JPH08327170A - Refrigerating equipment - Google Patents

Refrigerating equipment

Info

Publication number
JPH08327170A
JPH08327170A JP13159595A JP13159595A JPH08327170A JP H08327170 A JPH08327170 A JP H08327170A JP 13159595 A JP13159595 A JP 13159595A JP 13159595 A JP13159595 A JP 13159595A JP H08327170 A JPH08327170 A JP H08327170A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
hot gas
pipe
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP13159595A
Other languages
Japanese (ja)
Inventor
Isami Yoneda
伊佐美 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP13159595A priority Critical patent/JPH08327170A/en
Publication of JPH08327170A publication Critical patent/JPH08327170A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Defrosting Systems (AREA)

Abstract

PURPOSE: To dispense with an electric heater for defrosting by a construction wherein a heat exchanger conducting heat exchange between hot gas and a secondary refrigerant is interposed in a secondary refrigerant piping and a hot gas defrosting circuit for making the hot gas flow through the heat exchanger is provided. CONSTITUTION: A heat exchanger 26 is formed of a double pipe and a secondary refrigerant is made to flow through the inner pipe thereof, while hot gas is made to flow through the outer pipe thereof. Heat exchange is made between them and the heat exchanger is interposed in a secondary refrigerant supply pipe 21. Besides, a three-way selector valve 27 is interposed in a gas outlet of an oil separator 2 and a hot gas bypass pipe 28 is connected between the three-way selector valve 27 and the inlet of the outer pipe of the heat exchanger 26, while a hot gas return pipe 29 is connected between the outlet of the outer pipe of the heat exchanger 26 and a discharge pipe on the downstream side of the three-way selector valve 27. In other words, a hot gas defrosting circuit 30 is formed by the heat exchanger 26, the three-way selector valve 27, the hot gas bypass pipe 28 and the hot gas return pipe 29. Thereby an electric heater for defrosting can be dispensed with.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は多成分混合冷媒を使用し
た多段気液分離方式の超低温冷凍装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multistage gas-liquid separation type ultra-low temperature refrigeration system using a multi-component mixed refrigerant.

【0002】[0002]

【従来の技術】従来、−100℃以下の低温を得るため
の超低温冷凍機として、1台の圧縮機と凝縮器並びに複
数段の気液分離器及び熱交換器から構成された多段気液
分離方式の超低温冷凍装置が使用されている。このよう
な超低温冷凍装置で被冷却体を冷却する場合、最終段の
キャピラリーチューブを出た低温冷媒を配管で被冷却体
まで移送する直接冷却方式と、一旦、冷却器で2次冷媒
を冷却し、その2次冷媒を配管で被冷却体まで移送する
間接冷却方式がある。この種の従来の間接冷却方式の超
低温装置の冷媒系統図が図2に示されている。図2にお
いて、圧縮機1の吐出側は油分離器2を介して凝縮器3
の入口に接続されている。
2. Description of the Related Art Conventionally, as an ultra-low temperature refrigerator for obtaining a low temperature of -100 ° C. or lower, a multi-stage gas-liquid separator composed of one compressor, a condenser, a plurality of gas-liquid separators and a heat exchanger. Type ultra-low temperature refrigerator is used. When the object to be cooled is cooled by such an ultra-low temperature refrigeration system, a direct cooling method in which the low temperature refrigerant discharged from the capillary tube at the final stage is transferred to the object to be cooled by piping, and the secondary refrigerant is once cooled by a cooler. , There is an indirect cooling system in which the secondary refrigerant is transferred to the cooled object by piping. A refrigerant system diagram of a conventional indirect cooling type ultra-low temperature device of this type is shown in FIG. In FIG. 2, the discharge side of the compressor 1 is connected to the condenser 3 via the oil separator 2.
Is connected to the entrance of.

【0003】凝縮器3の出口は補助凝縮器4を介して第
1気液分離器5の入口に接続されている。そして、第1
気液分離器5の気相部5aは第1中間熱交換器6の外管
入口に接続され、液相部5bは第1絞り7を介して第1
中間熱交換器6の内管入口に接続されている。
The outlet of the condenser 3 is connected to the inlet of the first gas-liquid separator 5 via the auxiliary condenser 4. And the first
The gas phase part 5a of the gas-liquid separator 5 is connected to the outer tube inlet of the first intermediate heat exchanger 6, and the liquid phase part 5b is connected to the first throttle 7 via the first throttle 7.
It is connected to the inner pipe inlet of the intermediate heat exchanger 6.

【0004】第1中間熱交換器6は2重管で形成されて
おり、外管内を流れる冷媒と内管内を流れる冷媒との間
に熱交換の効率を高めるため、外管入口と内管出口が中
間熱交換器6の一方の端に設けられ、外管出口と内管入
口は他方の端に設けられている。
The first intermediate heat exchanger 6 is formed of a double pipe, and in order to improve the efficiency of heat exchange between the refrigerant flowing in the outer pipe and the refrigerant flowing in the inner pipe, the outer pipe inlet and the inner pipe outlet are provided. Is provided at one end of the intermediate heat exchanger 6, and the outer pipe outlet and the inner pipe inlet are provided at the other end.

