at high speed. The light beam reflected and deflected by the light deflector 5 passes through the toric lens 6, the anamorphic lens 7 and the toric lens 8 so that its scanning linearity is corrected and an image is formed on the surface of the photosensitive drum 9 to form a substantially uniform linear motion. Then, the surface of the photosensitive drum 9 is optically scanned.

【0025】図2においてPは光偏向器5の反射面位置
を示しており、副走査断面では前述した様にほぼこの反
射面位置Pに光ビームが集光するようにしている。
In FIG. 2, P indicates the position of the reflecting surface of the optical deflector 5, and in the sub-scanning cross section, the light beam is focused substantially on this reflecting surface position P as described above.

【0026】ここで反射面位置Pと感光ドラム9とは結
像手段10に関してそれぞれ光学的に略共役な位置関係
になっている。これにより反射面が副走査断面において
傾いても、所謂面倒れがあっても光ビームが感光ドラム
9面上の同一走査線上に結像するようにしている。この
様にして本実施例では光偏向器5の面倒れの補正を行っ
ている。
Here, the reflecting surface position P and the photosensitive drum 9 are in a substantially optically conjugate positional relationship with respect to the image forming means 10. As a result, the light beam is focused on the same scanning line on the surface of the photosensitive drum 9 even if the reflecting surface is tilted in the sub-scanning cross section or there is so-called surface tilt. In this way, in this embodiment, the surface tilt of the optical deflector 5 is corrected.

【0027】次に結像手段10を構成するトーリックレ
ンズ6とアナモフィックレンズ7とトーリックレンズ8
のレンズ構成の特徴について説明する。
Next, a toric lens 6, an anamorphic lens 7 and a toric lens 8 which form the image forming means 10.
The features of the lens configuration will be described.

【0028】本実施例におけるトーリックレンズ6とト
ーリックレンズ8は前述の如く副走査断面においてそれ
ぞれ順に正、負の屈折力を有しており、両トーリックレ
ンズ6,8ともその材質をプラスチック材で形成してい
る。
As described above, the toric lens 6 and the toric lens 8 in the present embodiment have positive and negative refracting powers in the sub-scanning section, respectively, and both toric lenses 6 and 8 are made of a plastic material. are doing.

【0029】このようなレンズ構成をとることによっ
て、本実施例では温度変動等によるプラスチック材の屈
折率変化によって発生する負の屈折力を有するトーリッ
クレンズ8のピント移動を正の屈折力を有するトーリッ
クレンズ6のピント移動で相殺させ、全系としてピント
移動を微小化させている。
By adopting such a lens structure, in the present embodiment, the focus movement of the toric lens 8 having a negative refracting power caused by the change in the refractive index of the plastic material due to temperature fluctuation or the like causes the toric lens having a positive refracting power to move. The focus movement of the lens 6 is offset, and the focus movement of the entire system is reduced.

【0030】本実施例では上記のピント移動を補正する
ピント移動補正光学系が結像手段10の内部で構成され
ているので、倒れ補正光学系を構成する共役結像関係に
は何も影響を与えることなく、ピント移動を補正するこ
とができる。
In this embodiment, since the focus movement correction optical system for correcting the focus movement is constructed inside the image forming means 10, there is no influence on the conjugate image forming relationship forming the tilt correction optical system. The focus movement can be corrected without giving.

【0031】このように本実施例においてはプラスチッ
クレンズを用いた場合の所定のピント移動補正光学系を
可能とし、面倒れ補正についても副走査方向に結像関係
を持たせることによって良好なる補正性能を得た上で、
従来の技術的な問題点である主走査方向のfθ特性及び
像面湾曲の非対称性による残存収差を良好に補正してい
る。
As described above, in the present embodiment, a predetermined focus movement correction optical system using a plastic lens is made possible, and good correction performance is also provided for surface tilt correction by providing an image forming relationship in the sub-scanning direction. On getting
The residual aberration due to the asymmetry of the fθ characteristic in the main scanning direction and the curvature of field, which are technical problems of the related art, is corrected well.

【0032】図1においてトーリックレンズ8は前述の
如く被走査面側のレンズ面が主走査方向において光軸中
心に対して非対称な非球面形状より形成している。
In FIG. 1, the toric lens 8 has a lens surface on the surface to be scanned formed of an aspherical surface asymmetric with respect to the optical axis center in the main scanning direction as described above.

【0033】ここで図1においてfθレンズ系(結像手
段)10の光軸方向をX軸、それと垂直な被走査面上の
走査方向をY軸とすると、光ビームと光偏向器5の反射
面との交点(反射点)は光偏向器5の回転に伴ない一般
的に図3、図4に示すように変動する。尚図3、図4に
おいて横軸の像高は百分率(%)で表わしている。交点
の移動は入射瞳の移動に対応し、図3、図4に示す説明
図からも分かるようにX座標、Y座標ともに像高0%の
走査に対し非対称に変動している。
Here, in FIG. 1, when the optical axis direction of the fθ lens system (imaging means) 10 is the X axis and the scanning direction on the surface to be scanned perpendicular to the X axis is the Y axis, the light beam and the reflection of the optical deflector 5 are reflected. The intersection (reflection point) with the surface generally fluctuates as shown in FIGS. 3 and 4 as the optical deflector 5 rotates. In FIGS. 3 and 4, the image height on the horizontal axis is expressed as a percentage (%). The movement of the intersection corresponds to the movement of the entrance pupil, and as can be seen from the explanatory views shown in FIGS. 3 and 4, both the X coordinate and the Y coordinate fluctuate asymmetrically with respect to the scan at the image height of 0%.

【0034】一般に入射瞳の移動に対するfθ特性(歪
曲収差)、像面湾曲は収差論より以下の式より表わされ
る。但し、瞳移動を表わすパラメータをγとする。
Generally, the fθ characteristic (distortion aberration) and the field curvature with respect to the movement of the entrance pupil are expressed by the following equations from the theory of aberration. However, the parameter indicating the pupil movement is γ.

【0035】III´= III−2γII+γ2 I V´ = V−γ(2III +IV)+3γ2II −γ3I ここで III´, V´はそれぞれ順に瞳移動後の非点収
差、歪曲収差等の3次収差係数、I ,II,III ,IV,V
はそれぞれ順に移動前の球面収差、コマ収差、非点収
差、球欠像面湾曲、歪曲収差等の3次収差係数である。
[0035] III' = III-2γII + γ 2 IV' = V-γ (2III + IV) + 3γ 2 II -γ 3 I wherein III', astigmatism after pupil navigate to each V', 3 such distortion Next-order aberration coefficient, I, II, III, IV, V
Are the third-order aberration coefficients such as spherical aberration, coma aberration, astigmatism, stigmatic field curvature, and distortion aberration before moving.

【0036】即ち、入射瞳が非対称に変動すれば、それ
に伴なう各収差も非対称性を持って表われることにな
る。
That is, if the entrance pupil fluctuates asymmetrically, each aberration associated therewith also appears asymmetrically.

【0037】そこで本実施例ではこのような非対称性を
持った残存収差を補正する為に前述の如くトーリックレ
ンズ8の被走査面側のレンズ面形状も光軸中心に対して
非対称な非球面形状より形成することにより、全画角に
わたり主走査方向のfθ特性及び像面湾曲を良好に補正
することができる。
Therefore, in this embodiment, in order to correct the residual aberration having such asymmetry, the lens surface shape of the toric lens 8 on the surface to be scanned side is asymmetrical with respect to the optical axis center as described above. By forming the above, the fθ characteristic and the field curvature in the main scanning direction can be satisfactorily corrected over the entire angle of view.

