JPH08327698A - Method and system for simulating circuit - Google Patents

Method and system for simulating circuit

Info

Publication number
JPH08327698A
JPH08327698A JP7133119A JP13311995A JPH08327698A JP H08327698 A JPH08327698 A JP H08327698A JP 7133119 A JP7133119 A JP 7133119A JP 13311995 A JP13311995 A JP 13311995A JP H08327698 A JPH08327698 A JP H08327698A
Authority
JP
Japan
Prior art keywords
circuit
current
temperature
voltage
circuit element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7133119A
Other languages
Japanese (ja)
Inventor
Tatsuya Hirose
達哉 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP7133119A priority Critical patent/JPH08327698A/en
Publication of JPH08327698A publication Critical patent/JPH08327698A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Tests Of Electronic Circuits (AREA)

Abstract

PURPOSE: To determine the circuit characteristics accurately while taking account of self-heating of circuit elements by repeating the calculation of current and voltage without taking account of self-heating of each circuit element and the calculation of new temperature considering the temperature variation due to variation of power consumption alternately. CONSTITUTION: At first, current and voltage are calculated without taking account of self-heating of each circuit element based on a circuit equation, input conditions and temperature T of circuit. Current of each circuit element, variable depending on the power consumption of circuit, is then determined and a temperature variation ΔT is determined based on the variation in power consumption of circuit due to variation in the current of each circuit element thus setting T+ΔT as a new temperature T. Two calculations are repeated alternately until the state of circuit is settled thus determining the voltage or current. Since mutual dependency of the temperature variation due to power consumption of circuit and the characteristic variation of circuit due to temperature variation is taken into account repeatedly until the circuit state is settled, accurate circuit characteristics can be determined while taking account of self- heating of circuit element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体集積回路の回路
設計において用いられる回路シミュレーション方法及び
その装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circuit simulation method and apparatus used in circuit design of a semiconductor integrated circuit.

【0002】[0002]

【従来の技術】半導体集積回路の回路設計において用い
られる回路シミュレータでは、SPICEが広く利用さ
れている。SPICEを含め、回路素子の自己発熱を考
慮した一般的な回路シミュレータは存在せず、ごく一部
の回路シミュレータにおいて、次のような方法が用いら
れているに過ぎない。すなわち、例えばバイポーラトラ
ンジスタモデルにおいて、温度Tでのコレクタ・エミッ
タ間の電流Ice及び電圧Vceを求め、電流Iceを電流I
ce’=Ice/{1+(Ice・Vce/P0)}と修正してト
ランジスタの自己発熱を部分的に考慮した表現としてい
る。ここに、P0は定数である。
2. Description of the Related Art SPICE is widely used in circuit simulators used in the circuit design of semiconductor integrated circuits. There is no general circuit simulator that considers self-heating of circuit elements including SPICE, and the following method is only used in a small part of circuit simulators. That is, for example, in a bipolar transistor model, the current Ice and the voltage Vce between the collector and the emitter at the temperature T are obtained, and the current Ice is calculated as the current I.
The expression is modified by ce '= Ice / {1+ (Ice.Vce / P0)} to partially consider the self-heating of the transistor. Here, P0 is a constant.

【0003】[0003]

【発明が解決しようとする課題】しかし、自己発熱によ
り温度が変化すると電流が変化し、電流が変化すると温
度が変化するので、上記方法で得られる結果は正確さに
欠け、また、必ずしも上記式で自己発熱による特性変化
の傾向を表現できるとは限らない。発明の目的は、この
ような問題点に鑑み、回路素子の自己発熱を考慮してよ
り正確に回路特性を求めることができる回路シミュレー
ション方法及びその装置を提供することにある。
However, since the current changes when the temperature changes due to self-heating and the temperature changes when the current changes, the result obtained by the above method is inaccurate, and the above formula is not always required. Does not always express the tendency of characteristic change due to self-heating. In view of such a problem, an object of the present invention is to provide a circuit simulation method and an apparatus thereof that can more accurately obtain circuit characteristics in consideration of self-heating of circuit elements.