【0005】このようにして、第1気液分離器5と第1
中間熱交換器6と第1絞り7により第1段の冷却手段1
Sが形成される。
In this way, the first gas-liquid separator 5 and the first
The intermediate heat exchanger 6 and the first throttle 7 make the first-stage cooling means 1
S is formed.

【0006】以下同様に、第2気液分離器8と第2中間
熱交換器9と第2絞り10によって第2段の冷却手段2
Sが、第3気液分離器11と第3中間熱交換器12と第
3絞り13によって第3段の冷却手段3Sが、第4気液
分離器14と第4中間熱交換器15と第4絞り16によ
って第4段の冷却手段4Sが形成される。
Similarly, the second gas-liquid separator 8, the second intermediate heat exchanger 9 and the second throttle 10 are used to cool the second stage cooling means 2 in the same manner.
S is the third gas-liquid separator 11, the third intermediate heat exchanger 12, the third throttle 13, and the third stage cooling means 3S is the fourth gas-liquid separator 14, the fourth intermediate heat exchanger 15, and the third intermediate heat exchanger 15. The 4th diaphragm 16 forms the fourth-stage cooling means 4S.

【0007】そして、第4中間熱交換器15の外管出口
は補助冷却器17及び絞り18を介して冷却器19の内
管入口に接続されている。冷却器19の内管出口は補助
冷却器17を経て第4中間熱交換器15の内管入口に接
続されている。
The outer tube outlet of the fourth intermediate heat exchanger 15 is connected to the inner tube inlet of the cooler 19 via the auxiliary cooler 17 and the throttle 18. The inner pipe outlet of the cooler 19 is connected to the inner pipe inlet of the fourth intermediate heat exchanger 15 via the auxiliary cooler 17.

【0008】第4中間熱交換器15の内管出口は第3中
間熱交換器12の内管入口に、第3中間熱交換器12の
内管出口は第2中間熱交換器9の内管入口に、第2中間
熱交換器9の内管出口は第1中間熱交換器6の内管入口
に、第1中間熱交換器6の内管出口は補助凝縮器4を介
して圧縮機1の吸入側に接続されている。
The inner pipe outlet of the fourth intermediate heat exchanger 15 is at the inner pipe inlet of the third intermediate heat exchanger 12, and the inner pipe outlet of the third intermediate heat exchanger 12 is at the inner pipe of the second intermediate heat exchanger 9. The inner pipe outlet of the second intermediate heat exchanger 9 is at the inlet, the inner pipe outlet of the first intermediate heat exchanger 6 is at the inlet, and the inner pipe outlet of the first intermediate heat exchanger 6 is at the compressor 1 via the auxiliary condenser 4. Is connected to the suction side of.

【0009】冷却器19は2重管で形成されており、そ
の外管は2次冷媒供給管21及び2次冷媒戻り管22に
よって需要先の超低温貯蔵庫25内に設けられた冷却コ
イル20と接続され、2次冷媒回路が構成されている。
なお、23は冷却コイル20に近接して配設されたデフ
ロスト用ヒータ、24は被冷却体である。
The cooler 19 is formed of a double pipe, and its outer pipe is connected by a secondary refrigerant supply pipe 21 and a secondary refrigerant return pipe 22 to a cooling coil 20 provided in an ultra-low temperature storehouse 25 of a demand destination. The secondary refrigerant circuit is configured.
In addition, 23 is a defrosting heater disposed in the vicinity of the cooling coil 20, and 24 is an object to be cooled.

【0010】この冷凍装置の1次冷媒回路内には沸点の
異なる複数種類の冷媒からなる混合冷媒、例えば、冷媒
RC318(オクタフルオロシクロブタン)と、冷媒R
32(ジフルオロメタン)と、冷媒R23(トリフルオ
ロメタン)と、冷媒R14(テトラフルオロメタン)
と、冷媒R50(メタン)とからなる非共沸混合冷媒
が、2次冷媒回路には冷媒R14(テトラフルオロメタ
ン)等が2次冷媒として封入される。
In the primary refrigerant circuit of this refrigeration system, a mixed refrigerant composed of plural kinds of refrigerants having different boiling points, for example, refrigerant RC318 (octafluorocyclobutane) and refrigerant R
32 (difluoromethane), refrigerant R23 (trifluoromethane), and refrigerant R14 (tetrafluoromethane)
And a non-azeotropic mixed refrigerant consisting of the refrigerant R50 (methane), and the refrigerant R14 (tetrafluoromethane) or the like as the secondary refrigerant in the secondary refrigerant circuit.

【0011】次に動作を説明する。Next, the operation will be described.

【0012】圧縮機1から吐出された高温高圧のガス状
混合冷媒は油分離器2に入り、ここで油を分離除去した
後、補助凝縮器3に流入し、ここで冷却水によって例え
ば30℃程に冷却された後、凝縮器4に流入する。ここ
で帰還冷媒によって例えば15℃程に更に冷却されるこ
とによりその中の低沸点冷媒、即ち、RC318の全部
とR32の一部が液化して第1気液分離器5に流入す
る。
The high-temperature and high-pressure gaseous mixed refrigerant discharged from the compressor 1 enters the oil separator 2, where the oil is separated and removed, and then flows into the auxiliary condenser 3, where it is cooled by, for example, 30 ° C. After being cooled to such an extent, it flows into the condenser 4. Here, by further cooling to about 15 ° C. by the return refrigerant, the low boiling point refrigerant therein, that is, all of RC318 and part of R32 are liquefied and flow into the first gas-liquid separator 5.