【0038】図5、図6は各々本発明の実施例1による
光走査範囲における被走査面上での主走査方向のfθ特
性(歪曲収差)及び像面湾曲を示す説明図である。図
5、図6は各々トーリックレンズの被走査面側の主走査
方向のレンズ面形状を、光軸に対して対称なレンズ面形
状を補正前、非対称なレンズ面形状を補正後として比較
して示してある。図5、図6に示すように全画角にわた
り良好に収差が補正されていることが分かる。
5 and 6 are explanatory views showing the fθ characteristic (distortion aberration) and the field curvature in the main scanning direction on the surface to be scanned in the optical scanning range according to the first embodiment of the present invention. 5 and 6 respectively compare the lens surface shape in the main scanning direction on the surface to be scanned of the toric lens before correction of the lens surface shape symmetrical with respect to the optical axis and after correction of the asymmetric lens surface shape. It is shown. As shown in FIGS. 5 and 6, it can be seen that the aberration is well corrected over the entire angle of view.

【0039】図7、図8は各々本発明の実施例2による
光走査範囲における被走査面上での主走査方向のfθ特
性(歪曲収差)及び像面湾曲を示す説明図である。
7 and 8 are explanatory views showing the f.theta. Characteristic (distortion aberration) and the field curvature in the main scanning direction on the surface to be scanned in the optical scanning range according to the second embodiment of the present invention.

【0040】本実施例において前述の実施例1と異なる
点は第3レンズとしてのトーリックレンズ8の主走査方
向のレンズ面形状を両レンズ面とも光軸中心に対して非
対称な非球面形状より形成したことである。その他の構
成及び光学的作用は前述の実施例1と略同様であり、こ
れにより同様な効果を得ている。本実施例においても図
7、図8に示すように全画角にわたり良好に収差が補正
されていることが分かる。
The difference between this embodiment and the first embodiment described above is that the lens surface shape of the toric lens 8 as the third lens in the main scanning direction is formed of an aspherical surface asymmetric with respect to the optical axis center on both lens surfaces. That is what I did. Other configurations and optical functions are substantially the same as those in the above-described first embodiment, and the same effect is obtained. Also in this embodiment, as shown in FIGS. 7 and 8, it can be seen that the aberration is favorably corrected over the entire angle of view.

【0041】図9、図10は各々本発明の実施例3によ
る光走査範囲における被走査面上での主走査方向のfθ
特性(歪曲収差)及び像面湾曲を示す説明図である。
9 and 10 are fθ in the main scanning direction on the surface to be scanned in the optical scanning range according to the third embodiment of the present invention.
It is explanatory drawing which shows a characteristic (distortion aberration) and a field curvature.

【0042】本実施例において前述の実施例1と異なる
点は第3レンズとしてのトーリックレンズ8の主走査方
向のレンズ面形状を両レンズ面とも光軸中心に対して非
対称な非球面形状より形成し、かつ副走査方向の被走査
面側のレンズ面形状を光軸中心に対して非対称な非球面
形状より形成したことである。その他の構成及び光学的
作用は前述の実施例1と略同様であり、これにより同様
な効果を得ている。本実施例においても図9、図10に
示すように全画角にわたり良好に収差が補正されている
ことが分かる。
The present embodiment differs from the above-mentioned first embodiment in that the lens surface shape of the toric lens 8 as the third lens in the main scanning direction is formed by an aspherical surface asymmetric with respect to the optical axis center on both lens surfaces. In addition, the lens surface shape on the surface to be scanned in the sub-scanning direction is formed of an aspherical surface asymmetric with respect to the optical axis center. Other configurations and optical functions are substantially the same as those in the above-described first embodiment, and the same effect is obtained. Also in this embodiment, as shown in FIGS. 9 and 10, it can be seen that the aberration is favorably corrected over the entire angle of view.

【0043】更に各実施例1、2、3において被走査面
全体の諸収差を良好に補正し、温度変化等の影響による
被走査面上でのピント移動を防止し、かつ光走査範囲の
広画角化を容易にするには次の諸条件のうち少なくとも
1つを満足させるのが良い。
Further, in each of Examples 1, 2 and 3, various aberrations on the entire surface to be scanned are satisfactorily corrected, focus movement on the surface to be scanned due to the influence of temperature change and the like is prevented, and the optical scanning range is widened. In order to make the angle of view easy, it is preferable to satisfy at least one of the following conditions.

【0044】即ち、第1レンズ(トーリックレンズ6)
の副走査方向の焦点距離をf1b、第3レンズ(トーリ
ックレンズ8)の主走査方向と副走査方向の焦点距離を
各々f3a,f3b、第3レンズの光軸方向の最大肉厚
をd3max、結像手段全系の主走査方向における合成
焦点距離をfa、第3レンズと被走査面との間の距離を
L3としたとき 0.02<|fa/f3a|<0.06 ‥‥‥‥(1) 0.08<|fa/f3b|<0.25 ‥‥‥‥(2) 0.7<|L3/fa|<1.8 ‥‥‥‥(3) |d3max/f3b|<0.025 ‥‥‥‥(4) |f3b/f1b|<5 ‥‥‥‥(5) なる条件を満足することである。
That is, the first lens (toric lens 6)
, F3b is the focal length of the third lens (toric lens 8) in the main scanning direction and f3b, respectively, and the maximum thickness in the optical axis direction of the third lens is d3max. Assuming that the combined focal length of the entire image system in the main scanning direction is fa and the distance between the third lens and the surface to be scanned is L3, 0.02 <| fa / f3a | <0.06 ( 1) 0.08 <| fa / f3b | <0.25 (2) 0.7 <| L3 / fa | <1.8 (3) | d3max / f3b | <0. 025 (4) | f3b / f1b | <5 (5).

【0045】条件式(1)は主走査方向のfθ特性と像
面湾曲を良好に補正する為のものである。条件式(1)
の下限値を越えて焦点距離f3aが大きくなりすぎると
収差補正上有利となるが、第3レンズが被走査面側に近
づいてしまい、装置全体が大型化してしまうので良くな
い。又条件式(1)の上限値を越えて焦点距離f3aが
小さくなりすぎると逆に装置全体のコンパクト化には有
利となるが、fθ特性と像面湾曲の双方をバランス良く
補正するのが困難になってくるので良くない。
Conditional expression (1) is for satisfactorily correcting the fθ characteristic in the main scanning direction and the field curvature. Conditional expression (1)
If the focal length f3a becomes too large beyond the lower limit of the above, it is advantageous for aberration correction, but this is not preferable because the third lens approaches the surface to be scanned and the entire apparatus becomes large. On the other hand, if the focal length f3a becomes too small beyond the upper limit of the conditional expression (1), it is advantageous for downsizing the entire device, but it is difficult to correct both the fθ characteristic and the field curvature in a well-balanced manner. It is not good because it becomes.

【0046】条件式(2)は副走査方向の像面湾曲を良
好に補正する為のものである。条件式(2)の上限値を
越えて焦点距離f3bが大きくなりすぎると収差補正上
は有利となるが、第3レンズが被走査面側に近づき装置
全体が大型化してくるので良くない。又条件式(2)の
下限値を越えて焦点距離f3bが小さくなりすぎると主
走査方向と副走査方向との像面湾曲をバランス良く補正
するのが困難になってくるので良くない。
Conditional expression (2) is for satisfactorily correcting the field curvature in the sub-scanning direction. If the focal length f3b exceeds the upper limit of conditional expression (2) and becomes too large, it is advantageous for aberration correction, but this is not preferable because the third lens approaches the surface to be scanned and the entire apparatus becomes large. If the focal length f3b becomes too small beyond the lower limit of conditional expression (2), it becomes difficult to correct the field curvature in the main scanning direction and the sub scanning direction in a well-balanced manner, which is not preferable.