【0004】[0004]

【課題を解決するための手段及びその作用効果】第1発
明では、複数の回路素子が接続された回路のシュミレー
ション方法において、各回路素子の自己発熱を考慮しな
い場合の電流及び電圧を、回路方程式、回路の入力条件
及び温度Tに基づいて算出する第1ステップと、回路の
消費電力により変化する各回路素子の電流を求め(変化
の傾向を予測して求め)、各回路素子の電流変化による
回路の消費電力の変化から温度変化ΔTを求め、T+Δ
Tを新たな温度Tとする第2ステップと、を交互に、回
路の状態が収束するまで繰り返し実行することにより、
回路素子の発熱を考慮した電圧又は電流を求める。
According to the first aspect of the present invention, in the simulation method of a circuit in which a plurality of circuit elements are connected, current and voltage in the case where self-heating of each circuit element is not taken into consideration , The first step of calculating based on the input condition of the circuit and the temperature T, and the current of each circuit element that changes depending on the power consumption of the circuit is obtained (obtained by predicting the tendency of change) Temperature change ΔT is calculated from the change in circuit power consumption, and T + Δ
By alternately executing the second step in which T is a new temperature T and until the state of the circuit converges,
Determine the voltage or current that takes into account the heat generated by the circuit elements.

【0005】第2発明では、複数の回路素子が接続され
た回路のシュミレーション方法において、各回路素子の
自己発熱を考慮しない場合の電流及び電圧を、回路方程
式、回路の入力条件及び温度Tに基づいて算出する第1
ステップと、回路の消費電力により変化する各回路素子
の電流を温度T+ΔTでの電流として求め(変化の傾向
を予測して求め)、各回路素子の電流変化による回路の
消費電力の変化から温度変化ΔTを求める第2ステップ
と、温度T+ΔTでの各回路素子の電圧を求める第3ス
テップと、を有し、第1ステップを実行した後、回路の
状態が収束するまで該第2ステップと該第3ステップと
を交互に繰り返し実行することにより、回路素子の発熱
を考慮した電圧又は電流を求める。
According to the second aspect of the present invention, in a circuit simulation method in which a plurality of circuit elements are connected, the current and voltage when self-heating of each circuit element is not taken into consideration are based on the circuit equation, the input condition of the circuit and the temperature T. First calculated
The step and the current of each circuit element that changes depending on the power consumption of the circuit are obtained as the current at the temperature T + ΔT (obtained by predicting the change tendency), and the temperature change from the change in the power consumption of the circuit due to the current change of each circuit element. It has a second step of obtaining ΔT and a third step of obtaining the voltage of each circuit element at the temperature T + ΔT, and after performing the first step, the second step and the second step are performed until the state of the circuit converges. The voltage or current in consideration of heat generation of the circuit element is obtained by alternately repeating the three steps.

【0006】上記第1又は第2の発明によれば、回路の
消費電力による温度変化と、温度変化による回路の特性
変化との相互依存を、回路の状態が収束するまで繰り返
し考慮しているので、回路素子の自己発熱を考慮した、
より正確な回路特性を求めることができる。これは、半
導体集積回路の開発期間短縮化に寄与する。第1発明に
よれば、第2ステップの後の第1ステップで各回路素子
の電流を回路方程式に基づいて求め直すので、第2発明
による場合よりも正確に回路特性を求めることができ
る。第2発明によれば、第3ステップでこの求め直しを
しないので、第1発明による場合よりも高速処理が可能
となる。
According to the first or second aspect of the invention, the mutual dependence between the temperature change due to the power consumption of the circuit and the characteristic change of the circuit due to the temperature change is repeatedly considered until the state of the circuit converges. , Considering self-heating of circuit element,
More accurate circuit characteristics can be obtained. This contributes to shortening the development period of the semiconductor integrated circuit. According to the first aspect of the invention, the current of each circuit element is recalculated based on the circuit equation in the first step after the second step, so that the circuit characteristics can be determined more accurately than in the case of the second aspect. According to the second aspect of the invention, this recalculation is not performed in the third step, so high speed processing is possible as compared with the case of the first aspect of the invention.