【0013】ここで低沸点冷媒RC318の全部とR3
2の一部とからなる液状冷媒から高沸点冷媒R50、R
14、R23及び未凝縮のR32からなる残留ガス状冷
媒が分離される。分離された液状冷媒RC318の全部
とR32の一部は第1絞り7で減圧された後、第1中間
熱交換器6の内管に流入し、ここで帰還ガス冷媒と合流
して蒸発する。
Here, all of the low boiling point refrigerant RC318 and R3
From a liquid refrigerant consisting of a part of 2 and high boiling point refrigerants R50, R
The residual gaseous refrigerant consisting of 14, R23 and uncondensed R32 is separated. All of the separated liquid refrigerant RC318 and a part of R32 are decompressed by the first throttle 7, then flow into the inner pipe of the first intermediate heat exchanger 6, where they are combined with the return gas refrigerant and evaporated.

【0014】一方、残留ガス状冷媒R32の一部と、R
23、R14、R50の全部は第1中間熱交換器6の外
管を流過する過程で内管を流れる帰還冷媒及び分離され
た残留ガス状冷媒と熱交換することによって例えば−1
5℃程に冷却されることによってその中のR32の全部
とR23の一部が液化する。
On the other hand, a part of the residual gaseous refrigerant R32 and R
All of 23, R14, and R50 exchange heat with the return refrigerant and the separated residual gaseous refrigerant that flow through the inner tube in the process of flowing through the outer tube of the first intermediate heat exchanger 6, for example, −1.
By cooling to about 5 ° C., all of R32 and part of R23 therein are liquefied.

【0015】次いで、この冷媒は第2気液分離器8に流
入しここで液状冷媒と残留ガス冷媒とに分離される。液
状のR32の全部とR23の一部は第2絞り10で減圧
された後、第2中間熱交換器9の内管に流入し、ここで
帰還冷媒と合流して蒸発する。
Next, this refrigerant flows into the second gas-liquid separator 8 where it is separated into a liquid refrigerant and a residual gas refrigerant. The entire liquid R32 and a part of R23 are decompressed by the second throttle 10, and then flow into the inner pipe of the second intermediate heat exchanger 9, where they are combined with the return refrigerant and evaporated.

【0016】一方、残留ガス冷媒R23の一部とR1
4、R50の全部は第2中間熱交換器9の外管を流過す
る過程で内管を流れる冷媒によって例えば−40℃程に
冷却されることによりその中のR23の全部とR14の
一部が液化する。
On the other hand, a part of the residual gas refrigerant R23 and R1
4, all of R50 are cooled to, for example, about −40 ° C. by the refrigerant flowing through the inner pipe of the second intermediate heat exchanger 9 in the process of flowing through the outer pipe, so that all of R23 and a part of R14 therein. Liquefies.

【0017】この冷媒は第3気液分離器11に流入し、
ここで液状冷媒とガス状冷媒とに分離される。液状のR
23とR14の一部は第3絞り13で減圧された後、第
3中間熱交換器12の内管に流入し、ここで外管を流れ
る冷媒と合流して蒸発する。
This refrigerant flows into the third gas-liquid separator 11,
Here, it is separated into a liquid refrigerant and a gaseous refrigerant. Liquid R
A part of 23 and R14 is decompressed by the third throttle 13, then flows into the inner pipe of the third intermediate heat exchanger 12, where it joins with the refrigerant flowing through the outer pipe and evaporates.

【0018】一方、残留ガス冷媒R14の一部とR50
の全部は第3中間熱交換器12の外管を流過する過程で
内管を流過する冷媒によって例えば−17℃程に冷却さ
れることによりその中のR14の全部とR50の一部が
液化して第3気液分離器14に流入し、ここで液状冷媒
とガス状冷媒とに分離される。
On the other hand, a part of the residual gas refrigerant R14 and R50
Is cooled to, for example, about −17 ° C. by the refrigerant flowing through the inner pipe in the process of flowing through the outer pipe of the third intermediate heat exchanger 12, so that all of R14 and a part of R50 therein are cooled. It is liquefied and flows into the third gas-liquid separator 14, where it is separated into a liquid refrigerant and a gaseous refrigerant.