【0047】条件式(3)は第3レンズと被走査面との
距離L3と、結像手段全系の主走査方向における合成焦
点距離faとの比に関するものである。条件式(3)の
下限値を越えると装置全体が大型化になると共に面倒れ
補正効果が少なくってくるので良くない。又条件式
(3)の上限値を越えて第3レンズの屈折力が強くなり
すぎると、特に第3レンズの材質をプラスチック材で形
成した場合、温度変化等の影響による被走査面上でのピ
ント移動が許容範囲より外れしまうので良くない。
Conditional expression (3) relates to the ratio between the distance L3 between the third lens and the surface to be scanned and the combined focal length fa in the main scanning direction of the entire image forming means system. If the lower limit of conditional expression (3) is exceeded, the size of the entire apparatus will be increased and the effect of face tilt correction will be reduced, which is not preferable. If the upper limit of conditional expression (3) is exceeded and the refracting power of the third lens becomes too strong, especially when the third lens is made of a plastic material, it may occur on the surface to be scanned due to the influence of temperature change or the like. It is not good because the focus movement is out of the allowable range.

【0048】条件式(4)は第3レンズの光軸方向の最
大肉厚d3maxと第3レンズの副走査方向における焦
点距離f3bとの比に関するものである。条件式(4)
を外れると環境変動によるピント移動を良好に防止する
ことが難しくなり、かつプラスチック材による第3レン
ズの成形が難しくなってくるので良くない。
Conditional expression (4) relates to the ratio between the maximum thickness d3max of the third lens in the optical axis direction and the focal length f3b of the third lens in the sub-scanning direction. Conditional expression (4)
If it is out of the range, it becomes difficult to satisfactorily prevent focus movement due to environmental changes, and it becomes difficult to mold the third lens with a plastic material, which is not preferable.

【0049】条件式(5)は第1レンズと第3レンズの
副走査方向の焦点距離f1b,f3bとの比に関するも
のである。条件式(5)を外れると環境変動によるピン
ト移動を良好に防止することが難しくなってくるので良
くない。
Conditional expression (5) relates to the ratio between the focal lengths f1b and f3b of the first lens and the third lens in the sub-scanning direction. If conditional expression (5) is not satisfied, it becomes difficult to favorably prevent focus movement due to environmental changes, which is not good.

【0050】図11は本発明の実施例4の光学系の要部
平面図(主走査断面図)、図12は図11の主走査断面
において垂直な要部断面図(副走査断面図)である。同
図において前記図1、図2に示した要素と同一要素には
同符番を付している。
FIG. 11 is a plan view (main scanning cross-sectional view) of a main part of an optical system according to a fourth embodiment of the present invention, and FIG. 12 is a cross-sectional view (sub-scanning cross-sectional view) of a main part perpendicular to the main scanning cross section of FIG. is there. In the figure, the same elements as those shown in FIGS. 1 and 2 are designated by the same reference numerals.

【0051】本実施例において前述の各実施例1,2,
3と大きく異なる点は結像手段(fθレンズ系)を2枚
のレンズより構成したことである。
In this embodiment, each of the above-mentioned first, second,
3 is that the image forming means (fθ lens system) is composed of two lenses.

【0052】即ち、本実施例では結像手段20を光偏向
器5側から順に被走査面側に凸の曲率半径を有するガラ
ス材料で形成された第1レンズとしての球面レンズ1
1、被走査面側に主走査方向と副走査方向の曲率半径が
互いに異なるレンズ面を有するガラス材料で形成された
第2レンズとしてのトーリックレンズ12の2枚のレン
ズより構成している。このうちトーリックレンズ12の
被走査面側のレンズ面形状が主走査方向において結像手
段20の光軸中心に対して非対称な非球面形状となるよ
うに形成している。
That is, in the present embodiment, the image forming means 20 is formed from a glass material having a convex radius of curvature in order from the optical deflector 5 side to the surface to be scanned, and the spherical lens 1 as the first lens.
1. A toric lens 12 as a second lens formed of a glass material having two lens surfaces with different radii of curvature in the main scanning direction and the sub-scanning direction on the surface to be scanned. Of these, the toric lens 12 is formed such that the lens surface shape on the surface to be scanned is an aspherical shape which is asymmetric with respect to the optical axis center of the image forming means 20 in the main scanning direction.

【0053】このように結像手段20を構成することに
より、本実施例では前述の各実施例と同様に従来の技術
的な問題点である主走査方向のfθ特性及び像面湾曲の
非対称性による残存収差を良好に補正している。
By constructing the image forming means 20 in this way, in this embodiment, as in the above-mentioned respective embodiments, the fθ characteristic in the main scanning direction and the asymmetry of the curvature of field, which are technical problems of the prior art, are present. The residual aberration due to is well corrected.

【0054】図13、図14は各々本発明の実施例4に
よる光走査範囲における被走査面上での主走査方向のf
θ特性(歪曲収差)及び像面湾曲を示す説明図である。
図13、図14は各々トーリックレンズの被走査面側の
主走査方向のレンズ面形状を、光軸に対して対称なレン
ズ面形状を補正前、非対称なレンズ面形状を補正後とし
て比較して示してある。図13、図14に示すように全
画角にわたり良好に収差が補正されていることが分か
る。
13 and 14 show f in the main scanning direction on the surface to be scanned in the optical scanning range according to the fourth embodiment of the present invention.
It is explanatory drawing which shows (theta) characteristic (distortion aberration) and field curvature.
13 and 14 compare the lens surface shape in the main scanning direction on the surface to be scanned of the toric lens with the lens surface shape symmetric with respect to the optical axis before correction and the asymmetric lens surface shape after correction. It is shown. As shown in FIGS. 13 and 14, it can be seen that the aberration is favorably corrected over the entire angle of view.

【0055】図15、図16は各々本発明の実施例5に
よる光走査範囲における被走査面上での主走査方向のf
θ特性(歪曲収差)及び像面湾曲を示す説明図である。
15 and 16 show f in the main scanning direction on the surface to be scanned in the optical scanning range according to the fifth embodiment of the present invention.
It is explanatory drawing which shows (theta) characteristic (distortion aberration) and field curvature.

【0056】本実施例において前述の実施例4と異なる
点は第2レンズとしてのトーリックレンズ12の主走査
方向のレンズ面形状を両レンズ面とも光軸中心に対して
非対称な非球面形状より形成し、かつ副走査方向の被走
査面側のレンズ面形状も光軸中心に対して非対称な非球
面形状より形成したことである。その他の構成及び光学
的作用は前述の実施例4と略同様であり、これにより同
様な効果を得ている。本実施例においても図15、図1
6に示すように全画角にわたり良好に収差が補正されて
いることが分かる。
The present embodiment differs from the above-mentioned fourth embodiment in that the lens surface shape of the toric lens 12 as the second lens in the main scanning direction is formed of an aspherical surface asymmetric with respect to the optical axis center on both lens surfaces. In addition, the shape of the lens surface on the surface to be scanned in the sub-scanning direction is also formed of an aspherical surface asymmetric with respect to the optical axis center. Other configurations and optical functions are substantially the same as those of the above-described fourth embodiment, and thereby the same effect is obtained. Also in this embodiment, FIG. 15 and FIG.
As shown in FIG. 6, it can be seen that the aberration is favorably corrected over the entire angle of view.