【0007】第1又は第2の発明の第1態様では、上記
複数の回路素子を第1〜n回路素子とし、i=1〜nの
各々について、温度Tでの第i回路素子に流れる電流を
I(i,k)とし、第i回路素子の端子間電圧をV(i,k)と
し、回路の消費電力により変化した第i回路素子の電流
をI(i,k+1)としたとき、上記第2ステップは、実質的
に、 A1〜Am、N1〜Nm、m、s及びKはパラメータ により電流I(i,k+1)及び温度変化ΔTを求める。
In the first aspect of the first or second invention, the plurality of circuit elements are the first to nth circuit elements, and the current flowing in the ith circuit element at the temperature T for each of i = 1 to n. Is I (i, k), the terminal voltage of the i-th circuit element is V (i, k), and the current of the i-th circuit element changed by the power consumption of the circuit is I (i, k + 1). Then, the second step is substantially For A1 to Am, N1 to Nm, m, s and K, the current I (i, k + 1) and the temperature change ΔT are obtained by the parameters.

【0008】この第1態様によれば、パラメータA1〜
Am、N1〜Nm、m、sを実験結果に基づいて定めることに
より、様々な温度/電流特性の回路に本発明を適用する
ことが可能となる。第1又は第2の発明の第2態様で
は、上記収束を、 この第2態様によれば、温度又は電圧で収束判定した場
合よりも正確に判定することができる。
According to this first aspect, the parameters A1 ...
By setting Am, N1 to Nm, m, and s based on the experimental results, the present invention can be applied to circuits having various temperature / current characteristics. In the second aspect of the first or second invention, the above convergence is According to the second aspect, it is possible to make a more accurate determination than when the convergence determination is made by the temperature or the voltage.

【0009】第1又は第2の発明の第3態様では、上記
パラメータは、A1=1、N1=0、m=2である。この第
3態様によれば、I(i,k+1)を求める式が簡単になり、
かつ、経験的に多くの温度/電流特性の回路に本発明を
適用することができる。第3発明の回路シミュレータで
は、上記いずれかの回路シミュレーション方法を実行す
る計算機を有する。
In the third aspect of the first or second invention, the parameters are A1 = 1, N1 = 0 and m = 2. According to the third aspect, the formula for obtaining I (i, k + 1) is simplified,
In addition, the present invention can be applied empirically to circuits having many temperature / current characteristics. A circuit simulator according to a third aspect of the present invention has a computer that executes any one of the above circuit simulation methods.

【0010】[0010]

【実施例】以下、図面に基づいて本発明の一実施例を説
明する。回路シミュレータのハードウエア構成は、一般
的な計算器システムであり、その説明を省略する。図2
は、ヘテロ接合バイポーラトランジスタ(HBT)モデル
の回路図を示す。HBTモデル10は、抵抗1〜3、ダ
イオード4、5及び直流電流源6を図示のように接続し
たモデルで表される。11〜15は節点であり、11は
エミッタ電極、12はベース電極、13はコレクタ電極
である。図2では、第i回路素子、i=1〜6に流れる
電流をIi、第i回路素子の端子間電圧をViと表してい
る。正確には、ダイオード4及び5にそれぞれ並列に、
特性の異なる他のダイオードを接続したモデルを用いる
が、図2ではこのダイオードを省略して簡単化してい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. The hardware configuration of the circuit simulator is a general computer system, and its explanation is omitted. Figure 2
Shows a circuit diagram of a heterojunction bipolar transistor (HBT) model. The HBT model 10 is represented by a model in which resistors 1 to 3, diodes 4, 5 and a direct current source 6 are connected as shown. Reference numerals 11 to 15 are nodes, 11 is an emitter electrode, 12 is a base electrode, and 13 is a collector electrode. In FIG. 2, the current flowing in the i-th circuit element, i = 1 to 6, is represented by Ii, and the terminal voltage of the i-th circuit element is represented by Vi. To be precise, in parallel with the diodes 4 and 5,
Although a model in which other diodes having different characteristics are connected is used, this diode is omitted in FIG. 2 for simplification.