【0019】液状のR14の一部とR50の全部は第4
絞り16で減圧された後、第4中間熱交換器15の内管
に流入し、ここで帰還冷媒と合流して蒸発する。一方、
残留ガス冷媒R14の一部とR50の大部分は第4中間
熱交換器15の外管を流過する過程で内管を流過する冷
媒によって例えば−100℃程に冷却されることにより
R14の全部とR50の相当部分が液化して補助冷却器
17に流入し、ここで冷却器19からの帰還冷媒によっ
て例えば−115℃程に更に冷却されてR50の大部分
が液化する。
Part of the liquid R14 and the whole of R50 are the fourth
After the pressure is reduced by the throttle 16, it flows into the inner pipe of the fourth intermediate heat exchanger 15, where it joins the return refrigerant and evaporates. on the other hand,
Part of the residual gas refrigerant R14 and most of R50 are cooled to, for example, about −100 ° C. by the refrigerant flowing through the inner pipe in the process of flowing through the outer pipe of the fourth intermediate heat exchanger 15, so that the R14 All and a substantial part of R50 are liquefied and flow into the auxiliary cooler 17, where they are further cooled to about −115 ° C. by the return refrigerant from the cooler 19, and most of R50 is liquefied.

【0020】これら液化したR14及びR50は第5絞
り18に減圧されることにより降温して例えば、−15
5℃程で冷却器19内管に流入し、ここで蒸発すること
により冷却器19の外管を流れる2次冷媒を−150℃
の低温に冷却する。
The liquefied R14 and R50 are reduced in pressure by the fifth throttle 18 to lower the temperature, for example, -15.
The secondary refrigerant that flows into the inner pipe of the cooler 19 at about 5 ° C. and evaporates here flows through the outer pipe of the cooler 19 at −150 ° C.
Cool to low temperature.

【0021】冷却器19で蒸発した冷媒は補助冷却器1
7、各中間熱交換器15、12、9、6、凝縮器4をこ
の順に通って圧縮機1に帰還する。
The refrigerant evaporated in the cooler 19 is the auxiliary cooler 1
7, the intermediate heat exchangers 15, 12, 9, 6, and the condenser 4 are passed in this order and returned to the compressor 1.

【0022】なお、圧縮機1の吐出配管から吐出冷媒に
混入して流出した潤滑油は油分離器2内で分離され、圧
縮機1への帰還冷媒に合流して圧縮機1に戻される。
The lubricating oil mixed with the discharge refrigerant from the discharge pipe of the compressor 1 and flowing out is separated in the oil separator 2, merged with the return refrigerant to the compressor 1 and returned to the compressor 1.

【0023】一方、冷却器19で冷却された2次冷媒は
自然対流による循環またはポンプ(図示せず)によって
2次冷媒供給管21に送られ、需要先の超低温貯蔵庫2
5内に設けられた冷却コイル20に流入し、ここで、超
低温貯蔵庫25内に設置された被冷却体24を冷却して
2次冷媒戻り管12を通って戻ってくる。
On the other hand, the secondary refrigerant cooled by the cooler 19 is sent to the secondary refrigerant supply pipe 21 by circulation by natural convection or by a pump (not shown), and the ultra-low temperature storage 2 of the demand destination.
5 flows into the cooling coil 20 provided inside the cooling coil 5, where the object to be cooled 24 installed in the ultra-low temperature storage 25 is cooled and returned through the secondary refrigerant return pipe 12.

【0024】被冷却体24を冷却する過程で、冷却コイ
ル20の表面に着霜が進行する場合があり、これをその
まま放置すると冷却能力が低下するので、図示しない着
霜検知手段によって着霜が検知され、デフロストヒータ
23に通電され、除霜が行われる。
In the process of cooling the body to be cooled 24, frost may form on the surface of the cooling coil 20. If this is left as it is, the cooling capacity will decrease, so that frost formation will occur due to frost detection means (not shown). The defrost heater 23 is detected, electricity is supplied to the defrost heater 23, and defrosting is performed.

【0025】[0025]

【発明が解決しようとする課題】上記従来の冷凍装置に
は解決すべき次の課題があった。
The above conventional refrigeration system has the following problems to be solved.

【0026】即ち、従来の間接方式の多段気液分離方式
の超低温冷凍装置においては、2次冷媒蒸発部、即ち冷
却コイル20の除霜のためデフロストヒータ23が必要
であり、需要先で超低温貯蔵庫25内にこれを用意する
ためのスペース、イニシャルコストが嵩むとともに、ヒ
ータ通電のための運転コストが嵩むという問題があっ
た。
That is, in the conventional indirect type multistage gas-liquid separation type ultra-low temperature refrigerating apparatus, the defrost heater 23 is required for defrosting the secondary refrigerant evaporating section, that is, the cooling coil 20, and the ultra-low temperature storage is demanded. There is a problem that the space for preparing this in 25 and the initial cost increase, and the operating cost for energizing the heater increases.

【0027】本発明は上記課題を解決した、除霜用の電
気ヒータ等を有しない冷凍装置を提供することを目的と
する。
An object of the present invention is to provide a refrigerating apparatus which does not have an electric heater for defrosting and which solves the above problems.