【0057】更に各実施例4、5において被走査面全体
の諸収差を良好に補正し、かつ光走査範囲の広画角化を
容易にするには次の諸条件のうち少なくとも1つを満足
させるのが良い。
Furthermore, in each of Examples 4 and 5, at least one of the following conditions is satisfied in order to satisfactorily correct various aberrations on the entire surface to be scanned and to facilitate widening of the angle of view of the optical scanning range. It is good to let

【0058】即ち、第1レンズ(球面レンズ11)の副
走査方向の焦点距離をf1b、第2レンズ(トーリック
レンズ12)の主走査方向と副走査方向の焦点距離を各
々f2a,f2b、結像手段全系の主走査方向における
合成焦点距離をfa、第2レンズと被走査面との間の距
離をL2としたとき 0.4<|fa/f2a|<1.2 ‥‥‥‥(6) 1.7<|fa/f2b|<4.6 ‥‥‥‥(7) 0.8<|L2/fa|<2.2 ‥‥‥‥(8) なる条件を満足することである。
That is, the focal length of the first lens (spherical lens 11) in the sub-scanning direction is f1b, the focal lengths of the second lens (toric lens 12) in the main-scanning direction and the sub-scanning direction are f2a and f2b, respectively. When the combined focal length of the entire system in the main scanning direction is fa and the distance between the second lens and the surface to be scanned is L2, 0.4 <| fa / f2a | <1.2 (6 ) 1.7 <| fa / f2b | <4.6 (...) (7) 0.8 <| L2 / fa | <2.2 (8).

【0059】条件式(6)は主走査方向のfθ特性と像
面湾曲を良好に補正する為のものである。条件式(6)
の下限値を越えて焦点距離f2aが大きくなりすぎると
収差補正上有利となるが、第2レンズが被走査面側に近
づいてしまい、装置全体が大型化してしまうので良くな
い。又条件式(6)の上限値を越えて焦点距離f2aが
小さくなりすぎると逆に装置全体のコンパクト化には有
利となるが、fθ特性と像面湾曲の双方をバランス良く
補正するのが困難になってくるので良くない。
Conditional expression (6) is for satisfactorily correcting the fθ characteristic in the main scanning direction and the field curvature. Conditional expression (6)
If the focal length f2a becomes too large beyond the lower limit of the above, it is advantageous for aberration correction, but this is not preferable because the second lens approaches the surface to be scanned and the entire apparatus becomes large. On the other hand, if the focal length f2a becomes too small beyond the upper limit of the conditional expression (6), it is advantageous for downsizing the entire device, but it is difficult to correct both the fθ characteristic and the field curvature in a well-balanced manner. It is not good because it becomes.

【0060】条件式(7)は副走査方向の像面湾曲を良
好に補正する為のものである。条件式(7)の上限値を
越えて焦点距離f2bが大きくなりすぎると収差補正上
は有利となるが、第2レンズが被走査面側に近づき装置
全体が大型化してくるので良くない。又条件式(7)の
下限値を越えて焦点距離f2bが小さくなりすぎると主
走査方向と副走査方向との像面湾曲をバランス良く補正
するのが困難になってくるので良くない。
Conditional expression (7) is for satisfactorily correcting the field curvature in the sub-scanning direction. If the focal length f2b exceeds the upper limit of the conditional expression (7) and becomes too large, it is advantageous for aberration correction, but it is not good because the second lens approaches the surface to be scanned and the size of the entire apparatus increases. If the focal length f2b becomes too small beyond the lower limit of conditional expression (7), it becomes difficult to correct the field curvature in the main scanning direction and the sub scanning direction in a well-balanced manner, which is not preferable.

【0061】条件式(8)は第2レンズと被走査面との
距離L2と、結像手段全系の主走査方向における合成焦
点距離faとの比に関するものである。条件式(8)の
下限値を越えると装置全体が大型化になると共に面倒れ
補正効果が少なくってくるので良くない。又条件式
(8)の上限値を越えると第2レンズの屈折力が強くな
りすぎるので良くない。
Conditional expression (8) relates to the ratio between the distance L2 between the second lens and the surface to be scanned and the combined focal length fa of the entire image forming means in the main scanning direction. If the lower limit of conditional expression (8) is exceeded, the size of the entire apparatus will be increased and the effect of face tilt correction will be reduced, which is not preferable. If the upper limit of conditional expression (8) is exceeded, the refracting power of the second lens becomes too strong, which is not good.

【0062】次に本発明に係る結像手段の数値実施例を
示す。数値実施例1〜4は順に本発明の実施例1〜4の
光偏向器5以降の数値例である。
Next, numerical examples of the image forming means according to the present invention will be shown. Numerical Examples 1 to 4 are numerical examples after the optical deflector 5 of Examples 1 to 4 of the present invention in order.

【0063】各数値実施例においてトーリックレンズ6
(又は球面レンズ11)の主走査断面における曲率半径
をR1 ,R2 、副走査断面における曲率半径をR1 ´,
2´、アナモフィックレンズ7(又はトーリックレン
ズ12)の主走査断面における曲率半径をR3 ,R4
副走査断面における曲率半径をR3 ´,R4 ´、トーリ
ックレンズ8の主走査断面にあける曲率半径をR5 ,R
6 、副走査断面における曲率半径をR5 ´,R6 ´、各
レンズ面間の距離をD1 〜D6 、トーリックレンズ6、
アナモフィックレンズ7そしてトーリックレンズ8の材
質の屈折率をそれぞれ順にN1 ,N2 ,N3 、又球面レ
ンズ11、トーリックレンズ12の材質の屈折率をそれ
ぞれ順にN1 ,N2 で表わしている。又A〜E´は以下
に示す主走査断面(x−y平面)上でのレンズ面の高さ
yと距離xとの関係式 x=y2 /R・[1+{1−(1+A)(y/R)2
1/2 ]+By4 +Cy6 +Dy8 +Ey10 但し、y≧0 x=y2 /R・[1+{1−(1+A´)(y/R)
21/2 ]+B´y4 +C´y6 +D´y8 +E´y10 但し、y<0 の各次数の非球面係数、F〜J´は以下に示す副走査断
面(z−x平面)上でのレンズ面の高さyと距離xとの
関係式 x=z2 /R´・[1+{1−(z/R´)21/2 ] 但し、R″=R´(1+F´y2 +G´y4 +H´y6
+I´y8 +J´y10) y≧0 x=z2 /R´・[1+{1−(z/R´)21/2 ] 但し、R″=R´(1+F´y2 +G´y4 +H´y6
+I´y8 +J´y10) y<0 の各次数の非球面係数を示す。
In each numerical example, the toric lens 6 is used.
(Or the radius of curvature of the spherical lens 11) in the main scanning section is R 1 , R 2 , the curvature radius in the sub scanning section is R 1 ′,
R 2 ′, radii of curvature in the main scanning section of the anamorphic lens 7 (or toric lens 12) are R 3 , R 4 ,
The radii of curvature in the sub-scan section are R 3 ′ and R 4 ′, and the radii of curvature in the main-scan section of the toric lens 8 are R 5 and R 5 .
6 , radiuses of curvature in the sub-scan section are R 5 ′ and R 6 ′, distances between lens surfaces are D 1 to D 6 , toric lens 6,
The refractive indexes of the materials of the anamorphic lens 7 and the toric lens 8 are sequentially represented by N 1 , N 2 , and N 3 , respectively, and the refractive indexes of the materials of the spherical lens 11 and the toric lens 12 are respectively represented by N 1 and N 2 . Further, A to E ′ are the following relational expressions between the height y of the lens surface and the distance x on the main scanning cross section (xy plane): x = y 2 / R · [1+ {1- (1 + A) ( y / R) 2 }
1/2 ] + By 4 + Cy 6 + Dy 8 + Ey 10 where y ≧ 0 x = y 2 / R · [1+ {1- (1 + A ′) (y / R)
2 } 1/2 ] + B'y 4 + C'y 6 + D'y 8 + E'y 10 However, aspherical coefficients of each order of y <0, F to J'are sub-scanning cross sections (z-x Relational expression between the height y of the lens surface on the plane and the distance x: x = z 2 / R ′ · [1+ {1- (z / R ′) 2 } 1/2 ] where R ″ = R ′ (1 + F'y 2 + G'y 4 + H'y 6
+ I'y 8 + J'y 10 ) y ≧ 0 x = z 2 / R '· [1+ {1- (z / R') 2 } 1/2 ] where R ″ = R ′ (1 + F′y 2 + G ´y 4 + H´y 6
+ I'y 8 + J'y 10) shows the aspherical coefficients of each order of y <0.

