JPH08334379A - Magnetic sensor for magnetic encoder - Google Patents

Magnetic sensor for magnetic encoder

Info

Publication number
JPH08334379A
JPH08334379A JP7142755A JP14275595A JPH08334379A JP H08334379 A JPH08334379 A JP H08334379A JP 7142755 A JP7142755 A JP 7142755A JP 14275595 A JP14275595 A JP 14275595A JP H08334379 A JPH08334379 A JP H08334379A
Authority
JP
Japan
Prior art keywords
magnetic
film
sensor
medium
magnetic film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7142755A
Other languages
Japanese (ja)
Inventor
Masahiro Kawase
正博 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP7142755A priority Critical patent/JPH08334379A/en
Publication of JPH08334379A publication Critical patent/JPH08334379A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a magnetic sensor for magnetic encoder which utilizes a magnetic impedance effect and can be suitably used for a magnetic encoder. CONSTITUTION: A magnetized medium 14 is alternately magnetized in opposite polarities at a prescribed magnetization pitch P in the length direction and relatively moves in the length direction against a magnetic sensor. A belt-like high-permeability magnetic film 12 is formed on the nonmagnetic substrate 10 of the magnetic sensor and branch sections 12a having a prescribed length are protruded in parallel with each other from one side of the magnetic film 12 along the length direction at the same pitch as the magnetization pitch P. By facing the magnetic film 12 to the medium 14 in parallel with the medium 14, with the length direction of the film 12 being aligned with the moving direction of the medium 14, a high-frequency current is applied on the magnetic film 12 from terminals 16A and 16B at both ends of the magnetic film 12 and an output is obtained by converting the variation of the impedance generated between both ends of the magnetic film 12 due to a magnetic flux from the medium 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、位置検出等に用いられ
る磁気エンコーダーにおいて所定の着磁ピッチで交互に
逆極性に着磁され、該着磁の連続する方向に相対的に移
動する着磁媒体の磁界を検出する磁気センサーに関し、
特に磁気インピーダンス効果を利用して磁界検出を行な
う高精度の磁気エンコーダー用磁気センサーに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic encoder used for position detection or the like, which is magnetized to have opposite polarities alternately at a predetermined magnetizing pitch, and is relatively moved in a continuous direction of the magnetization. Regarding the magnetic sensor that detects the magnetic field of the medium,
In particular, the present invention relates to a high-precision magnetic sensor for a magnetic encoder that detects a magnetic field by utilizing a magnetic impedance effect.

【0002】[0002]

【従来の技術】最近のビデオカメラのオートフォーカ
ス,高解像プリンター,計測機器等における位置検出,
位置決め機構は小型高精度化が進んでおり、そこに採用
されている磁気エンコーダーもさらに高精度化が期待さ
れている。
2. Description of the Related Art Recent video camera autofocus, high-resolution printer, position detection in measuring equipment, etc.
The positioning mechanism is becoming smaller and more precise, and the magnetic encoder used there is also expected to have higher precision.

【0003】従来の磁気エンコーダー用の磁気センサー
は磁気抵抗効果素子(以下、MR素子と略す)が主に採
用されているが、高密度化による着磁媒体の着磁ピッチ
の短縮により、着磁媒体から外部に漏れる磁束が極端に
小さくなり、将来において感度不足が懸念される。
Magneto-resistive effect elements (hereinafter abbreviated as MR elements) are mainly employed in conventional magnetic sensors for magnetic encoders, but they are magnetized by shortening the magnetizing pitch of the magnetizing medium due to high density. The magnetic flux leaking from the medium to the outside becomes extremely small, and there is concern that sensitivity may be insufficient in the future.

【0004】そこで、最近注目を集めているのが、特開
平6−281712号に開示されているアモルファスワ
イヤーによる磁気インピーダンス効果を利用した磁気検
出素子(以下、MI素子という)である。磁気インピー
ダンス効果とは、磁性体にMHz帯域の高周波電流を流
すと、外部磁界により磁性体のインピーダンスが変化
し、それによる磁性体の両端電圧の振幅が数ガウスの微
小磁界で数10%変化する現象である。
Therefore, a magnetic detection element (hereinafter referred to as MI element) utilizing the magneto-impedance effect by an amorphous wire disclosed in Japanese Patent Laid-Open No. 6-281712 has recently been attracting attention. The magneto-impedance effect means that when a high frequency current in the MHz band is applied to a magnetic material, the impedance of the magnetic material changes due to an external magnetic field, and the resulting amplitude of the voltage across the magnetic material changes by several tens of percent with a minute magnetic field of several Gauss. It is a phenomenon.

【0005】MI素子の磁束検出の分解能が、MR素子
の0.1Oeという低感度に対して、10-5Oe程度の高感
度が得られることにより、MI素子の磁気エンコーダー
用磁気センサーへの応用が期待される。
The resolution of the magnetic flux detection of the MI element can be as high as about 10 -5 Oe as compared with the MR element having a low sensitivity of 0.1 Oe. There is expected.

【0006】[0006]

【発明が解決しようとする課題】上記MI素子の機能は
アモルファスワイヤーで見い出されたものであり、アモ
ルファスワイヤーは材料として生産性は優れている。し
かし、断面が円であることや径が細く曲がりやすいこと
により、磁気エンコーダー用磁気センサーの検出素子本
体として要求される直線性の確保や複雑なパターンの形
成が困難となる。
The function of the MI element is found in the amorphous wire, and the amorphous wire is excellent in productivity as a material. However, since the cross section is circular and the diameter is small and it is easily bent, it is difficult to secure the linearity required for the detection element body of the magnetic sensor for the magnetic encoder and to form a complicated pattern.

【0007】また、磁気エンコーダー用磁気センサーで
は、通常着磁媒体の着磁ムラの影響を少なくするため
に、複数の磁化の磁束を検出し平均化する必要がある。
MR素子では素子本体の磁性体に対し幅方向の磁束を検
出するので、一般的には図13の様に素子に対向する着
磁媒体102の着磁ピッチPに対応したピッチで順次折
り返されるつづら折りパターンのMR素子101が採用
されてきた。しかし、MI素子は素子本体の磁性体の長
手方向の磁束を検出するため、MR素子のようなつづら
折りパターンが採用できず、平均化手法に対し新しい構
造を工夫する必要がある。
Further, in the magnetic sensor for a magnetic encoder, it is usually necessary to detect and average the magnetic fluxes of a plurality of magnetizations in order to reduce the influence of the magnetization unevenness of the magnetized medium.
Since the MR element detects the magnetic flux in the width direction with respect to the magnetic body of the element body, it is generally folded in a zigzag manner as shown in FIG. 13 at a pitch corresponding to the magnetizing pitch P of the magnetizing medium 102 facing the element. Patterned MR elements 101 have been employed. However, since the MI element detects the magnetic flux in the longitudinal direction of the magnetic body of the element body, it cannot adopt a meandering pattern like the MR element, and it is necessary to devise a new structure for the averaging method.