【0028】[0028]

【課題を解決するための手段】本発明は上記課題の解決
手段として次の(1)、(2)に記載の冷凍装置を提供
しようとするものである。 (1)沸点の異なる複数種類の冷媒からなる混合冷媒を
封入してなり、この混合冷媒を圧縮する圧縮機と、この
圧縮機で圧縮され高温高圧となった混合冷媒を冷却液化
する凝縮器と、この液化された混合冷媒を順次高沸点の
液冷媒とガス冷媒に分離する複数段の気液分離器と、該
気液分離器の液冷媒を減圧する複数の膨張手段と、該膨
張手段によって減圧され、気液混相状態となった冷媒と
前記ガス冷媒を熱交換させる複数段の熱交換器と、最終
段の熱交換器でほぼ完全に液化した低沸点冷媒を減圧
し、蒸発させる冷却器と、上記冷却器で冷却された2次
冷媒を2次冷媒配管を介して需要先の超低温応用装置に
設けられた冷却コイルに循環させ、被冷却体を冷却する
2次冷媒回路を備えてなる冷凍装置において、上記2次
冷媒配管に圧縮機吐出側の高温高圧のガス冷媒よりなる
ホットガスと2次冷媒とを熱交換させる熱交換器を介装
し、圧縮機吐出側に介装された流路切換手段を介してホ
ットガスを上記熱交換器に流過させてなるホットガスデ
フロスト回路を設けたことを特徴とする冷凍装置。 (2)上記(1)記載の冷凍装置において、ホットガス
デフロスト回路の熱交換器を2重管で構成し、内管側に
2次冷媒、外管側にホットガスを流過させてなることを
特徴とする冷凍装置。
The present invention is intended to provide a refrigerating apparatus described in the following (1) and (2) as a means for solving the above problems. (1) A compressor that is filled with a mixed refrigerant composed of a plurality of types of refrigerants having different boiling points, compresses the mixed refrigerant, and a condenser that cools and liquefies the mixed refrigerant that has been compressed by the compressor and has a high temperature and high pressure. , A plurality of stages of gas-liquid separator for sequentially separating the liquefied mixed refrigerant into a high-boiling-point liquid refrigerant and a gas refrigerant, a plurality of expansion means for decompressing the liquid refrigerant of the gas-liquid separator, and the expansion means A multi-stage heat exchanger that exchanges heat between the gas refrigerant and the gas-liquid mixed phase refrigerant that has been depressurized, and a cooler that depressurizes and evaporates the low boiling point refrigerant that is almost completely liquefied in the final heat exchanger. And a secondary refrigerant circuit that circulates the secondary refrigerant cooled by the cooler through a secondary refrigerant pipe to a cooling coil provided in the ultra-low temperature application device of the demand destination to cool the object to be cooled. In the refrigeration system, a compressor discharge is installed in the secondary refrigerant pipe. Side heat exchanger for heat exchange between the hot gas composed of high temperature and high pressure gas refrigerant and the secondary refrigerant, and the heat exchange of the hot gas through the flow path switching means provided on the compressor discharge side. A refrigeration system provided with a hot gas defrost circuit which is made to flow through a container. (2) In the refrigerating apparatus according to (1) above, the heat exchanger of the hot gas defrost circuit is composed of a double pipe, and the secondary refrigerant is passed through the inner pipe side and the hot gas is passed through the outer pipe side. Refrigerating device characterized by.

【0029】[0029]

【作用】本発明は上記のように構成されるので次の作用
を有する。 (1)上記(1)の構成にあっては需要先の超低温応用
装置に設けられた冷却コイルの表面に着霜が進行したと
き、圧縮機吐出側に介装された流路切換手段を切換え、
2次冷媒配管に介装された熱交換器に圧縮機吐出側の高
温高圧のガス冷媒よりなるホットガスを流過させ、2次
冷媒を加熱、昇温させることができ、これによって冷却
コイル表面に付着した霜を融かし、除霜することができ
る。 (2)上記(2)の構成にあっては上記(1)の構成の
ホットガスデフロスト回路の2次冷媒配管に係る熱交換
器を2重管で構成し、内管側に2次冷媒、外管側にホッ
トガスを流過させるため、熱交換器を簡便かつ合理的に
得られる。
Since the present invention is constructed as described above, it has the following actions. (1) In the configuration of (1) above, when frost forms on the surface of the cooling coil provided in the ultra-low temperature application device of the demand destination, the flow passage switching means interposed on the discharge side of the compressor is switched. ,
A hot gas consisting of a high-temperature and high-pressure gas refrigerant on the compressor discharge side can be passed through a heat exchanger interposed in the secondary refrigerant pipe to heat and raise the temperature of the secondary refrigerant. The frost adhering to the can be melted and defrosted. (2) In the configuration of (2) above, the heat exchanger relating to the secondary refrigerant pipe of the hot gas defrost circuit of the above configuration (1) is configured with a double pipe, and the secondary refrigerant is provided on the inner pipe side. Since hot gas is passed through the outer tube side, a heat exchanger can be obtained simply and reasonably.

【0030】[0030]

【実施例】本発明の一実施例を図1により説明する。な
お、従来例と同様の構成部材には同符号を付し、必要あ
る場合を除き説明を省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG. The same components as those in the conventional example are designated by the same reference numerals, and the description thereof will be omitted unless necessary.