【0064】又各数値実施例1、2、3と前述の各条件
式(1)〜(5)との関係を表−1に示し、数値実施例
4と前述の各条件式(6)〜(8)との関係を表−2に
示す。 (数値実施例1) 全系焦点距離 289.27291mm 最大走査角 58.8 ° 偏向点〜R1面 38.616mm R1 =-4213.80333 D1 = 5.02325 R1′= -59.4343 N1 = 1.521794 R2 = ∞ D2 = 63.5 R2′= -45.8583 R3 = ∞ D3 = 13.0 R3′= 80.6871 N2 = 1.794120 R4 = -231.48811 D4 = 27.44653 R4′= -231.48811 R5 = -379.28217 D5 = 7.35477 N3 = 1.521794 A = -4.93824 A′= -4.93824 B = -1.9774 ×10-7 B′= -1.9774 ×10-7 C = -1.57948×10-12 C′= -1.57948×10-12 D = 2.57021×10-16 D′= 2.57021×10-16 E = -1.41493×10-20 E′= -1.41493×10-20 R5′= -23.1146 F = -1.18531×10-4 F′= -1.18531×10-4 G = -1.97792×10-9 G′= -1.97792×10-9 H = 5.82764×10-12 H′= 5.82764×10-12 I = -6.43558×10-16 I′= -6.43558×10-16 J = 9.89056×10-21 J′= 9.89056×10-21 R6 = -342.86243 D6 =263.19843 A = -3.66797×10-3 A′= -3.66832×10-3 B = -1.71964×10-7 B′= -1.71532×10-7 C = -1.06254×10-12 C′= -1.06255×10-12 D = 1.73005×10-16 D′= 1.73005×10-16 E = -9.53228×10-21 E′= -9.53228×10-21 R6′= -26.3585 F = -8.63021×10-5 F′= -8.63021×10-5 G = -5.72406×10-9 G′= -5.72406×10-9 H = 5.15404×10-12 H′= 5.15404×10-12 I = -4.73602×10-16 I′= -4.73602×10-16 J = 4.46974×10-21 J′= 4.46974×10-21 (数値実施例2) 全系焦点距離 289.27291mm 最大走査角 58.8 ° 偏向点〜R1面 38.616mm R1 =-4213.80333 D1 = 5.02325 R1′= -59.4343 N1 = 1.521794 R2 = ∞ D2 = 63.5 R2′= -45.8583 R3 = ∞ D3 = 13.0 R3′= 80.6871 N2 = 1.794120 R4 = -231.48811 D4 = 27.44653 R4′= -231.48811 R5 = -379.28217 D5 = 7.35477 N3 = 1.521794 A = -4.94247 A′= -4.78139 B = -2.00407×10-7 B′= -2.21938×10-7 C = -1.68718×10-12 C′= -1.4601 ×10-12 D = 3.06172×10-16 D′= 2.66939×10-16 E = -1.58337×10-20 E′= -1.31493×10-20 R5′= -23.1146 F = -1.18531×10-4 F′= -1.18531×10-4 G = -1.97792×10-9 G′= -1.97792×10-9 H = 5.82764×10-12 H′= 5.82764×10-12 I = -6.43558×10-16 I′= -6.43558×10-16 J = 9.89056×10-21 J′= 9.89056×10-21 R6 = -342.86243 D6 =263.19843 A = -4.06917×10-3 A′= -3.60377×10-3 B = -1.75448×10-7 B′= -1.94062×10-7 C = -9.03036×10-13 C′= -1.08256×10-12 D = 1.82896×10-16 D′= 1.95443×10-16 E = -9.13978×10-21 E′= -9.47663×10-21 R6′= -26.3585 F = -8.63021×10-5 F′= -8.63021×10-5 G = -5.72406×10-9 G′= -5.72406×10-9 H = 5.15404×10-12 H′= 5.15404×10-12 I = -4.73602×10-16 I′= -4.73602×10-16 J = 4.46974×10-21 J′= 4.46974×10-21 (数値実施例3) 全系焦点距離 289.27291mm 最大走査角 58.8 ° 偏向点〜R1面 38.616mm R1 =-4213.80333 D1 = 5.02325 R1′= -59.4343 N1 = 1.521794 R2 = ∞ D2 = 63.5 R2′= -45.8583 R3 = ∞ D3 = 13.0 R3′= 80.6871 N2 = 1.794120 R4 = -231.48811 D4 = 27.44653 R4′= -231.48811 R5 = -379.28217 D5 = 7.35477 N3 = 1.521794 A = -4.94247 A′= -4.78139 B = -2.00407×10-7 B′= -2.21938×10-7 C = -1.68718×10-12 C′= -1.4601 ×10-12 D = 3.06172×10-16 D′= 2.66939×10-16 E = -1.58337×10-20 E′= -1.3149 ×10-20 R5′= -23.1146 F = -1.18531×10-4 F′= -1.18531×10-4 G = -1.97792×10-9 G′= -1.97792×10-9 H = 5.82764×10-12 H′= 5.82764×10-12 I = -6.43558×10-16 I′= -6.43558×10-16 J = 9.89056×10-21 J′= 9.89056×10-21 R6 = -342.86243 D6 =263.19843 A = -4.06917×10-3 A′= -3.60377×10-3 B = -1.75448×10-7 B′= -1.94062×10-7 C = -9.03036×10-13 C′= -1.08256×10-12 D = 1.82896×10-16 D′= 1.95443×10-16 E = -9.13978×10-21 E′= -9.47663×10-21 R6′= -26.3585 F = -8.63021×10-5 F′= -8.37081×10-5 G = -5.72406×10-9 G′= -7.24473×10-9 H = 5.15404×10-12 H′= 5.44733×10-12 I = -4.73602×10-16 I′= -4.8682 ×10-16 J = 4.46974×10-21 J′= 3.39628×10-21 (数値実施例4) 全系焦点距離 289.982095mm 最大走査角 58.7 ° 偏向点〜R1面 27.89507mm R1 = -78.27388 D1 = 14.37 R1′= -78.27388 N1 = 1.71925 R2 = -84.23755 D2 = 55.83 R2′= -84.23755 R3 = 0 D3 = 15.41 R3′= -146.67 N2 = 1.5994 R4 = -187.39 D4 =312.64379 A = 2.58374×10-1 A′= -3.85067×10-2 B = 4.02372×10-9 B′= -2.59256×10-9 C = 8.57195×10-13 C′= 9.52373×10-13 D = -1.94867×10-16 D′= -2.60599×10-16 E = 1.99971×10-20 E′= 2.76069×10-20 R4′= -38.08