【0008】そこで、本発明の課題は、磁気インピーダ
ンス効果を利用した磁気センサーであって、上記のよう
な問題を解決でき、磁気エンコーダー用として好適な磁
気センサーを提供することにある。
Therefore, an object of the present invention is to provide a magnetic sensor utilizing the magnetic impedance effect, which can solve the above problems and is suitable for a magnetic encoder.

【0009】[0009]

【課題を解決するための手段】上記の課題を解決するた
め、本発明によれば、所定の着磁ピッチで交互に逆極性
に着磁され、該着磁の連続する方向に相対的に移動する
着磁媒体の磁界を磁気インピーダンス効果により検出す
る磁気エンコーダー用磁気センサーであって、非磁性基
板上に帯状の高透磁率磁性膜が形成され、前記磁性膜の
長手方向に沿う2辺の少なくとも一方には、所定長の枝
部が前記着磁ピッチと等ピッチで互いに平行に複数突出
して形成されており、前記磁性膜の長手方向を着磁媒体
移動方向に沿わせて該磁性膜を着磁媒体に平行に対向さ
せ、該磁性膜に対し両端部から高周波電流を印加し、着
磁媒体からの磁束により該磁性膜の両端部間に発生する
インピーダンスの変化を電気信号に変換して出力を得ら
れるようにした構成を採用した。
In order to solve the above-mentioned problems, according to the present invention, the magnets are alternately magnetized to have opposite polarities at a predetermined magnetizing pitch and relatively move in a direction in which the magnetisation continues. A magnetic sensor for a magnetic encoder for detecting a magnetic field of a magnetized medium by a magnetic impedance effect, wherein a strip-shaped high-permeability magnetic film is formed on a non-magnetic substrate, and at least two sides along the longitudinal direction of the magnetic film. On one side, a plurality of branches having a predetermined length are formed so as to project in parallel to each other at the same pitch as the magnetizing pitch, and the magnetic film is attached by aligning the longitudinal direction of the magnetic film with the direction of movement of the magnetizing medium. A high-frequency current is applied to both ends of the magnetic film in parallel to the magnetic medium, and the change in impedance generated between the both ends of the magnetic film by the magnetic flux from the magnetizing medium is converted into an electric signal and output. The structure that allows you to obtain It was adopted.

【0010】[0010]

【作用】このような構成によれば、磁性膜の隣り合う枝
部どうしのそれぞれにより着磁媒体の複数の磁化のそれ
ぞれから磁束を還流磁束として磁性膜の本体部分に引き
込むことができる。磁性膜の本体部分に引き込まれた磁
束はその本体部分の長手方向に流れるので、磁気インピ
ーダンス効果を発生させることができる。磁性膜全体の
インピーダンスは各磁束還流部のインピーダンスの和と
して現れるので、複数の磁化の磁束の検出と平均化を行
なえる。
According to this structure, the magnetic flux can be drawn into the main body of the magnetic film as the reflux magnetic flux from each of the plurality of magnetizations of the magnetized medium by the adjacent branch portions of the magnetic film. Since the magnetic flux drawn into the main body of the magnetic film flows in the longitudinal direction of the main body, the magnetic impedance effect can be generated. Since the impedance of the entire magnetic film appears as the sum of the impedances of the magnetic flux return portions, it is possible to detect and average the magnetic fluxes of a plurality of magnetizations.

【0011】また、非磁性基板上に素子本体としての磁
性膜を形成して構成されるので、平面的に形成でき、素
子本体として複雑なパターンも容易に形成でき、磁気エ
ンコーダー用の着磁媒体の磁界検出に好適である。
Further, since the magnetic film as the element body is formed on the non-magnetic substrate, the element body can be formed flat and a complicated pattern can be easily formed as the element body, and the magnetized medium for the magnetic encoder can be formed. It is suitable for magnetic field detection.

【0012】[0012]

【実施例】以下、図を参照して本発明の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】[第1実施例]図1は、本発明の第1実施
例による磁気エンコーダー用磁気センサーの基本的な構
造を示すものである。
[First Embodiment] FIG. 1 shows the basic structure of a magnetic sensor for a magnetic encoder according to a first embodiment of the present invention.

【0014】図1において、14は着磁媒体であり、こ
こではテープ状のものとし、長手方向に所定ピッチPで
交互に逆極性に着磁されている。着磁媒体14は磁気セ
ンサーに対して相対的に移動する。すなわち、着磁媒体
14または磁気センサーが移動する。その移動方向は、
矢印で示すように、着磁媒体14の着磁が連続する方向
である長手方向に沿った方向とする。
In FIG. 1, reference numeral 14 denotes a magnetizing medium, which is in the form of a tape and is magnetized in the longitudinal direction at a predetermined pitch P so as to be alternately opposite polarities. The magnetizing medium 14 moves relative to the magnetic sensor. That is, the magnetizing medium 14 or the magnetic sensor moves. The direction of movement is
As indicated by the arrow, the direction is along the longitudinal direction, which is the direction in which the magnetization of the magnetizing medium 14 is continuous.

【0015】一方、図1において10は磁気センサーの
非磁性基板(以下、基板と略す)であり、チタン酸カル
シウム(Ti−Ca系セラミック)、酸化物ガラス、チ
タニア(TiO2)、アルミナ(Al23)等の非磁性
材から長方形の平板として形成されている。基板10は
長手方向が着磁媒体14の長手方向に沿い、その上面が
着磁媒体14の面に近接して平行に対向するように配置
される。
On the other hand, in FIG. 1, reference numeral 10 denotes a non-magnetic substrate (hereinafter abbreviated as substrate) of the magnetic sensor, which includes calcium titanate (Ti-Ca type ceramic), oxide glass, titania (TiO 2 ), alumina (Al). It is formed as a rectangular flat plate from a non-magnetic material such as 2 O 3 ). The substrate 10 is arranged such that its longitudinal direction is along the longitudinal direction of the magnetized medium 14, and its upper surface is close to and parallel to the surface of the magnetized medium 14.

【0016】基板10の上面には、磁気センサーの磁気
検出素子本体として高透磁率磁性膜(以下、磁性膜と略
す)12が真っ直ぐな帯状のパターンに形成されてお
り、その長手方向が基板10の長手方向、すなわち着磁
媒体14の長手方向に沿わされ、着磁媒体14に近接し
て平行に対向するように配置される。また、磁性膜12
は、Fe−Co−B系等のアモルファス膜やFe−Ta
−N系やFe−Ta−C系等の微結晶膜などの高透磁率
金属磁性膜からなり、ここでは単層の膜とする。また、
磁性膜12は、その磁化容易軸方向が膜面内で磁性膜1
2の長手方向と垂直である図中の矢印方向となるよう
に、成膜後の磁場中アニール等により磁気異方性をつけ
ておく。
A high-permeability magnetic film (hereinafter abbreviated as a magnetic film) 12 is formed on the upper surface of the substrate 10 as a magnetic detection element body of a magnetic sensor in a straight belt-shaped pattern, and its longitudinal direction is the substrate 10. Along the longitudinal direction, that is, the longitudinal direction of the magnetizing medium 14, and are arranged so as to be close to and parallel to the magnetizing medium 14. In addition, the magnetic film 12
Is an amorphous film such as Fe-Co-B system or Fe-Ta.
It is composed of a high-permeability metal magnetic film such as a microcrystalline film of -N type or Fe-Ta-C type, and is a single layer film here. Also,
The magnetic film 12 has a magnetic easy axis direction within the film plane.
Magnetic anisotropy is provided by annealing in a magnetic field after film formation so that the direction of the arrow in the drawing is perpendicular to the longitudinal direction of 2.