【0011】HBTモデル10の回路方程式は、各回路
素子の、温度を含む電圧/電流特性方程式と、回路素子
の接続関係とにより定まる。例えば絶対温度Tでのダイ
オードの電圧V及び電流Iの特性方程式は周知のよう
に、I=Is{exp(qV/kT)−1}と表される。図1
は、各回路素子の自己発熱を考慮した回路シミュレーシ
ョン方法を示すフローチャートである。回路は、第1〜
n回路素子で構成されているとする。以下、括弧内の数
値は図中のステップ識別番号を表す。
The circuit equation of the HBT model 10 is determined by the voltage / current characteristic equation including temperature of each circuit element and the connection relation of the circuit elements. For example, as is well known, the characteristic equation of the voltage V and the current I of the diode at the absolute temperature T is expressed as I = Is {exp (qV / kT) -1}. FIG.
FIG. 6 is a flowchart showing a circuit simulation method considering self-heating of each circuit element. The circuit is 1st
It is assumed to be composed of n circuit elements. Hereinafter, the numerical value in the parenthesis represents the step identification number in the figure.

【0012】(20)回路に対し入力条件を与える。例
えば図2のHBTモデル10において、節点13に対す
る節点11及び12の電圧を与える。また、チップ上の
着目している回路での温度Tを、各回路素子の自己発熱
を考慮しない場合の温度T0とする。繰り返し回数kを
1とする。 (21)温度Tkでの回路の、枝iの電流I(i,k)及び枝
iの端子間電圧V(i,k)を、回路方程式、上記入力条件
及び温度Tkに基づいて算出する。
(20) An input condition is given to the circuit. For example, in the HBT model 10 of FIG. 2, the voltages of the nodes 11 and 12 are given with respect to the node 13. Further, the temperature T of the circuit of interest on the chip is taken as the temperature T0 when the self-heating of each circuit element is not taken into consideration. The number of repetitions k is 1. (21) The current I (i, k) of the branch i and the inter-terminal voltage V (i, k) of the branch i of the circuit at the temperature Tk are calculated based on the circuit equation, the input condition, and the temperature Tk.

【0013】(22)この電流I(i,k)及び電圧V(i,k)
によりHBTモデル10で消費する電力P1を、 (23)P1により、電流I(i,k)が I(i,k+1)=I(i,k)/(1+QP1)s になるとする。ここにsは、任意に定め得るパラメータ
である。
(22) This current I (i, k) and voltage V (i, k)
The power P1 consumed by the HBT model 10 is (23) It is assumed that the current I (i, k) becomes I (i, k + 1) = I (i, k) / (1 + QP1) s due to P1. Here, s is a parameter that can be arbitrarily determined.

【0014】(24)電流Iによる電力P2を (25)P1からP2に変化したことによる温度変化Δ
Tを、 ΔT=K(P2−P1) として求める。ここにKは、任意に定め得るパラメータ
である。温度T+ΔTを新たなTとする。
(24) The power P2 due to the current I (25) Temperature change Δ due to change from P1 to P2
T is determined as ΔT = K (P2-P1). Here, K is a parameter that can be arbitrarily determined. Let temperature T + ΔT be a new T.

【0015】(26)回路方程式、入力条件及び温度T
に基づいて電圧Vを算出する。電圧Vを算出するのに、
電流IがΔI変化した時の電圧Vの変化ΔVを求める近
似方程式を用い、電圧V+ΔVを電圧Vと更新してもよ
い。 (27)収束判定のために、
(26) Circuit equation, input condition and temperature T
The voltage V is calculated based on To calculate the voltage V,
The voltage V + ΔV may be updated to the voltage V by using an approximate equation for obtaining the change ΔV of the voltage V when the current I changes by ΔI. (27) For convergence judgment,

【0016】 (28、29)E≧εであればkをインクリメントして
上記ステップ22へ戻り、E<εであれば処理を終了す
る。ここに、εは充分小さな正の定数である。ステップ
23のs及びステップ25のKの値は実験的に定められ
る。HBTモデル10からの熱の流出及びHBTモデル
10の周囲からHBTモデル10への熱の流入を考慮す
る場合には、パラメータs及びKを時間の関数で表す。
[0016] (28, 29) If E ≧ ε, k is incremented and the process returns to step 22. If E <ε, the process ends. Here, ε is a sufficiently small positive constant. The values of s in step 23 and K in step 25 are determined experimentally. When considering the outflow of heat from the HBT model 10 and the inflow of heat from the periphery of the HBT model 10 to the HBT model 10, the parameters s and K are expressed as a function of time.