【0031】図1は本実施例の模式的系統図で、図にお
いて、26は2重管で形成され、その内管内に2次冷
媒、外管内にホットガスを流過、熱交換させる熱交換器
で、2次冷媒供給管21に介装されている。また、油分
離器2のガス出口には3方切換弁27が介装され、3方
切換弁27と熱交換器26の外管入口との間にはホット
ガスバイパス管28が、熱交換器26の外管出口と3方
切換弁27より後流の吐出管との間にはホットガス戻り
管29が接続されている。即ち、熱交換器26と3方切
換弁27とホットガスバイパス管28とホットガス戻り
管29とでホットガスデフロスト回路30が形成されて
いる。その他の構成は従来例からデフロストヒータ23
を除去した構成と同様である。
FIG. 1 is a schematic system diagram of the present embodiment. In the figure, reference numeral 26 is a double pipe, in which a secondary refrigerant flows in the inner pipe and hot gas flows in the outer pipe to exchange heat. And is installed in the secondary refrigerant supply pipe 21. A three-way switching valve 27 is provided at the gas outlet of the oil separator 2, and a hot gas bypass pipe 28 is provided between the three-way switching valve 27 and the outer pipe inlet of the heat exchanger 26. A hot gas return pipe 29 is connected between the outer pipe outlet 26 and the discharge pipe downstream of the three-way switching valve 27. That is, the heat exchanger 26, the three-way switching valve 27, the hot gas bypass pipe 28, and the hot gas return pipe 29 form a hot gas defrost circuit 30. Other configurations are the same as those of the conventional example in the defrost heater 23.
It is the same as the configuration in which is removed.

【0032】次に上記構成の作用、即ち動作を説明す
る。
Next, the operation or operation of the above configuration will be described.

【0033】3方切換弁27は図示しないタイマによっ
て制御され、所定時間A毎に正規冷凍回路からバイパス
回路たるホットガスデフロスト回路30に切換わり、そ
の所定時間B後にホットガスデフロスト回路30から正
規冷凍回路に戻るようになっている。
The three-way switching valve 27 is controlled by a timer (not shown) and switches from the regular refrigeration circuit to the hot gas defrost circuit 30 which is a bypass circuit at every predetermined time A, and after the predetermined time B, the hot gas defrost circuit 30 performs regular refrigeration. It is designed to return to the circuit.

【0034】なお、上記所定時間Aは冷却コイル20に
着霜が進行する度合いに応じ設定される。即ち、着霜進
行スピードが速ければ短かく、遅ければ長がく設定され
る。上記所定時間Bはその着霜を除霜するに要する時間
に応じて設定される。
The predetermined time A is set according to the degree of frost formation on the cooling coil 20. That is, if the frost formation progressing speed is fast, it is set to be short, and if it is slow, it is set to be long. The predetermined time B is set according to the time required to defrost the frost.

【0035】しかして、冷却コイル20の表面に着霜が
進行し、図示しないタイマによって3方切換弁27が正
規冷凍回路からホットガスデフロスト回路30に切換わ
ると、油分離器2で油を分離、除去された高温高圧のガ
ス冷媒によりなるホットガスはホットガスバイパス管2
8を通って熱交換器26の外管に流入し、ここでその内
管を流れる2次冷媒を加熱した後、ホットガス戻り管2
9を通って3方切換弁27の後方の吐出管に戻り正規冷
凍回路に戻る。
When frost forms on the surface of the cooling coil 20 and the three-way switching valve 27 switches from the regular refrigeration circuit to the hot gas defrost circuit 30 by a timer (not shown), the oil separator 2 separates the oil. , The hot gas formed by the removed high-temperature and high-pressure gas refrigerant is the hot gas bypass pipe 2
After flowing into the outer pipe of the heat exchanger 26 through 8 and heating the secondary refrigerant flowing there through, the hot gas return pipe 2
Returning to the discharge pipe behind the three-way switching valve 27 through 9 and returning to the regular refrigeration circuit.

【0036】一方、熱交換器26で加熱され、昇温した
2次冷媒は2次冷媒供給管21を通って冷却コイル20
に流入し、その表面の着霜を融かし除霜する。
On the other hand, the secondary refrigerant heated by the heat exchanger 26 and heated up passes through the secondary refrigerant supply pipe 21 and the cooling coil 20.
Flows into the, and the frost on the surface is melted and defrosted.

【0037】このように本発明においては冷凍装置内の
2次冷媒回路に3方切換弁27、ホットガスバイパス管
28、ホットガス戻し管29、熱交換器26よりなるホ
ットガスデフロスト回路30が形成されているので、従
来のような需要先におけるデフロストヒータの設置は省
略することができる。他の構成、作用については図2に
示す従来のものと同様であり、対応する部材には同じ符
号が付されている。
As described above, in the present invention, the hot gas defrost circuit 30 including the three-way switching valve 27, the hot gas bypass pipe 28, the hot gas return pipe 29, and the heat exchanger 26 is formed in the secondary refrigerant circuit in the refrigeration system. Therefore, it is possible to omit the conventional installation of the defrost heater at the demand destination. Other configurations and operations are similar to those of the conventional one shown in FIG. 2, and corresponding members are designated by the same reference numerals.