【0017】また、磁性膜12の着磁媒体移動方向に沿
わされる長手方向に沿った1辺には、所定長の直線状の
枝部12aが着磁ピッチPと等しいピッチで複数互いに
平行に突出して形成されている。枝部12aは、ここで
は磁性膜12の長手方向の1辺から垂直に突出してい
る。これは、ここでは図中符号14aを付した破線で示
す磁化反転の境界の方向として示される着磁媒体14の
ピッチPのそれぞれの磁化の同一位相を結ぶ方向が着磁
媒体14の長手方向(移動方向)と垂直な幅方向になっ
ており、この同一位相を結ぶ方向に対して枝部12aの
突出する方向が沿うようにするためである。着磁媒体1
4の磁化の同一位相を結ぶ方向が着磁媒体14の長手方
向に対して垂直でなく、傾斜している場合には、それに
対応して枝部12aの突出する方向も前記1辺に対して
傾斜した方向とする。
On one side along the longitudinal direction of the magnetic film 12 along the direction of movement of the magnetized medium, a plurality of linear branches 12a having a predetermined length are arranged in parallel with each other at a pitch equal to the magnetizing pitch P. It is formed to project. Here, the branch portion 12a vertically projects from one side of the magnetic film 12 in the longitudinal direction. This is because the direction connecting the same phases of the respective magnetizations of the pitch P of the magnetized medium 14, which is shown as the direction of the boundary of the magnetization reversal indicated by the broken line 14a in the figure, is the longitudinal direction of the magnetized medium 14 ( This is because the width direction is perpendicular to the (moving direction), and the protruding direction of the branch portion 12a is along the direction connecting the same phases. Magnetizing medium 1
When the directions connecting the same phases of the magnetizations of No. 4 are not perpendicular to the longitudinal direction of the magnetized medium 14 but are inclined, the protruding direction of the branch portion 12a is corresponding to the one side. The direction should be inclined.

【0018】このような枝部12aにより着磁媒体14
の磁化から発生する磁束を磁性膜12に引き込み、隣接
する枝部12aとで形成される閉磁路により磁束を還流
させることができる。
The magnetizing medium 14 is formed by the branch portion 12a.
The magnetic flux generated from the magnetization can be drawn into the magnetic film 12, and the magnetic flux can be recirculated by the closed magnetic path formed by the adjacent branch portion 12a.

【0019】以上のような構成のもとに、磁気エンコー
ダーの動作時には、磁性膜12の両端に設けられた端子
16A,16Bより磁性膜12に高周波電流を印加し、
磁性膜12内部に引き込まれた前述の磁束により、磁性
膜12の両端の端子16A,16B間に発生するインピ
ーダンスの変化を電気信号に変換し出力を得るようにな
っている。なお、端子16A,16BはCu,Auなど
の導電膜として形成されるか、あるいは磁性膜12の両
端部を延長して形成される。
With the above structure, when the magnetic encoder is in operation, a high frequency current is applied to the magnetic film 12 from terminals 16A and 16B provided at both ends of the magnetic film 12,
Due to the above-mentioned magnetic flux drawn into the magnetic film 12, a change in impedance generated between the terminals 16A and 16B at both ends of the magnetic film 12 is converted into an electric signal to obtain an output. The terminals 16A and 16B are formed as a conductive film of Cu, Au or the like, or are formed by extending both ends of the magnetic film 12.

【0020】次に本実施例の磁気センサーの動作時の作
用、効果について図2,図3を用いて説明する。
Next, the operation and effect of the magnetic sensor of this embodiment during operation will be described with reference to FIGS.

【0021】図2に示すように、着磁媒体14の個々の
磁化から磁束が矢印の通り枝部12aのそれぞれから磁
性膜12の本体部分(幹部分)に引き込まれ、その本体
部分の枝部12a寄りの内部を通じて隣りの枝部12a
から着磁媒体14に戻り、還流磁束が形成される。ここ
で枝部12aの幅wは、あまり狭すぎると還流磁束に対
する磁気抵抗が大きくなることで下限を3μm、また幅
が広すぎると着磁媒体からの漏れ磁束の変化が曖昧とな
るため着磁ピッチPの1/2を上限とするのが望まし
い。また、枝部12aの長さdは、着磁媒体14からの
磁束を拾う幅となり、磁気ヘッドで言うトラック幅に相
当する。
As shown in FIG. 2, magnetic fluxes from the individual magnetizations of the magnetized medium 14 are drawn into the main body portion (trunk portion) of the magnetic film 12 from each of the branch portions 12a as indicated by the arrows, and the branch portions of the main body portion are drawn. An adjacent branch portion 12a through the inside of 12a
Then, the magnetic flux returns to the magnetized medium 14 and a return magnetic flux is formed. Here, if the width w of the branch portion 12a is too narrow, the magnetic resistance to the return flux increases, and the lower limit is 3 μm. If the width w is too wide, the change of the leakage flux from the magnetizing medium becomes ambiguous. It is desirable that the upper limit be 1/2 of the pitch P. The length d of the branch portion 12a is a width for picking up the magnetic flux from the magnetized medium 14, and corresponds to the track width of the magnetic head.

【0022】枝部12aが9本形成されていることによ
り、着磁媒体14の8つの磁化の磁束を還流磁束として
磁性膜12の本体部分に引き込むことができる。磁性膜
12の本体部分に引き込まれた磁束はその本体部分の長
手方向に流れるので、磁気インピーダンス効果を発生さ
せることができる。ここで磁性膜12の本体部分におい
て各枝部12a間で交互に逆方向に磁束が流れるが、磁
気インピーダンス効果は、図3の通り外部磁界の方向に
対して対称の特性を持っているため、磁束の方向に関わ
らず、磁性膜12全体のインピーダンスは各磁束還流部
のインピーダンスの和として現れる。すなわち、8つの
磁化の磁束によるインピーダンスの和が得られ、8つの
磁界の磁束の検出と平均化を行なえ、これにより着磁媒
体に着磁ムラがあっても、影響が緩和される。
By forming the nine branch portions 12a, the magnetic fluxes of the eight magnetizations of the magnetizing medium 14 can be drawn into the main body portion of the magnetic film 12 as reflux fluxes. Since the magnetic flux drawn into the main body of the magnetic film 12 flows in the longitudinal direction of the main body, a magnetic impedance effect can be generated. Here, in the main body portion of the magnetic film 12, magnetic flux alternately flows between the branch portions 12a in the opposite direction, but the magnetic impedance effect has a characteristic symmetrical with respect to the direction of the external magnetic field as shown in FIG. Regardless of the direction of the magnetic flux, the impedance of the entire magnetic film 12 appears as the sum of the impedances of the magnetic flux return portions. That is, the sum of the impedances due to the magnetic fluxes of the eight magnetizations is obtained, and the magnetic fluxes of the eight magnetic fields can be detected and averaged, whereby the influence is mitigated even if there is uneven magnetization in the magnetized medium.