【0017】本実施例では、回路の消費電力を電流変化
に関連付け、電流変化による回路の消費電力の変化を温
度変化に関連付け、電流ベクトル{I(1,k),I(2,k),
I(3,k),・・・,I(n,k)}が収束するまで繰り返し処
理を実行しているので、従来よりも正確に回路特性を求
めることができ、これにより半導体集積回路の開発期間
短縮化を図ることができる。
In the present embodiment, the circuit power consumption is associated with the current change, the circuit power consumption change due to the current change is associated with the temperature change, and the current vectors {I (1, k), I (2, k),
Since I (3, k), ..., I (n, k)} is repeatedly processed until it converges, the circuit characteristics can be obtained more accurately than before, and thus the semiconductor integrated circuit The development period can be shortened.

【0018】図3は、AlGaAs/GaAs HBTのコレクタ・
エミッタ間電圧/電流特性の実測値(実線)及びシミュ
レーション結果(点線)を示す線図であり、(A)は本
実施例を示し、(B)は従来例を示す。図3(A)は、
コレクタ電圧V6に対するコレクタ電流I6を示し、図3
(B)は、コレクタ電圧V1+V4+V6に対するコレク
タ電流I1を示す。図3(A)と(B)との比較から明
らかなように、本実施例によれば、特に飽和領域におい
て正確になることがわかる。
FIG. 3 shows an AlGaAs / GaAs HBT collector.
It is a diagram showing an actually measured value (solid line) of the emitter-emitter voltage / current characteristic and a simulation result (dotted line), where (A) shows this embodiment and (B) shows a conventional example. FIG. 3 (A) shows
FIG. 3 shows the collector current I6 with respect to the collector voltage V6.
(B) shows the collector current I1 with respect to the collector voltage V1 + V4 + V6. As is clear from the comparison between FIGS. 3A and 3B, it is understood that the present embodiment is accurate especially in the saturation region.

【0019】本実施例では特に、上記ステップ26で電
流I(i,k+1)を求める必要はないので、高速処理が可能
となる。なお、ステップ26において、ステップ21と
同様に電流も算出する構成であってもよい。この場合、
電圧及び電流をより正確に求めることができる。
In the present embodiment, in particular, since it is not necessary to obtain the current I (i, k + 1) in step 26, high speed processing is possible. The current may be calculated in step 26 as in step 21. in this case,
The voltage and current can be obtained more accurately.

【0020】[0020]

【発明の効果】【The invention's effect】 【図面の簡単な説明】[Brief description of drawings]

【図1】自己発熱を考慮した回路シミュレーション方法
を示すフローチャートである。
FIG. 1 is a flowchart showing a circuit simulation method considering self-heating.

【図2】HBTモデルの回路図である。FIG. 2 is a circuit diagram of an HBT model.

【図3】HBTのコレクタ・エミッタ間電圧/電流特性
の実測値及びシミュレーション結果を示す線図であり、
(A)は本実施例を示し、(B)は従来例を示す。
FIG. 3 is a diagram showing measured values and simulation results of collector-emitter voltage / current characteristics of an HBT,
(A) shows a present Example, (B) shows a prior art example.

【符号の説明】[Explanation of symbols]

1〜3 抵抗 4、5 ダイオード 6 直流電流源 10 HBTモデル 1-3 resistance 4, 5 diode 6 direct current source 10 HBT model