【0038】以上の通り、本実施例によれば、所定時間
毎に3方切換弁27を切換え、ホットガスデフロスト回
路30にホットガスを貫流させるので2次冷媒供給管2
1を流れる2次冷媒がその間、加温され冷却コイル20
の表面の着霜を融かし、除霜するという利点がある。
As described above, according to the present embodiment, the three-way switching valve 27 is switched every predetermined time so that the hot gas flows through the hot gas defrost circuit 30. Therefore, the secondary refrigerant supply pipe 2
During that time, the secondary refrigerant flowing through 1 is heated and cooled by the cooling coil 20.
There is an advantage of defrosting by melting the frost on the surface of.

【0039】また、本実施例によれば、従来のようにデ
フロストヒータや、それを設けるための格別のスペース
を必要としないという利点がある。
Further, according to this embodiment, there is an advantage that a defrost heater and a special space for providing the defrost heater are not required unlike the conventional case.

【0040】また、ヒータ通電を必要としないので相応
して運転コストが低減するという利点がある。
Further, since there is no need to energize the heater, there is the advantage that the operating cost is correspondingly reduced.

【0041】[0041]

【発明の効果】本発明は上記のように構成されるので次
の効果を有する。
The present invention has the following effects because it is configured as described above.

【0042】即ち、本発明においては、圧縮機吐出側の
ホットガスを、2次冷媒と熱交換できるようホットガス
デフロスト回路を設けるので需要先の超低温応用装置に
設けられた冷却コイルの表面に着霜が進行したとき、圧
縮機吐出側に介装された流路切換手段を切換え、2次冷
媒配管に介装された熱交換器に圧縮機吐出側の高温高圧
のガス冷媒よりなるホットガスを流過させ、2次冷媒を
加熱、昇温させることができ、これによって冷却コイル
表面に付着した霜を融かし、除霜することができる。
That is, in the present invention, since the hot gas on the discharge side of the compressor is provided with the hot gas defrost circuit so as to exchange heat with the secondary refrigerant, the hot gas defrost circuit is attached to the surface of the cooling coil provided in the ultra-low temperature application device of the demand destination. When frost progresses, the flow path switching means provided on the discharge side of the compressor is switched to supply the hot gas composed of the high-temperature high-pressure gas refrigerant on the discharge side of the compressor to the heat exchanger provided on the secondary refrigerant pipe. The secondary refrigerant can be made to flow through and heated and the temperature thereof can be raised, whereby the frost adhering to the surface of the cooling coil can be melted and defrosted.

【0043】この結果、従来、需要先で超低温応用装置
内に設置していたデフロスト用ヒータは省略することが
でき、使用に簡便な冷凍装置を提供することができる。
そして、これによって、需要先は、従来、必要であった
デフロスト用ヒータ設置スペース、イニシャルコスト、
及びヒータ通電のための運転コストを省くことができ
る。
As a result, the defrost heater, which has conventionally been installed in the ultra-low temperature application apparatus at the customer's destination, can be omitted, and a refrigeration apparatus that is easy to use can be provided.
As a result, the customer is required to install the defrost heater, the initial cost,
Also, the operating cost for energizing the heater can be saved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る冷凍装置の模式的系統
図、
FIG. 1 is a schematic system diagram of a refrigerating apparatus according to an embodiment of the present invention,

【図2】従来の冷凍装置の模式的系統図である。FIG. 2 is a schematic system diagram of a conventional refrigeration system.

【符号の説明】[Explanation of symbols]