【0023】また、別の効果として磁性膜12の長手方
向に沿って進入する着磁媒体14以外からのノイズとな
る有害な外部磁界Hexの影響も回避することができる。
すなわち、図2に示す隣接する逆方向の還流磁束A,B
部のインピーダンスは、Hex=0の場合は図3のZoに
対応しているとする。Hex>0の場合、A部では還流磁
束が外部磁界Hexに対し逆方向の為インピーダンスがZ
mに低下し、B部では逆に還流磁束が順方向のためZp
に増加するが、その和は2Zoと大差なく、外部磁界の
影響がほぼ相殺される。但し、この条件を満足させるた
めには、磁性膜12内の還流磁束の正逆方向の数を等し
くする必要があり、このために枝部12aの数は3以上
の奇数を選択する必要がある。
Further, as another effect, it is possible to avoid the influence of a harmful external magnetic field Hex which becomes noise from other than the magnetizing medium 14 which enters along the longitudinal direction of the magnetic film 12.
That is, adjacent return fluxes A and B in the opposite directions shown in FIG.
It is assumed that the impedance of the part corresponds to Zo in FIG. 3 when Hex = 0. When Hex> 0, the impedance is Z because the return magnetic flux is in the opposite direction to the external magnetic field Hex in the A part.
In the B part, the reflux magnetic flux is in the forward direction, which is Zp.
However, the sum is almost the same as 2Zo, and the influence of the external magnetic field is almost cancelled. However, in order to satisfy this condition, it is necessary to equalize the numbers of the reflux magnetic fluxes in the magnetic film 12 in the forward and reverse directions, and for this reason, it is necessary to select an odd number of three or more branch portions 12a. .

【0024】以上のように、本実施例のセンサーは着磁
媒体14の複数の磁化の検出とその平均化を行なうこと
ができ、磁気エンコーダー用として好適に用いることが
できる。しかもノイズとなる外部磁界の影響を回避し、
安定した出力が得られる。
As described above, the sensor of this embodiment can detect a plurality of magnetizations of the magnetized medium 14 and average them, and can be suitably used for a magnetic encoder. Moreover, it avoids the influence of external magnetic fields that become noise,
Stable output can be obtained.

【0025】また、枝部12aの幅wを3μmまで細く
できて枝部12aのピッチPを小さくできるため、素子
本体の磁性体の幅方向の磁界を検知するMR素子に比
べ、より短い着磁ピッチの着磁媒体の磁界検出を行なう
ことができる。
Further, since the width w of the branch portion 12a can be reduced to 3 μm and the pitch P of the branch portion 12a can be reduced, a shorter magnetization than that of the MR element for detecting the magnetic field in the width direction of the magnetic body of the element body. The magnetic field of the pitch magnetized medium can be detected.

【0026】また、センサーの素子本体は磁性膜で構成
されるので、従来のアモルファスワイヤーでの取り扱い
の困難さや複雑なパターンへの対応ができなかったこと
等の問題が解消され、生産性にも優れている。
Further, since the element body of the sensor is composed of a magnetic film, problems such as the difficulty of handling with conventional amorphous wires and the inability to cope with complicated patterns are solved, and productivity is improved. Are better.

【0027】次に、他の実施例を図4〜図12により説
明するが、図4〜図12において第1実施例の図1,図
2中と共通ないし対応する部分には共通の符号が付して
ある。各実施例の説明において第1実施例と共通の部分
の説明は省略する。
Next, another embodiment will be described with reference to FIGS. 4 to 12. In FIGS. 4 to 12, parts common to or corresponding to those of the first embodiment shown in FIGS. It is attached. In the description of each embodiment, the description of the common parts with the first embodiment is omitted.

【0028】[第2実施例]図4は本発明の第2実施例
の磁気センサーの構造を示している。本実施例では、磁
性膜12の長手方向に沿う2辺にそれぞれ複数の枝部1
2aを前述の所定ピッチPで形成してある。
[Second Embodiment] FIG. 4 shows the structure of a magnetic sensor according to a second embodiment of the present invention. In this embodiment, a plurality of branch portions 1 are provided on each of two sides along the longitudinal direction of the magnetic film 12.
2a are formed with the above-mentioned predetermined pitch P.

【0029】このような構造によれば、着磁媒体14の
磁界検出において、図5に示すように、磁性膜12の本
体部分の長手方向に沿う両側部分において着磁媒体14
の各磁化による還流磁束が流れるので、第1実施例より
磁気インピーダンス効果の効率が上がり、感度を上げる
ことができる。
According to such a structure, in detecting the magnetic field of the magnetized medium 14, as shown in FIG. 5, the magnetized medium 14 is formed at both side portions along the longitudinal direction of the main body of the magnetic film 12.
Since the reflux magnetic flux due to each magnetization flows, the efficiency of the magneto-impedance effect is increased and the sensitivity can be increased as compared with the first embodiment.

【0030】[第3実施例]次に、図6,図7は第3実
施例の磁気センサーの構造を示している。図6に示すよ
うに、本実施例では基板10上の磁性膜12の外形は第
2実施例の磁性膜12と同じであるが、図7に示すよう
に磁性膜12は2層の磁性膜121,122を積層した
ものとして形成されている。そして、磁性膜121,1
22の本体部分どうしの間に前記本体部分より細い導電
膜24が挟まれている。導電膜24は磁性膜121,1
22の全長にわたって挟まれており、両端部が磁性膜1
21,122の両端部から突出し、端子24A,24B
として形成されている。
[Third Embodiment] Next, FIGS. 6 and 7 show the structure of a magnetic sensor of the third embodiment. As shown in FIG. 6, in this embodiment, the outer shape of the magnetic film 12 on the substrate 10 is the same as that of the magnetic film 12 of the second embodiment, but as shown in FIG. 7, the magnetic film 12 is a two-layer magnetic film. It is formed as a stack of 121 and 122. Then, the magnetic films 121, 1
A conductive film 24 thinner than the main body portion is sandwiched between the main body portions 22. The conductive film 24 is the magnetic film 121, 1
It is sandwiched over the entire length of 22 and both ends are magnetic film 1
21, 122 protruding from both ends of the terminal 24A, 24B
Is formed as.

【0031】このような構成で動作時には、端子24
A,24Bから導電膜24に高周波電流を流す。すなわ
ち導電膜24とともに磁性膜121,122に高周波電
流を流す。着磁媒体からの磁束が第2実施例と同様に磁
性膜12に流れることにより導電膜24の端子24A,
24B間のインピーダンス、すなわち磁性膜12と導電
膜24のインピーダンスが変化し、その変化が電気信号
に変換されて出力が得られるようになっている。
When operating with such a configuration, the terminal 24
A high frequency current is passed from A and 24B to the conductive film 24. That is, a high frequency current is passed through the magnetic films 121 and 122 together with the conductive film 24. As the magnetic flux from the magnetized medium flows into the magnetic film 12 as in the second embodiment, the terminals 24A of the conductive film 24,
The impedance between 24B, that is, the impedance between the magnetic film 12 and the conductive film 24 changes, and the change is converted into an electric signal to obtain an output.