Table 1 shows the relationship between each of the numerical examples 1, 2, and 3 and each of the conditional expressions (1) to (5) described above, and the numerical example 4 and each of the conditional expressions (6) to Table 2 shows the relationship with (8). Numerical Example 1 Focal length of entire system 289.27291mm Maximum scanning angle 58.8 ° Deflection point to R1 surface 38.616mm R1 = -4213.80333 D1 = 5.02325 R1 '= -59.4343 N1 = 1.521794 R2 = ∞ D2 = 63.5 R2' = -45.8583 R3 = ∞ D3 = 13.0 R3 '= 80.6871 N2 = 1.794120 R4 = -231.48811 D4 = 27.44653 R4' = -231.48811 R5 = -379.28217 D5 = 7.35477 N3 = 1.521794 A = -4.93824 A '= -4.93824 B = -1.9774 × 10 -7 B '= -1.9774 × 10 -7 C = -1.57948 × 10 -12 C' = -1.57948 × 10 -12 D = 2.57021 × 10 -16 D '= 2.57021 × 10 -16 E = -1.41493 × 10 - 20 E '= -1.41493 x 10 -20 R5' = -23.1146 F = -1.18531 x 10 -4 F '= -1.18531 x 10 -4 G = -1.97792 x 10 -9 G' = -1.97792 x 10 -9 H = 5.82764 × 10 -12 H ′ = 5.82764 × 10 -12 I = -6.43558 × 10 -16 I ′ = -6.43558 × 10 -16 J = 9.89056 × 10 -21 J ′ = 9.89056 × 10 -21 R6 = -342.86243 D6 = 263.19843 A = -3.66797 x 10 -3 A '= -3.66832 x 10 -3 B = -1.71964 x 10 -7 B' = -1.71532 x 10 -7 C = -1.06254 x 10 -12 C '= -1.06255 × 10 -12 D = 1.73005 × 10 -16 D ′ = 1.73005 × 10 -16 E = -9.53228 × 10 -21 E ′ = -9.53 228 × 10 -21 R6 '= -26.3585 F = -8.63021 × 10 -5 F' = -8.63021 × 10 -5 G = -5.72406 × 10 -9 G '= -5.72406 × 10 -9 H = 5.15404 × 10 - 12 H '= 5.1540 4 x 10 -12 I = -4.73602 x 10 -16 I' = -4.73602 x 10 -16 J = 4.46974 x 10 -21 J '= 4.46974 x 10 -21 (Numerical example 2) All system focus Distance 289.27291mm Maximum scan angle 58.8 ° Deflection point to R1 surface 38.616mm R1 = -4213.80333 D1 = 5.02325 R1 ′ = -59.4343 N1 = 1.521794 R2 = ∞ D2 = 63.5 R2 ′ = -45.8583 R3 = ∞ D3 = 13.0 R3 ′ = 80.6871 N2 = 1.794120 R4 = -231.48811 D4 = 27.44653 R4 '= -231.48811 R5 = -379.28217 D5 = 7.35477 N3 = 1.521794 A = -4.94247 A' = -4.78139 B = -2.00407 × 10 -7 B '= -2.21938 × 10 -7 C = -1.68718 × 10 -12 C '= -1.4601 × 10 -12 D = 3.06172 × 10 -16 D' = 2.66939 × 10 -16 E = -1.58337 × 10 -20 E '= -1.31493 × 10 - 20 R5 ′ = -23.1146 F = -1.18531 × 10 -4 F ′ = -1.18531 × 10 -4 G = -1.97792 × 10 -9 G ′ = -1.97792 × 10 -9 H = 5.82764 × 10 -12 H ′ = 5.82764 × 10 -12 I = -6.43558 × 10 -16 I '= -6.43558 × 10 -16 J = 9.89056 × 10 -21 J' = 9.89056 10 -21 R6 = -342.86243 D6 = 263.19843 A = -4.06917 × 10 -3 A '= -3.60377 × 10 -3 B = -1.75448 × 10 -7 B' = -1.94062 × 10 -7 C = -9.03036 × 10 -13 C ′ = -1.08256 × 10 -12 D = 1.82896 × 10 -16 D ′ = 1.95443 × 10 -16 E = -9.13978 × 10 -21 E ′ = -9.47663 × 10 -21 R6 ′ = -26.3585 F = -8.63021 x 10 -5 F '= -8.63021 x 10 -5 G = -5.72406 x 10 -9 G' = -5.72406 x 10 -9 H = 5.15404 x 10 -12 H '= 5.15404 x 10 -12 I =- 4.73602 × 10 -16 I ′ = -4.73602 × 10 -16 J = 4.46974 × 10 -21 J ′ = 4.46974 × 10 -21 (Numerical example 3) Whole system focal length 289.27291mm Maximum scanning angle 58.8 ° Deflection point to R1 Surface 38.616mm R1 = -4213.80333 D1 = 5.02325 R1 '= -59.4343 N1 = 1.521794 R2 = ∞ D2 = 63.5 R2' = -45.8583 R3 = ∞ D3 = 13.0 R3 '= 80.6871 N2 = 1.794120 R4 = -231.48811 D4 = 27.44653 R4 ′ = -231.48811 R5 = -379.28217 D5 = 7.35477 N3 = 1.521794 A = -4.94247 A ′ = -4.78139 B = -2.00407 × 10 -7 B ′ = -2.21938 × 10 -7 C = -1.68718 × 10 -12 C ′ = -1.4601 × 10 -12 D = 3.06172 × 10 -16 D '= 2.66939 × 10 -16 E = -1.58337 × 10 -20 E = -1.3149 × 10 -20 R5 '= -23.1146 F = -1.18531 × 10 -4 F' = -1.18531 × 10 -4 G = -1.97792 × 10 -9 G '= -1.97792 × 10 -9 H = 5.82764 × 10 -12 H '= 5.82764 x 10 -12 I = -6.43558 x 10 -16 I' = -6.43558 x 10 -16 J = 9.89056 x 10 -21 J '= 9.89056 x 10 -21 R6 = -342.86243 D6 = 263.19843 A = -4.06917 × 10 -3 A ' = -3.60377 × 10 -3 B = -1.75448 × 10 -7 B' = -1.94062 × 10 -7 C = -9.03036 × 10 -13 C '= -1.08256 × 10 - 12 D = 1.82896 x 10 -16 D '= 1.95443 x 10 -16 E = -9.13978 x 10 -21 E' = -9.47663 x 10 -21 R6 '= -26.3585 F = -8.63021 x 10 -5 F' =- 8.37081 x 10 -5 G = -5.72406 x 10 -9 G '= -7.24473 x 10 -9 H = 5.15404 x 10 -12 H' = 5.44733 x 10 -12 I = -4.73602 x 10 -16 I '= -4.8682 × 10 -16 J = 4.46974 × 10 -21 J '= 3.39628 × 10 -21 (Numerical example 4) Focal length of the entire system 289.982095mm Maximum scanning angle 58.7 ° Deflection point to R1 surface 27.89507mm R1 = -78.27388 D1 = 14.37 R1 ′ = -78.27388 N1 = 1.71925 R2 = -84.23755 D2 = 55.83 R2 ′ = -84.23755 R3 = 0 D3 = 15.41 R3 ′ = -146.67 N2 = 1.5994 R4 = -187.39 D4 = 312.64379 A = 2.58374 x 10 -1 A '= -3.85067 x 10 -2 B = 4.02372 x 10 -9 B' = -2.59256 x 10 -9 C = 8.57195 x 10 -13 C '= 9.52373 x 10 -13 D =- 1.94867 x 10 -16 D '= -2.60599 x 10 -16 E = 1.99971 x 10 -20 E' = 2.76069 x 10 -20 R4 '= -38.08