1 圧縮機 3 凝縮器 5,8,11,14 第1〜第4気液分離器 6,9,12,15 第1〜第4中間熱交換器 7,10,13,16 第1〜第4絞り 18 絞り 19 冷却器 20 冷却コイル 21 2次冷媒供給管 22 2次冷媒戻り管 24 被冷却体 25 超低温貯蔵庫 26 熱交換器 27 3方切換弁 28 ホットガスバイパス管 29 ホットガス戻り管 30 ホットガスデフロスト回路 1S,2S,3S,4S 冷却手段 1 Compressor 3 Condenser 5,8,11,14 1st-4th gas-liquid separator 6,9,12,15 1st-4th intermediate heat exchanger 7,10,13,16 1st-4th Throttle 18 Throttle 19 Cooler 20 Cooling coil 21 Secondary refrigerant supply pipe 22 Secondary refrigerant return pipe 24 Cooled object 25 Ultra-low temperature storage warehouse 26 Heat exchanger 27 Three-way switching valve 28 Hot gas bypass pipe 29 Hot gas return pipe 30 Hot gas Defrost circuit 1S, 2S, 3S, 4S Cooling means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 沸点の異なる複数種類の冷媒からなる混
合冷媒を封入してなり、この混合冷媒を圧縮する圧縮機
と、この圧縮機で圧縮され高温高圧となった混合冷媒を
冷却液化する凝縮器と、この液化された混合冷媒を順次
高沸点の液冷媒とガス冷媒に分離する複数段の気液分離
器と、該気液分離器の液冷媒を減圧する複数の膨張手段
と、該膨張手段によって減圧され、気液混相状態となっ
た冷媒と前記ガス冷媒を熱交換させる複数段の熱交換器
と、最終段の熱交換器でほぼ完全に液化した低沸点冷媒
を減圧し、蒸発させる冷却器と、上記冷却器で冷却され
た2次冷媒を2次冷媒配管を介して需要先の超低温応用
装置に設けられた冷却コイルに循環させ、被冷却体を冷
却する2次冷媒回路を備えてなる冷凍装置において、上
記2次冷媒配管に圧縮機吐出側の高温高圧のガス冷媒よ
りなるホットガスと2次冷媒とを熱交換させる熱交換器
を介装し、圧縮機吐出側に介装された流路切換手段を介
してホットガスを上記熱交換器に流過させてなるホット
ガスデフロスト回路を設けたことを特徴とする冷凍装
置。
1. A compressor for enclosing a mixed refrigerant composed of a plurality of kinds of refrigerants having different boiling points and compressing the mixed refrigerant, and a condenser for cooling and liquefying the mixed refrigerant compressed by the compressor to a high temperature and high pressure. Vessel, a plurality of gas-liquid separators for sequentially separating the liquefied mixed refrigerant into a high-boiling-point liquid refrigerant and a gas refrigerant, a plurality of expansion means for decompressing the liquid refrigerant in the gas-liquid separator, and the expansion A plurality of stages of heat exchangers for heat exchange between the gas refrigerant and the refrigerant in a gas-liquid mixed phase, which is decompressed by the means, and a low boiling point refrigerant which is almost completely liquefied in the final stage heat exchanger is decompressed and evaporated. A cooler and a secondary refrigerant circuit that circulates the secondary refrigerant cooled by the cooler through a secondary refrigerant pipe to a cooling coil provided in an ultra-low temperature application device of a demand destination to cool an object to be cooled are provided. In the refrigerating device, A heat exchanger for exchanging heat between a hot gas composed of a high-temperature and high-pressure gas refrigerant on the discharge side of the compressor and a secondary refrigerant is interposed, and the hot gas is transferred through a flow path switching means interposed on the discharge side of the compressor. A refrigeration system provided with a hot gas defrost circuit which is passed through the heat exchanger.
【請求項2】 請求項1記載の冷凍装置において、ホッ
トガスデフロスト回路の熱交換器を2重管で構成し、内
管側に2次冷媒、外管側にホットガスを流過させてなる
ことを特徴とする冷凍装置。
2. The refrigeration apparatus according to claim 1, wherein the heat exchanger of the hot gas defrost circuit is composed of a double pipe, and the secondary refrigerant is passed through the inner pipe side and the hot gas is passed through the outer pipe side. A refrigerating device characterized by the above.
JP13159595A 1995-05-30 1995-05-30 Refrigerating equipment Withdrawn JPH08327170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13159595A JPH08327170A (en) 1995-05-30 1995-05-30 Refrigerating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13159595A JPH08327170A (en) 1995-05-30 1995-05-30 Refrigerating equipment

Publications (1)

Publication Number Publication Date
JPH08327170A true JPH08327170A (en) 1996-12-13

Family

ID=15061738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13159595A Withdrawn JPH08327170A (en) 1995-05-30 1995-05-30 Refrigerating equipment

Country Status (1)

Country Link
JP (1) JPH08327170A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175522A (en) * 2006-12-20 2008-07-31 Mayekawa Mfg Co Ltd Renewal unit for air conditioning equipment, and construction method for air conditioning equipment using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175522A (en) * 2006-12-20 2008-07-31 Mayekawa Mfg Co Ltd Renewal unit for air conditioning equipment, and construction method for air conditioning equipment using it

Similar Documents

Publication Publication Date Title
EP3112781B1 (en) Heat source side unit and refrigeration cycle device
DK2264385T3 (en) Cooling circuits and method for operating a cooling circuit.
JP6456633B2 (en) Turbo refrigerator
EP0529293B1 (en) Refrigerating system
KR101221368B1 (en) Extremely Low Temperature Refrigerative Apparatus
AU2017439363B2 (en) Subcritical CO2 refrigeration system using thermal storage
US20190323769A1 (en) Mixed Refrigerant Liquefaction System and Method with Pre-Cooling
JP4211847B2 (en) Refrigeration equipment
US6539735B1 (en) Refrigerant expansion tank
JPH06159831A (en) Refrigerating plant
CN113251681A (en) Refrigeration system with a plurality of heat absorption heat exchangers
RU2732947C2 (en) Thermal network interfacing device
KR101357130B1 (en) Seperator And Refrigerating Apparatus Using The Same
EP0524197B1 (en) Vapor compression cycle with apparatus for expanding the temperature glide for use with non-azeotropic working fluid mixture
JPH08327170A (en) Refrigerating equipment
JP3756711B2 (en) Cryogenic refrigerator
JP2005225937A (en) Gasoline vapor recovery apparatus
JP2009186074A (en) Refrigerating device
CN110953741A (en) Four-stage cascade refrigeration device with multi-stage water cooler
KR100865842B1 (en) Refrigerating apparatus
JP2003004346A (en) Cooling equipment
JPH0821664A (en) Refrigerating cycle device
JP2004002492A (en) Refrigerant compsition and ultra-deep freezer
JPH02225953A (en) Freezing system with double vaporizer for domestic refrigerator
JPH05126420A (en) Liquid cooler for refrigerating apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020806