【0032】このような構成によれば、第1,第2実施
例のように磁性膜12が単層構造のものより磁性膜12
の直流抵抗分を下げることでQ値を上げ、発振回路に接
続した場合の発振条件が容易となる。
According to such a structure, the magnetic film 12 has a single layer structure as in the first and second embodiments.
The Q value is increased by lowering the DC resistance component of, and the oscillation condition when connected to the oscillation circuit becomes easier.

【0033】[第4実施例]磁気エンコーダーでは、高
密度化の為に着磁媒体の着磁ピッチの縮小とともに、磁
気センサーの検出素子本体を多相配置し電気的に信号処
理し、2相出力を得る手法が一般化している。その2相
出力を得られるようにした第4実施例を図8〜図10に
より説明する。
[Fourth Embodiment] In the magnetic encoder, in order to increase the recording density, the magnetizing pitch of the magnetizing medium is reduced, and the detecting element bodies of the magnetic sensor are arranged in multiple phases to perform electrical signal processing, thereby performing two-phase The method of obtaining the output is generalized. A fourth embodiment capable of obtaining the two-phase output will be described with reference to FIGS.

【0034】図8は第4実施例の磁気センサーの基本構
造を示す。図8において、基板10上に第1実施例の図
1の磁性膜12と同じ磁性膜12,12′が形成されて
いる。磁性膜12,12′は着磁媒体移動方向に沿う基
板10の長手方向に平行に配置され、互いに枝部12
a,12a′が形成された長手方向に沿う辺が平行に対
向するように長手方向に垂直な方向に所定間隔離れて配
置されている。磁性膜12,12′の枝部12a,12
a′のピッチは両者ともに前述の着磁ピッチPと同じで
ある。そして対向する枝部12aと枝部12a′の相対
位置は磁性膜12,12′の長手方向にP/2分ずれて
いる。
FIG. 8 shows the basic structure of the magnetic sensor of the fourth embodiment. In FIG. 8, the same magnetic films 12 and 12 'as the magnetic film 12 of FIG. 1 of the first embodiment are formed on the substrate 10. The magnetic films 12 and 12 ′ are arranged parallel to the longitudinal direction of the substrate 10 along the direction of movement of the magnetizing medium, and the branch portions 12 are arranged together.
The a and 12a 'are arranged at predetermined intervals in a direction perpendicular to the longitudinal direction so that the sides along the longitudinal direction that face each other are parallel and face each other. Branches 12a, 12 of the magnetic films 12, 12 '
Both of the pitches a'are the same as the above-mentioned magnetizing pitch P. The relative positions of the branch portion 12a and the branch portion 12a 'which face each other are deviated by P / 2 in the longitudinal direction of the magnetic films 12, 12'.

【0035】次に本実施例の磁気センサーの動作時の作
用について図9,図10を用いて説明する。
Next, the operation of the magnetic sensor of this embodiment during operation will be described with reference to FIGS. 9 and 10.

【0036】図9は、磁性膜12の枝部12aがそれぞ
れ着磁媒体14の磁化反転境界上にあり、また磁性膜1
2′の枝部12a′がそれぞれ各磁化の中央つまり磁化
反転境界よりP/2分ずれた位置にある状態を示す。
In FIG. 9, the branch portions 12a of the magnetic film 12 are on the magnetization reversal boundaries of the magnetizing medium 14, and the magnetic film 1
2'shows a state in which the branch portion 12a 'of 2'is at a position displaced by P / 2 from the center of each magnetization, that is, the magnetization reversal boundary.

【0037】ここで磁性膜12の両端の端子16A,1
6B間のインピーダンスをZ1、磁性膜12′の両端の
端子16A′,16B′間のインピーダンスをZ2とす
ると、図9の状態は、磁性膜12では着磁媒体14から
の流入磁束量が最大となり、また磁性膜12′ではその
流入磁束量が最小の0となり、図10に示す媒体移動量
Xの0の位置に対応し、Z1が最大、Z2が最小とな
る。
Here, the terminals 16A, 1 at both ends of the magnetic film 12 are provided.
Assuming that the impedance between 6B is Z1 and the impedance between the terminals 16A 'and 16B' at both ends of the magnetic film 12 'is Z2, the state of FIG. Further, in the magnetic film 12 ', the inflowing magnetic flux amount becomes the minimum 0, which corresponds to the position of 0 of the medium movement amount X shown in FIG. 10, and Z1 is maximum and Z2 is minimum.

【0038】この状態から着磁媒体14が移動すると、
Z1は着磁ピッチPの正数倍、Z2は着磁ピッチPの正
数倍+1/2のところでそれぞれ最大となり、その和Z
1+Z2は図10の通り着磁ピッチPに対し2個のピー
クを得ることができ、2相化に対応した信号が得られ
る。
When the magnetizing medium 14 moves from this state,
Z1 is a positive multiple of the magnetizing pitch P and Z2 is a positive multiple of the magnetic pitch P +1/2.
As shown in FIG. 10, 1 + Z2 can obtain two peaks with respect to the magnetization pitch P, and a signal corresponding to the two-phase conversion can be obtained.

【0039】このように本実施例によれば2相出力が得
られ、高密度化に対応できる。なお、磁性膜12,1
2′は第1実施例の磁性膜12と同じで長手方向に沿う
1辺にのみ枝部12a,12a′を形成するものとした
が、第2実施例の磁性膜12のように長手方向に沿う2
辺に枝部12a,12a′を形成しても良く、その方が
効率が良い。
As described above, according to this embodiment, two-phase output can be obtained, and high density can be dealt with. The magnetic films 12, 1
2'is the same as the magnetic film 12 of the first embodiment, and the branch portions 12a, 12a 'are formed only on one side along the longitudinal direction, but like the magnetic film 12 of the second embodiment, the branch portions 12a, 12a' are formed in the longitudinal direction. Along 2
Branches 12a and 12a 'may be formed on the sides, which is more efficient.

【0040】[第5実施例]次に、第4実施例と他の方
法により2相出力を得られるようにした第5実施例の磁
気センサーを図11に示す。本実施例では、磁性膜12
の長手方向に沿った2辺に枝部12aがそれぞれ着磁媒
体の着磁ピッチPと同じピッチで形成されているが、一
方の辺の枝部12aと他方の辺の枝部12aの位置が磁
性膜12の長手方向にP/2ずれている。
[Fifth Embodiment] Next, FIG. 11 shows a magnetic sensor of a fifth embodiment in which a two-phase output can be obtained by other methods than the fourth embodiment. In this embodiment, the magnetic film 12
The branch portions 12a are formed at the same pitch as the magnetization pitch P of the magnetized medium on each of the two sides along the longitudinal direction, but the positions of the branch portions 12a on one side and the branch portions 12a on the other side are The magnetic film 12 is displaced by P / 2 in the longitudinal direction.