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 複数の回路素子が接続された回路のシュ
ミレーション方法において、 各回路素子の自己発熱を考慮しない場合の電流及び電圧
を、回路方程式、回路の入力条件及び温度Tに基づいて
算出する第1ステップと、 回路の消費電力により変化する各回路素子の電流を求
め、各回路素子の電流変化による回路の消費電力の変化
から温度変化ΔTを求め、T+ΔTを新たな温度Tとす
る第2ステップと、 を交互に、回路の状態が収束するまで繰り返し実行する
ことにより、回路素子の発熱を考慮した電圧又は電流を
求めることを特徴とする回路シミュレーション方法。
1. In a simulation method of a circuit in which a plurality of circuit elements are connected, a current and a voltage when self-heating of each circuit element is not considered are calculated based on a circuit equation, an input condition of the circuit, and a temperature T. In the first step, the current of each circuit element that changes depending on the power consumption of the circuit is obtained, the temperature change ΔT is obtained from the change of the power consumption of the circuit due to the current change of each circuit element, and T + ΔT is set as the new temperature T. A circuit simulation method characterized in that a voltage or a current in which heat generation of a circuit element is taken into consideration is repeatedly performed by alternately performing the steps and until the circuit state converges.
【請求項2】 複数の回路素子が接続された回路のシュ
ミレーション方法において、 各回路素子の自己発熱を考慮しない場合の電流及び電圧
を、回路方程式、回路の入力条件及び温度Tに基づいて
算出する第1ステップと、 回路の消費電力により変化する各回路素子の電流を温度
T+ΔTでの電流として求め、各回路素子の電流変化に
よる回路の消費電力の変化から温度変化ΔTを求める第
2ステップと、 温度T+ΔTでの各回路素子の電圧を求める第3ステッ
プと、 を有し、第1ステップを実行した後、回路の状態が収束
するまで該第2ステップと該第3ステップとを交互に繰
り返し実行することにより、回路素子の発熱を考慮した
電圧又は電流を求めることを特徴とする回路シミュレー
ション方法。
2. In a simulation method of a circuit in which a plurality of circuit elements are connected, a current and a voltage when self-heating of each circuit element is not considered are calculated based on a circuit equation, an input condition of the circuit, and a temperature T. A first step, and a second step in which the current of each circuit element that changes depending on the power consumption of the circuit is obtained as a current at temperature T + ΔT, and the temperature change ΔT is obtained from the change in the power consumption of the circuit due to the current change of each circuit element, A third step of obtaining the voltage of each circuit element at the temperature T + ΔT, and, after executing the first step, repeatedly executing the second step and the third step alternately until the circuit state converges. By doing so, the circuit simulation method is characterized in that the voltage or current in which heat generation of the circuit element is taken into consideration is obtained.
【請求項3】 前記複数の回路素子を第1〜n回路素子
とし、 i=1〜nの各々について、温度Tでの第i回路素子に
流れる電流をI(i,k)とし、第i回路素子の端子間電圧
をV(i,k)とし、回路の消費電力により変化した第i回
路素子の電流をI(i,k+1)としたとき、前記第2ステッ
プは、実質的に、 A1〜Am、N1〜Nm、m、s及びKはパラメータ により電流I(i,k+1)及び温度変化ΔTを求めることを
特徴とする請求項1又は2記載の回路シミュレーション
方法。
3. The plurality of circuit elements are first to nth circuit elements, and for each of i = 1 to n, a current flowing through the ith circuit element at a temperature T is I (i, k), and When the voltage between terminals of the circuit element is V (i, k) and the current of the i-th circuit element changed by the power consumption of the circuit is I (i, k + 1), the second step is substantially , 3. The circuit simulation method according to claim 1, wherein A1 to Am, N1 to Nm, m, s, and K obtain the current I (i, k + 1) and temperature change ΔT by parameters.
【請求項4】 前記収束を、 徴とする請求項1乃至3のいずれか1つに記載の回路シ
ミュレーション方法。
4. The convergence of The circuit simulation method according to any one of claims 1 to 3, which is a characteristic.
【請求項5】 前記パラメータは、A1=1、N1=0、m
=2であることを特徴とする請求項1乃至4のいずれか
1つに記載の回路シミュレーション方法。
5. The parameters are A1 = 1, N1 = 0, m
= 2, The circuit simulation method according to any one of claims 1 to 4.
【請求項6】 請求項1乃至5のいずれか1つに記載の
回路シミュレーション方法を実行する計算機を有するこ
とを特徴とする回路シミュレータ。
6. A circuit simulator comprising a computer that executes the circuit simulation method according to claim 1. Description:
JP7133119A 1995-05-31 1995-05-31 Method and system for simulating circuit Withdrawn JPH08327698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7133119A JPH08327698A (en) 1995-05-31 1995-05-31 Method and system for simulating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7133119A JPH08327698A (en) 1995-05-31 1995-05-31 Method and system for simulating circuit

Publications (1)

Publication Number Publication Date
JPH08327698A true JPH08327698A (en) 1996-12-13

Family

ID=15097241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7133119A Withdrawn JPH08327698A (en) 1995-05-31 1995-05-31 Method and system for simulating circuit

Country Status (1)

Country Link
JP (1) JPH08327698A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075611A1 (en) * 2006-12-19 2008-06-26 Nec Corporation Circuit simulator, circuit simulation method and program
JP2008176450A (en) * 2007-01-17 2008-07-31 Matsushita Electric Ind Co Ltd Timing verification method for semiconductor integrated circuit
JP2012032849A (en) * 2010-07-28 2012-02-16 Fuji Electric Co Ltd Simulation method and apparatus for semiconductor device
WO2012046344A1 (en) * 2010-10-08 2012-04-12 富士通株式会社 Program, library creating device, and power consumption calculating device
KR20160021960A (en) * 2014-08-18 2016-02-29 삼성전자주식회사 Simulation system estimating self-heating characteristic of circuit and design method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075611A1 (en) * 2006-12-19 2008-06-26 Nec Corporation Circuit simulator, circuit simulation method and program
JPWO2008075611A1 (en) * 2006-12-19 2010-04-08 日本電気株式会社 Circuit simulator, circuit simulation method and program
JP5029615B2 (en) * 2006-12-19 2012-09-19 日本電気株式会社 Circuit simulator
US8332190B2 (en) 2006-12-19 2012-12-11 Nec Corporation Circuit simulator, circuit simulation method and program
JP2008176450A (en) * 2007-01-17 2008-07-31 Matsushita Electric Ind Co Ltd Timing verification method for semiconductor integrated circuit
JP2012032849A (en) * 2010-07-28 2012-02-16 Fuji Electric Co Ltd Simulation method and apparatus for semiconductor device
WO2012046344A1 (en) * 2010-10-08 2012-04-12 富士通株式会社 Program, library creating device, and power consumption calculating device
JPWO2012046344A1 (en) * 2010-10-08 2014-02-24 富士通株式会社 Program, library creation device, and power consumption calculation device
KR20160021960A (en) * 2014-08-18 2016-02-29 삼성전자주식회사 Simulation system estimating self-heating characteristic of circuit and design method thereof

Similar Documents

Publication Publication Date Title
Rinaldi Small-signal operation of semiconductor devices including self-heating, with application to thermal characterization and instability analysis
US20050273309A1 (en) Circuit simulation method, device model, and simulation circuit
JP6251310B2 (en) Measuring method of current-voltage characteristics
US8332190B2 (en) Circuit simulator, circuit simulation method and program
CN110989760A (en) Detection circuit based on band-gap reference voltage and band-gap reference voltage circuit
US8099270B2 (en) Simulation model for transistors
JPH08327698A (en) Method and system for simulating circuit
JP6936341B2 (en) Current-voltage characteristic measurement method
JP2013182525A (en) Igbt model for circuit simulation
JP2000260973A (en) Simulator, simulation method, method for setting conditions for manufacturing process, and recording medium
US6493659B1 (en) Power consumption calculating apparatus and method of the same
Zarębski et al. Parameters estimation of the dc electrothermal model of the bipolar transistor
Zarębski et al. SPICE‐aided modelling of dc characteristics of power bipolar transistors with self‐heating taken into account
EP1034487A1 (en) Method and system for improving a transistor model
Kundu et al. Power module thermal characterization considering aging towards online state-of-health monitoring
JPH10163222A (en) Generation method for equivalent circuit model for hbt, development method for hbt and simulation method for the circuit
Pfost et al. Modeling avalanche multiplication for advanced high-speed SiGe bipolar transistors
JP3296320B2 (en) Gate delay calculation device and recording medium recording gate delay calculation program
JP2006221375A (en) Field effect transistor model, circuit simulation device, circuit simulation method, program for circuit simulation, and recording medium
Green The augmentation principle of nonlinear circuits and its application to continuation methods
d'Alessandro et al. A novel SPICE macromodel of BJTs including the temperature dependence of high-injection effects
TWI808751B (en) System and method for generating device model parameter
US20090043558A1 (en) Delay calculation method capable of calculating delay time with small margin of error
JP2705322B2 (en) Current / power calculation device for semiconductor integrated circuit and current / power calculation method thereof
JPH0512325A (en) Circuit analytic simulation system

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020806