【0065】[0065]

【表1】 [Table 1]

【0066】[0066]

【表2】 [Table 2]

【0067】[0067]

【発明の効果】本発明によれば前述の如く結像手段のレ
ンズ構成、レンズ形状そしてレンズの材質を適切に設定
すると共に少なくとも1つのレンズ面を該結像手段の光
軸中心に対して主走査方向又は主走査方向と副走査方向
に関して非対称な非球面形状より形成することにより、
主走査方向のfθ特性及び像面湾曲を良好に補正するこ
とができると共に高性能な光学性能を得ることができる
光走査光学系を達成することができる。
According to the present invention, as described above, the lens structure, the lens shape and the material of the lens of the image forming means are appropriately set, and at least one lens surface is mainly arranged with respect to the optical axis center of the image forming means. By forming an aspherical shape that is asymmetric with respect to the scanning direction or the main scanning direction and the sub-scanning direction,
It is possible to achieve an optical scanning optical system capable of satisfactorily correcting the fθ characteristic and the field curvature in the main scanning direction and obtaining high-performance optical performance.

【0068】又、実施例1〜3によれば結像手段を構成
する3つのレンズのうち2つのレンズをプラスチック材
料で形成することにより低価格化も同時に達成すること
ができる。
Further, according to the first to third embodiments, the cost can be reduced at the same time by forming two lenses out of the three lenses forming the image forming means from the plastic material.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1の要部平面図(主走査断面
図)
FIG. 1 is a plan view of a main part of a first embodiment of the present invention (main scanning sectional view).

【図2】 図1の主走査断面に垂直な要部断面図(副走
査断面図)
FIG. 2 is a sectional view of a main part (sub-scan sectional view) perpendicular to the main-scan sectional view of FIG.

【図3】 本発明の実施例1の光偏向器の回転に伴なう
偏向点X座標の変化を示す説明図
FIG. 3 is an explanatory diagram showing a change in the X-coordinate of the deflection point with the rotation of the optical deflector according to the first embodiment of the present invention.

【図4】 本発明の実施例1の光偏向器の回転に伴なう
偏向点Y座標の変化を示す説明図
FIG. 4 is an explanatory diagram showing changes in the Y coordinate of the deflection point with the rotation of the optical deflector according to the first embodiment of the present invention.

【図5】 本発明の実施例1の像面湾曲を説明する収差
FIG. 5 is an aberration diagram illustrating field curvature of Example 1 of the present invention.

【図6】 本発明の実施例1のf−θ特性を説明する収
差図
FIG. 6 is an aberration diagram illustrating an f-θ characteristic according to the first embodiment of the present invention.

【図7】 本発明の実施例2の像面湾曲を説明する収差
FIG. 7 is an aberration diagram illustrating field curvature of Example 2 of the present invention.

【図8】 本発明の実施例2のf−θ特性を説明する収
差図
FIG. 8 is an aberration diagram illustrating an f-θ characteristic according to the second embodiment of the present invention.

【図9】 本発明の実施例3の像面湾曲を説明する収差
FIG. 9 is an aberration diagram illustrating field curvature of Example 3 of the present invention.

【図10】 本発明の実施例3のf−θ特性を説明する
収差図
FIG. 10 is an aberration diagram illustrating an f-θ characteristic according to the third embodiment of the present invention.

【図11】 本発明の実施例4の要部平面図(主走査断
面図)
FIG. 11 is a plan view of a main part of the fourth embodiment of the present invention (main scanning sectional view).

【図12】 図11の主走査断面に垂直な要部断面図
(副走査断面図)
12 is a cross-sectional view of a main part (sub-scan sectional view) perpendicular to the main-scan sectional view of FIG.

【図13】 本発明の実施例4の像面湾曲を説明する収
差図
FIG. 13 is an aberration diagram illustrating field curvature of Example 4 of the present invention.

【図14】 本発明の実施例4のf−θ特性を説明する
収差図
FIG. 14 is an aberration diagram illustrating an f-θ characteristic according to the fourth embodiment of the present invention.

【図15】 本発明の実施例5の像面湾曲を説明する収
差図
FIG. 15 is an aberration diagram illustrating field curvature of Example 5 of the present invention.

【図16】 本発明の実施例5のf−θ特性を説明する
収差図
FIG. 16 is an aberration diagram illustrating an f-θ characteristic according to the fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 光源手段 2 コリメータレンズ 3 開口絞り 4 シリンドリカルレンズ 5 偏向手段 6,11 第1レンズ 7,12 第2レンズ 8 第3レンズ 9 被走査面(感光ドラム) 10,20 結像手段 1 Light Source Means 2 Collimator Lens 3 Aperture Stop 4 Cylindrical Lens 5 Deflection Means 6, 11 First Lens 7, 12 Second Lens 8 Third Lens 9 Scanned Surface (Photosensitive Drum) 10, 20 Image Forming Means