【0041】このような本実施例の構造によれば、磁性
膜12は言わば第4実施例の磁性膜12,12′を一体
化したものであり、同様の作用により2相出力が得られ
る。
According to the structure of this embodiment, the magnetic film 12 is, so to speak, an integrated structure of the magnetic films 12 and 12 'of the fourth embodiment, and a two-phase output can be obtained by the same action.

【0042】[第6実施例]MI素子は素子本体の磁性
体の長さが短いとインダクタンスが小さくなることで、
回路に接続した場合ノイズの影響を受けやすくなり、ま
た、発振回路に接続した場合は発振が安定しない。
[Sixth Embodiment] In the MI element, the inductance is reduced when the length of the magnetic body of the element body is short.
When it is connected to a circuit, it is susceptible to noise, and when it is connected to an oscillation circuit, oscillation is unstable.

【0043】そのために単純に素子本体の長さを長くす
る方法はあるが、着磁媒体との対向面が長くなることで
着磁媒体とのスペーシングの変動の影響を受け易くな
る。この点を考慮した第6実施例を図12に示す。
Therefore, there is a method of simply increasing the length of the element body, but it becomes easy to be influenced by the variation of the spacing with the magnetizing medium because the surface facing the magnetizing medium becomes long. A sixth embodiment in consideration of this point is shown in FIG.

【0044】図12に示す通り、本実施例では基板10
上に、それぞれ長手方向に沿う2辺のそれぞれに枝部1
2aを形成した4つの磁性膜12がその長手方向に沿う
辺どうしが平行に対向するように長手方向に垂直な方向
に所定間隔で並設されている。ここで磁性膜12を4つ
並設する長手方向に垂直な方向は、言い換えれば着磁媒
体14の符号14aを付した破線で示す磁化反転境界の
方向として示される着磁媒体14の各磁化の同一位相を
結ぶ方向に沿う方向である。
As shown in FIG. 12, the substrate 10 is used in this embodiment.
On the top, the branch 1 is provided on each of the two sides along the longitudinal direction.
The four magnetic films 12 forming 2a are arranged in parallel at a predetermined interval in the direction perpendicular to the longitudinal direction so that the sides along the longitudinal direction face each other in parallel. Here, the direction perpendicular to the longitudinal direction in which the four magnetic films 12 are arranged in parallel is, in other words, the direction of the magnetization reversal boundary indicated by the broken line with the reference numeral 14 a of the magnetized medium 14, which indicates the magnetization of each magnetized medium 14. It is a direction along a direction connecting the same phase.

【0045】また、4つの磁性膜12は導電膜からなる
接続部28B,28C,28Dにより電気的に直列接続
されている。接続部28B,28C,28Dは磁性膜1
2のそれぞれの端部を延長したものとしても良い。さら
に、4つの磁性膜12の直列接続の両端には導電膜から
なる端子28A,28Eが接続されているが、これも磁
性膜12を延長して形成してもよい。なお、隣り合う磁
性膜12どうしで枝部12aの位置は着磁ピッチPに等
しい枝部12aのピッチPの1/2ずらされている。
The four magnetic films 12 are electrically connected in series by the connecting portions 28B, 28C and 28D made of conductive films. The connecting portions 28B, 28C and 28D are magnetic films 1
Each of the two ends may be extended. Further, although terminals 28A and 28E made of conductive films are connected to both ends of the four magnetic films 12 connected in series, they may be formed by extending the magnetic film 12. The positions of the branch portions 12a between the adjacent magnetic films 12 are shifted by ½ of the pitch P of the branch portions 12a, which is equal to the magnetization pitch P.

【0046】このような構成のもとに、動作時には端子
28A,28Eから高周波電流を4つの磁性膜12に印
加し、着磁媒体14から磁性膜12のそれぞれの内部に
引き込まれた磁束により各磁性膜12の両端間のインピ
ーダンスが変化し、その変化が電気信号に変換され出力
が得られる。
Under such a configuration, a high frequency current is applied to the four magnetic films 12 from the terminals 28A and 28E during operation, and the magnetic fluxes drawn from the magnetizing medium 14 into the respective magnetic films 12 cause the respective magnetic fields to flow. The impedance between both ends of the magnetic film 12 changes, and the change is converted into an electric signal to obtain an output.

【0047】このような本実施例によれば、磁気センサ
ー全体の着磁媒体移動方向の長さの割に4つの磁性膜1
2の総延長を稼いでインダクタンスを稼ぐことができ、
回路に接続した場合ノイズの影響を受け難く、発振回路
に接続した場合に発振を安定させることができるととも
に、着磁媒体とのスペーシングの変動の影響を受け難く
することができる。
According to this embodiment, the four magnetic films 1 are provided for the length of the entire magnetic sensor in the moving direction of the magnetizing medium.
You can earn a total extension of 2 to earn inductance,
When it is connected to a circuit, it is less susceptible to noise, when it is connected to an oscillation circuit, oscillation can be stabilized, and it is also less susceptible to fluctuations in spacing with the magnetized medium.

【0048】なお、本実施例とともに、第1,第4,第
5実施例のそれぞれにおいても磁性膜12を第3実施例
のように導電膜を挟んだ2層の磁性膜としてもよい。
In each of the first, fourth, and fifth embodiments as well as this embodiment, the magnetic film 12 may be a two-layer magnetic film with a conductive film interposed therebetween as in the third embodiment.

【0049】[0049]

【発明の効果】以上の説明から明らかなように、本発明
によれば、所定の着磁ピッチで交互に逆極性に着磁さ
れ、該着磁の連続する方向に相対的に移動する着磁媒体
の磁界を磁気インピーダンス効果により検出する磁気エ
ンコーダー用磁気センサーであって、非磁性基板上に帯
状の高透磁率磁性膜が形成され、前記磁性膜の長手方向
に沿う2辺の少なくとも一方には、所定長の枝部が前記
着磁ピッチと等ピッチで互いに平行に複数突出して形成
されており、前記磁性膜の長手方向を着磁媒体移動方向
に沿わせて該磁性膜を着磁媒体に平行に対向させ、該磁
性膜に対し両端部から高周波電流を印加し、着磁媒体か
らの磁束により該磁性膜の両端部間に発生するインピー
ダンスの変化を電気信号に変換して出力を得られるよう
にした構成を採用したので、従来ではMI素子で困難で
あった着磁媒体の複数の磁化の磁界の検出及びその平均
化が可能になった。しかも、外部からのノイズ磁界に対
して強く、安定した出力が得られる上に、MR素子に比
べ、より短い着磁ピッチの着磁媒体の磁界の検出が可能
である。さらに、素子本体が磁性膜からなるので、従来
のアモルファスワイヤーのような取り扱い上の困難さが
なく、複雑なパターンの形成も容易であり、生産性にも
優れている等の優れた効果が得られる。
As is apparent from the above description, according to the present invention, the magnetizing is performed such that the magnets are alternately magnetized to have opposite polarities at a predetermined magnetizing pitch and relatively move in the direction in which the magnetizing continues. A magnetic sensor for a magnetic encoder for detecting a magnetic field of a medium by a magnetic impedance effect, wherein a band-shaped high-permeability magnetic film is formed on a non-magnetic substrate, and at least one of two sides along the longitudinal direction of the magnetic film. A plurality of branch portions having a predetermined length are formed so as to project in parallel with each other at the same pitch as the magnetizing pitch, and the magnetic film is applied to the magnetizing medium by aligning the longitudinal direction of the magnetic film with the magnetizing medium moving direction. High frequency current is applied to both ends of the magnetic film in parallel, and the impedance change generated between the both ends of the magnetic film by the magnetic flux from the magnetizing medium is converted into an electric signal to obtain an output. And adopt the configuration Since, now it can be detected and the average of the magnetic field of a plurality of magnetization of a wearing 磁媒 body difficult by the MI element in the prior art. Moreover, the magnetic field of the magnetizing medium having a shorter magnetizing pitch than that of the MR element can be detected in addition to being able to obtain a stable output which is strong against a noise magnetic field from the outside. Furthermore, since the element body is made of a magnetic film, there are no handling difficulties like conventional amorphous wires, complex patterns can be easily formed, and excellent productivity can be obtained. To be

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の磁気エンコーダー用磁気
センサーの基本的な構造を示す斜視図である。
FIG. 1 is a perspective view showing a basic structure of a magnetic sensor for a magnetic encoder according to a first embodiment of the present invention.

【図2】同磁気センサーの検出動作時の作用を説明する
説明図である。
FIG. 2 is an explanatory diagram illustrating an operation during a detection operation of the magnetic sensor.

【図3】同磁気センサーの磁気検出素子本体の磁性膜の
磁気インピーダンス特性を示すグラフ図である。
FIG. 3 is a graph showing a magnetic impedance characteristic of a magnetic film of a magnetic detection element body of the magnetic sensor.

【図4】第2実施例のセンサーの構造を示す斜視図であ
る。
FIG. 4 is a perspective view showing a structure of a sensor according to a second embodiment.

【図5】同センサーの作用を説明する説明図である。FIG. 5 is an explanatory diagram illustrating an operation of the sensor.

【図6】第3実施例のセンサーの構造を示す斜視図であ
る。
FIG. 6 is a perspective view showing the structure of a sensor according to a third embodiment.

【図7】図6のA−A′線に沿う断面図である。7 is a cross-sectional view taken along the line AA ′ of FIG.

【図8】第4実施例のセンサーの構造を示す斜視図であ
る。
FIG. 8 is a perspective view showing a structure of a sensor according to a fourth embodiment.

【図9】同センサーの作用を説明する説明図である。FIG. 9 is an explanatory diagram illustrating an operation of the sensor.

【図10】同センサーにおける着磁媒体移動量と磁性膜
のインピーダンス変化の関係を示すグラフ図である。
FIG. 10 is a graph showing the relationship between the amount of movement of the magnetizing medium and the impedance change of the magnetic film in the same sensor.

【図11】第5実施例のセンサーの構造を示す斜視図で
ある。
FIG. 11 is a perspective view showing the structure of the sensor of the fifth embodiment.

【図12】第6実施例のセンサーの構造を示す平面図で
ある。
FIG. 12 is a plan view showing the structure of the sensor of the sixth embodiment.

【図13】従来のMR素子を用いたセンサーの平面図で
ある。
FIG. 13 is a plan view of a sensor using a conventional MR element.

【符号の説明】[Explanation of symbols]

10 非磁性基板 12,12′ 高透磁率磁性膜 12a,12a′ 枝部 14 着磁媒体 16A,16B 端子 24 導電膜 24A,24B 端子 28A,28E 端子 28B,28C,28D 接続部 121,122 磁性膜 10 Nonmagnetic Substrate 12, 12 'High Permeability Magnetic Film 12a, 12a' Branch 14 Magnetizing Medium 16A, 16B Terminal 24 Conductive Film 24A, 24B Terminal 28A, 28E Terminal 28B, 28C, 28D Connection 121, 122 Magnetic Film

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 所定の着磁ピッチで交互に逆極性に着磁
され、該着磁の連続する方向に相対的に移動する着磁媒
体の磁界を磁気インピーダンス効果により検出する磁気
エンコーダー用磁気センサーであって、 非磁性基板上に帯状の高透磁率磁性膜が形成され、 前記磁性膜の長手方向に沿う2辺の少なくとも一方に
は、所定長の枝部が前記着磁ピッチと等ピッチで互いに
平行に複数突出して形成されており、 前記磁性膜の長手方向を着磁媒体移動方向に沿わせて該
磁性膜を着磁媒体に平行に対向させ、該磁性膜に対し両
端部から高周波電流を印加し、着磁媒体からの磁束によ
り該磁性膜の両端部間に発生するインピーダンスの変化
を電気信号に変換して出力を得られるようにしたことを
特徴とする磁気エンコーダー用磁気センサー。
1. A magnetic sensor for a magnetic encoder, which detects a magnetic field of a magnetizing medium, which is alternately magnetized to have opposite polarities at a predetermined magnetizing pitch and which relatively moves in a direction in which the magnetizing continues, by a magnetic impedance effect. A strip-shaped high-permeability magnetic film is formed on a non-magnetic substrate, and a branch portion of a predetermined length is formed at a pitch equal to the magnetization pitch on at least one of two sides along the longitudinal direction of the magnetic film. The magnetic films are formed so as to project in parallel with each other, and the magnetic films are opposed to each other in parallel to the magnetizing medium with the longitudinal direction of the magnetic film along the moving direction of the magnetizing medium. The magnetic sensor for a magnetic encoder is characterized in that a magnetic flux from a magnetized medium is applied to convert an impedance change generated between both ends of the magnetic film into an electric signal to obtain an output.
【請求項2】 前記磁性膜の枝部が突出する方向は、前
記着磁媒体の磁化の同一位相を結ぶ方向に沿う方向にさ
れることを特徴とする請求項1に記載の磁気エンコーダ
ー用磁気センサー。
2. The magnetic element for a magnetic encoder according to claim 1, wherein the projecting portion of the branch portion of the magnetic film is along a direction connecting the same phases of magnetization of the magnetized medium. sensor.
【請求項3】 前記磁性膜は、磁化容易軸方向が膜面内
で長手方向に対し垂直になるように磁気異方性がつけら
れていることを特徴とする請求項1または2に記載の磁
気エンコーダー用磁気センサー。
3. The magnetic film according to claim 1, wherein the magnetic film is provided with magnetic anisotropy so that the easy axis of magnetization is perpendicular to the longitudinal direction in the film plane. Magnetic sensor for magnetic encoder.
【請求項4】 前記枝部の幅が3μm以上で前記着磁ピ
ッチの1/2以下の範囲であることを特徴とする請求項
1から3までのいずれか1項に記載の磁気エンコーダー
用磁気センサー。
4. The magnetic for a magnetic encoder according to claim 1, wherein the width of the branch portion is 3 μm or more and 1/2 or less of the magnetizing pitch. sensor.
【請求項5】 前記磁性膜の1辺に形成される前記枝部
の数が3以上の奇数であることを特徴とする請求項1か
ら4までのいずれか1項に記載の磁気エンコーダー用磁
気センサー。
5. The magnetic for a magnetic encoder according to claim 1, wherein the number of the branch portions formed on one side of the magnetic film is an odd number of 3 or more. sensor.
【請求項6】 前記磁性膜の長手方向に沿う2辺に前記
枝部が形成され、該2辺の一方の辺の枝部と他方の辺の
枝部の位置は磁性膜の長手方向に前記着磁ピッチの1/
2ずれていることを特徴とする請求項1から5までのい
ずれか1項に記載の磁気エンコーダー用磁気センサー。
6. The branch portion is formed on two sides along the longitudinal direction of the magnetic film, and the positions of the branch portion on one side and the branch portion on the other side of the two sides are set in the longitudinal direction of the magnetic film. Magnetization pitch 1 /
The magnetic sensor for a magnetic encoder according to any one of claims 1 to 5, wherein the magnetic sensors are offset from each other.
【請求項7】 前記磁性膜が複数設けられ、互いの長手
方向に沿う辺どうしが平行に対向するように長手方向に
垂直な方向に所定間隔で配置され、隣り合う磁性膜の前
記枝部どうしの位置が該磁性膜の長手方向に前記着磁ピ
ッチの1/2ずれていることを特徴とする請求項1から
5までのいずれか1項に記載の磁気エンコーダー用磁気
センサー。
7. A plurality of the magnetic films are provided, the magnetic films are arranged at a predetermined interval in a direction perpendicular to the longitudinal direction so that the sides along the longitudinal direction face each other in parallel, and the branch portions of the adjacent magnetic films are adjacent to each other. The magnetic sensor for a magnetic encoder according to any one of claims 1 to 5, wherein the position is shifted by 1/2 of the magnetization pitch in the longitudinal direction of the magnetic film.
【請求項8】 前記複数の磁性膜が電気的に直列接続さ
れていることを特徴とする請求項7に記載の磁気エンコ
ーダー用磁気センサー。
8. The magnetic sensor for a magnetic encoder according to claim 7, wherein the plurality of magnetic films are electrically connected in series.
【請求項9】 前記複数の磁性膜どうしが該磁性膜の端
部のそれぞれを延長した磁性膜からなる接続部により電
気的に直列接続されていることを特徴とする請求項8に
記載の磁気エンコーダー用磁気センサー。
9. The magnetic device according to claim 8, wherein the plurality of magnetic films are electrically connected in series by a connecting portion formed of a magnetic film that extends each end of the magnetic film. Magnetic sensor for encoder.
【請求項10】 前記磁性膜は、該磁性膜より細い帯状
の導電膜を全長にわたって挟んで積層された2層の磁性
膜であり、 前記導電膜の両端部は前記2層の磁性膜の両端部から露
出しており、 前記導電膜に対し両端部から高周波電流を印加し、着磁
媒体からの磁束により該導電膜の両端部間に発生するイ
ンピーダンスの変化を電気信号に変換して出力を得られ
るようにしたことを特徴とする請求項1から9までのい
ずれか1項に記載の磁気エンコーダー用磁気センサー。
10. The magnetic film is a two-layer magnetic film in which a strip-shaped conductive film narrower than the magnetic film is sandwiched over the entire length, and both ends of the conductive film are both ends of the two-layer magnetic film. A high frequency current is applied to the conductive film from both ends of the conductive film, and a change in impedance generated between both ends of the conductive film due to the magnetic flux from the magnetizing medium is converted into an electric signal to output. The magnetic sensor for a magnetic encoder according to any one of claims 1 to 9, wherein the magnetic sensor is obtained.
JP7142755A 1995-06-09 1995-06-09 Magnetic sensor for magnetic encoder Pending JPH08334379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7142755A JPH08334379A (en) 1995-06-09 1995-06-09 Magnetic sensor for magnetic encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7142755A JPH08334379A (en) 1995-06-09 1995-06-09 Magnetic sensor for magnetic encoder

Publications (1)

Publication Number Publication Date
JPH08334379A true JPH08334379A (en) 1996-12-17

Family

ID=15322828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7142755A Pending JPH08334379A (en) 1995-06-09 1995-06-09 Magnetic sensor for magnetic encoder

Country Status (1)

Country Link
JP (1) JPH08334379A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003110161A (en) * 2001-09-28 2003-04-11 Nec Tokin Corp Magnetic sensor
WO2015026079A1 (en) * 2013-08-21 2015-02-26 엘지이노텍 주식회사 Mems amplitude modulator and mems magnetic field sensor including same
CN108291821A (en) * 2015-12-04 2018-07-17 日本电产三协株式会社 position detecting device
EP3695194B1 (en) 2017-10-12 2022-05-11 Victor Vasiloiu Electromagnetic measuring system for detecting length and angle on the basis of the magnetoimpedance effect

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003110161A (en) * 2001-09-28 2003-04-11 Nec Tokin Corp Magnetic sensor
WO2015026079A1 (en) * 2013-08-21 2015-02-26 엘지이노텍 주식회사 Mems amplitude modulator and mems magnetic field sensor including same
US9748899B2 (en) 2013-08-21 2017-08-29 Lg Innotek Co., Ltd. MEMS amplitude modulator and MEMS magnetic field sensor including same
CN108291821A (en) * 2015-12-04 2018-07-17 日本电产三协株式会社 position detecting device
EP3695194B1 (en) 2017-10-12 2022-05-11 Victor Vasiloiu Electromagnetic measuring system for detecting length and angle on the basis of the magnetoimpedance effect

Similar Documents

Publication Publication Date Title
US6351119B1 (en) Magnetic detecting element utilizing magnetic impedance effect
US7378839B2 (en) Magnetic encoder
US7145331B2 (en) Magnetic sensor having a closed magnetic path formed by soft magnetic films
JP4630544B2 (en) A method of orienting the magnetization direction of a magnetic layer of a selected magnetic element out of a plurality of magnetic elements constituting a bridge structure in a direction opposite to the magnetization direction of a magnetic layer of another magnetic element
US6650112B2 (en) Magnetics impedance element having a thin film magnetics core
EP1293792B1 (en) Magnetic detection element utilizing magneto-impedance effect, production method of the element, and portable equipment using the element
JPH0897488A (en) Magnetism detector
JP3619156B2 (en) Magnetic detector
US4051542A (en) Magnetic head with thin sheet exhibiting magnetoresistive property
JPH08334379A (en) Magnetic sensor for magnetic encoder
JP3356585B2 (en) Magnetic detection element and magnetic head
JPH09113590A (en) Magnetic sensor
US7339369B2 (en) Magnetic encoder
US8957680B2 (en) Magnetic sensor and pattern for magnetic sensor
JPH09113591A (en) Magnetic sensor
JP2007093328A (en) Magnetism detection device
JPH11287669A (en) Magnetic field sensor
KR920001129B1 (en) Magnetic resistance effect magnetic head
JP3555412B2 (en) Magnetoresistive sensor
JPH08285930A (en) Magnetism detection element and magnetic head
JP2663460B2 (en) Magnetic direction sensor
JP4237855B2 (en) Magnetic field sensor
JP2003177167A (en) Magnetic sensor
JP2000214241A (en) Magnetic encoder and magnetic sensor
JP2878738B2 (en) Recording / reproducing thin film magnetic head