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 光源手段から射出した光ビームを偏向手
段に導光し、該偏向手段で偏向反射させた該光ビームを
結像手段により被走査面上に導光し光走査する光走査光
学系において、 該結像手段は該偏向手段側から順に主走査方向と副走査
方向とで互いに異なる曲率半径のレンズ面を両面に持つ
トーリックレンズより成る第1レンズ、主走査方向と副
走査方向との双方に異なる正の屈折力を有するアナモフ
ィックレンズより成る第2レンズ、そして主走査方向と
副走査方向とで互いに異なる曲率半径のレンズ面を両面
に持つトーリックレンズより成る第3レンズとの3枚の
レンズを有し、 少なくとも1つのレンズ面は該結像手段の光軸中心に対
して主走査方向又は主走査方向と副走査方向に関して非
対称な非球面形状よりなっていることを特徴とする光走
査光学系。
1. An optical scanning optical system which guides a light beam emitted from a light source means to a deflecting means, and guides the light beam deflected and reflected by the deflecting means onto a surface to be scanned by an image forming means for optical scanning. In the system, the image forming means includes a first lens formed of a toric lens having lens surfaces having curvature radii different from each other in the main scanning direction and the sub scanning direction in order from the deflecting means side, the main scanning direction and the sub scanning direction. A second lens composed of anamorphic lenses having different positive refracting powers on both sides, and a third lens composed of a toric lens having lens surfaces having different radii of curvature in both the main scanning direction and the sub scanning direction on both sides. Characterized in that at least one lens surface has an aspherical shape asymmetric with respect to the optical axis center of the image forming means in the main scanning direction or in the main scanning direction and the sub scanning direction. Light scanning optical system to.
【請求項2】 前記結像手段の光軸中心に対して非対称
な非球面形状より成るレンズの材質はプラスチック材で
形成されていることを特徴とする請求項1の光走査光学
系。
2. The optical scanning optical system according to claim 1, wherein the material of the lens having an aspherical shape asymmetric with respect to the optical axis center of the image forming means is a plastic material.
【請求項3】 前記第3レンズの主走査方向における焦
点距離をf3a、前記結像手段全系の主走査方向におけ
る合成焦点距離をfaとしたとき 0.02<|fa/f3a|<0.06 なる条件を満足することを特徴とする請求項1の光走査
光学系。
3. When the focal length of the third lens in the main scanning direction is f3a and the combined focal length of the entire image forming unit in the main scanning direction is fa, 0.02 <| fa / f3a | <0. The optical scanning optical system according to claim 1, characterized in that the following condition is satisfied.
【請求項4】 前記第3レンズの副走査方向における焦
点距離をf3b、前記結像手段全系の主走査方向におけ
る合成焦点距離をfaとしたとき 0.08<|fa/f3b|<0.25 なる条件を満足することを特徴とする請求項1の光走査
光学系。
4. When the focal length of the third lens in the sub-scanning direction is f3b, and the combined focal length of the entire image forming means in the main scanning direction is fa, 0.08 <| fa / f3b | <0. 25. The optical scanning optical system according to claim 1, wherein the condition 25 is satisfied.
【請求項5】 前記結像手段全系の主走査方向における
合成焦点距離をfa、前記第3レンズと前記被走査面と
の間の距離をL3としたとき 0.7<|L3/fa|<1.8 なる条件を満足することを特徴とする請求項1の光走査
光学系。
5. When the combined focal length of the entire image forming means in the main scanning direction is fa and the distance between the third lens and the surface to be scanned is L3, 0.7 <| L3 / fa | The optical scanning optical system according to claim 1, wherein the condition <1.8 is satisfied.
【請求項6】 前記第3レンズの副走査方向における焦
点距離をf3b、前記第3レンズの光軸方向の最大肉厚
をd3maxとしたとき |d3max/f3b|<0.025 なる条件を満足することを特徴とする請求項1の光走査
光学系。
6. When the focal length of the third lens in the sub-scanning direction is f3b and the maximum thickness of the third lens in the optical axis direction is d3max, | d3max / f3b | <0.025 is satisfied. The optical scanning optical system according to claim 1, wherein
【請求項7】 前記第1レンズの副走査方向における焦
点距離をf1b、前記第3レンズの副走査方向における
焦点距離をf3bとしたとき |f3b/f1b|<5 なる条件を満足することを特徴とする請求項1の光走査
光学系。
7. When the focal length of the first lens in the sub-scanning direction is f1b and the focal length of the third lens in the sub-scanning direction is f3b, | f3b / f1b | <5 is satisfied. The optical scanning optical system according to claim 1.
【請求項8】 光源手段から射出した光ビームを偏向手
段に導光し、該偏向手段で偏向反射させた該光ビームを
結像手段により被走査面上に導光し光走査する光走査光
学系において、 該結像手段は該偏向手段側から順に被走査面側に凸の曲
率半径を有する球面レンズより成る第1レンズ、被走査
面側に主走査方向と副走査方向の曲率半径が互いに異な
るレンズ面を有するトーリックレンズより成る第2レン
ズとの2枚のレンズを有し、 少なくとも1つのレンズ面は該結像手段の光軸中心に対
して主走査方向又は主走査方向と副走査方向に関して非
対称な非球面形状よりなっていることを特徴とする光走
査光学系。
8. A light scanning optical system for guiding a light beam emitted from a light source means to a deflecting means, and guiding the light beam deflected and reflected by the deflecting means onto a surface to be scanned by an image forming means for optical scanning. In the system, the image forming means has a first lens composed of a spherical lens having a convex curvature radius on the scanned surface side in order from the deflecting means side, and the curvature radii in the main scanning direction and the sub-scanning direction are mutually on the scanning surface side. Two lenses, a second lens formed of a toric lens having different lens surfaces, are provided, and at least one lens surface is a main scanning direction or a main scanning direction and a sub scanning direction with respect to the optical axis center of the image forming means. An optical scanning optical system characterized by having an aspherical shape that is asymmetrical with respect to.
【請求項9】 前記結像手段の光軸中心に対して非対称
な非球面形状より成るレンズの材質はガラス材で形成さ
れていることを特徴とする請求項8の光走査光学系。
9. The optical scanning optical system according to claim 8, wherein the material of the lens having an aspherical shape which is asymmetric with respect to the optical axis center of the image forming means is a glass material.
【請求項10】 前記第2レンズの主走査方向における
焦点距離をf2a、前記結像手段全系の主走査方向にお
ける合成焦点距離をfaとしたとき 0.4<|fa/f2a|<1.2 なる条件を満足することを特徴とする請求項8の光走査
光学系。
10. When the focal length of the second lens in the main scanning direction is f2a and the combined focal length of the entire image forming means in the main scanning direction is fa, 0.4 <| fa / f2a | <1. 9. The optical scanning optical system according to claim 8, wherein the condition 2 is satisfied.
【請求項11】 前記第2レンズの副走査方向における
焦点距離をf2b、前記結像手段全系の主走査方向にお
ける合成焦点距離をfaとしたとき 1.7<|fa/f2b|<4.6 なる条件を満足することを特徴とする請求項8の光走査
光学系。
11. When the focal length of the second lens in the sub-scanning direction is f2b and the combined focal length of the entire image forming means in the main scanning direction is fa, 1.7 <| fa / f2b | <4. The optical scanning optical system according to claim 8, wherein the condition 6 is satisfied.
【請求項12】 前記結像手段全系の主走査方向におけ
る合成焦点距離をfa、前記第2レンズと前記被走査面
との間の距離をL2としたとき 0.8<|L2/fa|<2.2 なる条件を満足することを特徴とする請求項8の光走査
光学系。
12. When the combined focal length of the entire image forming means in the main scanning direction is fa and the distance between the second lens and the surface to be scanned is L2, 0.8 <| L2 / fa | 9. The optical scanning optical system according to claim 8, wherein the condition <2.2 is satisfied.
JP16289395A 1995-06-06 1995-06-06 Optical scanning optical system and laser beam printer including the same Expired - Fee Related JP3437331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16289395A JP3437331B2 (en) 1995-06-06 1995-06-06 Optical scanning optical system and laser beam printer including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16289395A JP3437331B2 (en) 1995-06-06 1995-06-06 Optical scanning optical system and laser beam printer including the same

Publications (2)

Publication Number Publication Date
JPH08334687A true JPH08334687A (en) 1996-12-17
JP3437331B2 JP3437331B2 (en) 2003-08-18

Family

ID=15763255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16289395A Expired - Fee Related JP3437331B2 (en) 1995-06-06 1995-06-06 Optical scanning optical system and laser beam printer including the same

Country Status (1)

Country Link
JP (1) JP3437331B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006330364A (en) * 2005-05-26 2006-12-07 Canon Inc Optical scanner and image forming apparatus using the same
CN100426048C (en) * 2000-05-25 2008-10-15 佳能株式会社 Optical scanning apparatus and image forming apparatus using the same
JP2009211064A (en) * 2008-02-07 2009-09-17 Ricoh Co Ltd Optical scanner and image forming apparatus equipped with the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100426048C (en) * 2000-05-25 2008-10-15 佳能株式会社 Optical scanning apparatus and image forming apparatus using the same
JP2006330364A (en) * 2005-05-26 2006-12-07 Canon Inc Optical scanner and image forming apparatus using the same
JP4708862B2 (en) * 2005-05-26 2011-06-22 キヤノン株式会社 Optical scanning device and image forming apparatus using the same
JP2009211064A (en) * 2008-02-07 2009-09-17 Ricoh Co Ltd Optical scanner and image forming apparatus equipped with the same

Also Published As

Publication number Publication date
JP3437331B2 (en) 2003-08-18

Similar Documents

Publication Publication Date Title
JP3397624B2 (en) Scanning optical device and laser beam printer having the same
KR100295170B1 (en) Optical elements and scanning optical devices using them
EP0851262A2 (en) Scanning optical apparatus
JP3445092B2 (en) Scanning optical device
JPH06230308A (en) Light beam scanning device
JPH07113950A (en) Light beam scanning device and image forming lens
JPH0727123B2 (en) Surface tilt correction scanning optical system
JPH05215986A (en) Scanning optical system with surface tilt correcting function
JP3191538B2 (en) Scanning lens and optical scanning device
JP3437331B2 (en) Optical scanning optical system and laser beam printer including the same
US6670980B1 (en) Light-scanning optical system
JP2956169B2 (en) Scanning optical device
JP3627781B2 (en) Laser scanner
JPH04141619A (en) Scanning optical system with surface tilt correcting function
JPH08122635A (en) Optical scanning optical system
JP3420439B2 (en) Optical scanning optical system and laser beam printer including the same
JP2000002848A (en) Scanning optical device
JP3421584B2 (en) Scanning optical system
JPH10260371A (en) Scanning optical device
US6178030B1 (en) Light-scanning optical system having wobble-correcting function and light-scanning apparatus using the same
JP3804886B2 (en) Imaging optical system for optical scanning device
JP3571808B2 (en) Optical scanning optical system and laser beam printer including the same
JPH0968664A (en) Optical system for light beam scanning
JPH09184976A (en) Scanning lens
JPH09281422A (en) Scanning optical device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees