JPH08323346A - Method and device for treating dry cleaning waste water - Google Patents

Method and device for treating dry cleaning waste water

Info

Publication number
JPH08323346A
JPH08323346A JP7160054A JP16005495A JPH08323346A JP H08323346 A JPH08323346 A JP H08323346A JP 7160054 A JP7160054 A JP 7160054A JP 16005495 A JP16005495 A JP 16005495A JP H08323346 A JPH08323346 A JP H08323346A
Authority
JP
Japan
Prior art keywords
photocatalyst
tetrachloroethylene
dry cleaning
waste water
wastewater treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7160054A
Other languages
Japanese (ja)
Inventor
Ryuji Masuda
竜司 増田
Kazuhiro Kitamura
一浩 北村
Shuhei Yamashita
修平 山下
Koichi Kawashima
孝一 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Muki Co Ltd
Original Assignee
Nippon Muki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Muki Co Ltd filed Critical Nippon Muki Co Ltd
Priority to JP7160054A priority Critical patent/JPH08323346A/en
Publication of JPH08323346A publication Critical patent/JPH08323346A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: To provide a highly efficient treating device capable of maintaining performance even if the device is used repeatedly for treating and also maintaining high efficiency over a long period of time by preventing a peeling and dropping of a photocatalyst by decomposing tetrachloroethylene with a photocatalyst supported on a woven textile to purify a waste water. CONSTITUTION: The woven textile 2 carrying the photocatalyst is placed in a reaction vessel 1 made of a transparent quartz glass, etc., and also tetrachloroethylene-containing waste water is enclosed in the vessel 1 to agitate with an agitating blade 3. Then, the tetrachloroethylene is decomposed by irradiating light from a light source 4 provided in the vicinity of the reaction vessel 1 to purify the waste water. At this time, titanium oxide is used as the photocatalyst. The photocatalyst is supported on the woven textile 2 consisting of an inorg. fiber containing silicon oxide by interposing a Ti-O-Si bonding layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光触媒を用い、光を照
射することにより排水中に存在するテトラクロロエチレ
ンを高効率で分解し、排水を浄化する、ドライクリーニ
ング排水処理方法と、それを利用した処理装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a photocatalyst and decomposes tetrachloroethylene existing in wastewater with high efficiency by irradiating light, and purifies the wastewater. Regarding a processing device.

【0002】[0002]

【従来の技術】テトラクロロエチレンを使用する、いわ
ゆるパーク系ドライクリーニング機において、使用済み
のテトラクロロエチレンは水分との混合ガスとして発生
する。これをコンデンサ冷却等で液化し、比重分離でテ
トラクロロエチレン層と水層に分離し、テトラクロロエ
チレンのみを回収し再生する。一方、水層は排水として
排出されるが、この排水中にはテトラクロロエチレンが
約100mg/l〜500mg/lの高濃度で溶解ある
いは乳化分散している。従来、このようなドライクリー
ニング事業所から排出される排水を処理する方法として
は、活性炭吸着法や曝気処理法あるいはこれらを併用し
た方法が用いられている。
2. Description of the Related Art In a so-called park-type dry cleaning machine using tetrachlorethylene, used tetrachlorethylene is generated as a mixed gas with water. This is liquefied by condenser cooling, etc., and separated by gravity separation into a tetrachloroethylene layer and an aqueous layer, and only tetrachloroethylene is recovered and regenerated. On the other hand, the water layer is discharged as waste water, and tetrachloroethylene is dissolved or emulsified and dispersed in the waste water at a high concentration of about 100 mg / l to 500 mg / l. Conventionally, an activated carbon adsorption method, an aeration treatment method, or a combination of these methods has been used as a method for treating the wastewater discharged from such a dry cleaning plant.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記活
性炭吸着法では、テトラクロロエチレンの濃度は数mg
/l程度までしか低下せず、水質汚濁防止法による排出
基準値0.1mg/lをクリアできず地下水汚染問題が
解決しない。また、活性炭の吸着能が飽和に達すると交
換や洗浄をしなければならないといった欠点を有する。
さらに、活性炭の劣化時期の把握が困難であり吸着後の
廃活性炭の処理の問題や、装置が大がかりになるといっ
た問題を有していた。また、曝気処理法では、0.1m
g/l以下の低濃度を実現することが可能であるが、大
気中にテトラクロロエチレンが放出されるため、人体へ
の発ガン性や難分解性のため環境へ蓄積されること等の
影響を無視できないといった欠点があった。また、活性
炭吸着法および曝気処理法の問題点を解決するものとし
て、半導体を触媒として用いた光分解法、具体的には酸
化チタン粉体を液中に分散させてこれに有害物質を含む
溶液を流し込み光を照射して分解処理を行う方法がある
が、この方法では粉体と液体を分離するために下流側に
ろ過膜を設ける必要があり圧力損失が高くなるといった
欠点を有するため、実用化には至っていない。本発明
は、これら従来技術の欠点を解消し、テトラクロロエチ
レンを分解して排水を浄化する、ドライクリーニング排
水処理方法と、これを利用した処理装置を提供すること
を目的としている。
However, in the activated carbon adsorption method, the concentration of tetrachloroethylene is several mg.
It does not fall below the discharge standard value of 0.1 mg / l according to the Water Pollution Control Law, and the groundwater pollution problem cannot be solved. In addition, there is a drawback that when the adsorption capacity of activated carbon reaches saturation, it must be replaced or washed.
In addition, it is difficult to grasp the deterioration time of the activated carbon, and there is a problem that the activated carbon that has been adsorbed is treated, and the apparatus becomes large. In addition, in the aeration treatment method, 0.1 m
It is possible to achieve a low concentration of g / l or less, but since tetrachloroethylene is released into the atmosphere, it ignores the effects of being accumulated in the environment due to carcinogenicity to the human body and persistent decomposition. There was a drawback that it could not be done. Further, as a means for solving the problems of the activated carbon adsorption method and the aeration treatment method, a photolysis method using a semiconductor as a catalyst, specifically, a solution containing a harmful substance in a titanium oxide powder dispersed in the liquid There is a method of irradiating with light to perform decomposition treatment, but this method has the drawback that it requires a filtration membrane on the downstream side to separate powder and liquid, resulting in high pressure loss. It has not been realized. An object of the present invention is to provide a dry cleaning wastewater treatment method and a treatment apparatus using the same, which eliminates these drawbacks of the prior art and decomposes tetrachloroethylene to purify wastewater.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記課題
を解決するため鋭意検討の結果、織布に担持した光触媒
を用いた酸化反応を利用することにより、テトラクロロ
エチレンを高効率で分解できることを見いだし、本発明
を完成させた。即ち、本発明のドライクリーニング排水
処理方法は、テトラクロロエチレンを使用するドライク
リーニング機から排出される排水中のテトラクロロエチ
レンを、織布に担持した光触媒により分解して該排水を
浄化することを特徴とする。また、本発明のドライクリ
ーニング排水処理装置は、テトラクロロエチレン含有排
水を封入もしくは通過させる容器内に、織布に担持した
光触媒を配置すると共に該光触媒に光を照射するための
光源を備えたことを特徴とする。
Means for Solving the Problems As a result of intensive studies for solving the above problems, the present inventors have found that tetrachloroethylene can be decomposed with high efficiency by utilizing an oxidation reaction using a photocatalyst carried on a woven cloth. Then, they have completed the present invention. That is, the dry cleaning wastewater treatment method of the present invention is characterized in that tetrachloroethylene in wastewater discharged from a dry cleaning machine using tetrachloroethylene is decomposed by a photocatalyst carried on a woven cloth to purify the wastewater. Further, the dry cleaning wastewater treatment device of the present invention is characterized in that a photocatalyst supported on a woven fabric is arranged in a container for enclosing or passing the tetrachloroethylene-containing wastewater, and a light source for irradiating the photocatalyst with light is provided. And

【0005】前記光触媒としては、酸化チタンや酸化亜
鉛など数多くのものが提案されているが、分解効率や安
全性、安定性の点から酸化チタンが好ましい。該酸化チ
タンはルチル形、アナターゼ形、あるいはこれらの共存
形のいずれでもかまわないが、低エネルギの光に反応さ
せるにはルチル形が適しており、また反応の活性を高め
るためにはアナターゼ形が適している。この光触媒の担
持方法としては、取扱い性や分解効率の点から、織布を
構成する繊維表面に膜状に担持するのが好ましい。
Many photocatalysts such as titanium oxide and zinc oxide have been proposed, but titanium oxide is preferred from the viewpoints of decomposition efficiency, safety and stability. The titanium oxide may be a rutile type, an anatase type, or a coexisting type thereof, but the rutile type is suitable for reacting with low-energy light, and the anatase type is preferable for increasing the activity of the reaction. Is suitable. As a method of supporting the photocatalyst, it is preferable to support the photocatalyst in the form of a film on the surface of the fibers constituting the woven fabric from the viewpoints of handleability and decomposition efficiency.

【0006】また、前記光触媒に、白金、パラジウム、
ロジウム、金、銀、銅等の貴金属あるいはそれらの貴金
属の硝酸塩、硫酸塩、酢酸塩等を担持させてもよい。こ
の貴金属の担持方法としては、光析出法、詳しくは金属
イオン水を吹き付けるか、金属イオン水にディップした
後光を照射する方法、あるいは金属イオン水にディップ
した状態で光を照射する方法によって光還元メッキによ
り固定化する方法を用いれば容易である。
The photocatalyst may be platinum, palladium,
A noble metal such as rhodium, gold, silver or copper, or a nitrate, sulfate or acetate of these noble metals may be supported. As the method for supporting the noble metal, a photoprecipitation method, specifically, a method of spraying metal ion water or a method of irradiating light after dipping in metal ion water, or a method of irradiating light in a state of dipping in metal ion water It is easy to use the method of fixing by reduction plating.

【0007】前記光触媒の担持体として織布を選んだの
は、取扱い性や通水性、強度等の点から選択したもの
で、織布の中でも前記酸化チタンと強固な結合(Ti−
O−Si結合)を形成することができ、かつ耐薬品性、
耐光性に優れた酸化珪素を含む無機質繊維で構成された
織布が好ましい。ここでいう酸化珪素を含む無機質繊維
とは、例えば石英ガラス、高石英ガラス、Eガラス、C
ガラス、Sガラス、Aガラス等、光を透すならばどのよ
うな組成でもかまわないが、経済性からEガラス繊維が
好ましい。また、織布の目付け(g/m2 )は、いくら
のものでもかまわないが、取扱い性や分解効率の関係か
ら、通常100〜900g/m2 のものを用いる。ま
た、構成する無機質繊維の平均繊維径は特に限定される
ものではないが、製造可能でしかも被処理排水との接触
面積を確保して効率を得るため5〜20ミクロンが好ま
しい。さらに、織布の打込み密度、厚さ、引張強度は特
に限定されるものではないが、被処理排水に対する強度
の観点から、各々タテ、ヨコ共に10〜80本/25m
m、0.01〜2.0mm、5kgf/20mm巾以上
が好ましい。
Woven cloth was selected as the carrier for the photocatalyst in terms of handleability, water permeability, strength and the like. Among the woven cloth, a strong bond (Ti-
O-Si bond) and chemical resistance,
A woven fabric composed of inorganic fibers containing silicon oxide having excellent light resistance is preferable. The inorganic fiber containing silicon oxide as used herein is, for example, quartz glass, high quartz glass, E glass, C
Any composition such as glass, S glass, A glass, etc. may be used as long as it allows light to pass through, but E glass fiber is preferable from the economical viewpoint. The basis weight (g / m 2 ) of the woven fabric may be any, but in view of handleability and decomposition efficiency, 100 to 900 g / m 2 is usually used. The average fiber diameter of the constituent inorganic fibers is not particularly limited, but it is preferably 5 to 20 μm in order to be manufacturable and to secure the contact area with the waste water to be treated to obtain efficiency. Further, the driving density, thickness, and tensile strength of the woven fabric are not particularly limited, but from the viewpoint of strength against treated wastewater, both vertical and horizontal are 10 to 80 fibers / 25 m.
m, 0.01 to 2.0 mm, 5 kgf / 20 mm width or more are preferable.

【0008】前記Ti−O−Si結合は、加熱により酸
化チタンとなる酸化チタンの前駆体と有機物樹脂との溶
液を出発原料として用いることで得られる。かかる酸化
チタンの前駆体としては、チタンアルコキシド、チタン
塩化物、チタン硫化物、チタン酢酸塩等が使用できる
が、有機物樹脂との相溶性の関係から、アルコール類を
相溶性溶媒として用いる場合はチタンアルコキシド、水
を相溶性溶媒として用いる場合はチタン塩化物、チタン
硫化物、チタン酢酸塩を選択することが好ましい。しか
し、前記前駆体と有機物樹脂とが相溶する場合はどの組
み合わせを選択してもかまわない。
The Ti-O-Si bond can be obtained by using a solution of a titanium oxide precursor which becomes titanium oxide by heating and an organic resin as a starting material. As the titanium oxide precursor, titanium alkoxide, titanium chloride, titanium sulfide, titanium acetate and the like can be used. However, when alcohols are used as a compatible solvent, titanium is used because of the compatibility with the organic resin. When alkoxide or water is used as a compatible solvent, titanium chloride, titanium sulfide or titanium acetate is preferably selected. However, when the precursor and the organic resin are compatible with each other, any combination may be selected.

【0009】また、有機物樹脂としては、アクリル系、
オレフィン系等が一般的であるが、製造工程中の焼成工
程で酸化分解することが必要であるため、分解温度が2
00℃以上かつ焼成温度以下の樹脂であって、さらに該
酸化チタンの前駆体との相溶性があればよく、モノマー
の種類や分子量によって限定されるものではない。上記
したように、選定された前駆体と有機物樹脂とを相溶性
のある溶媒に溶解してなる溶液を酸化チタン光触媒製造
用の出発原料とする。即ち、この出発原料から光触媒を
得るためには、担持体となるガラス繊維等の酸化珪素を
含む無機質繊維で構成される織布をこの原料液にディッ
プするか、あるいは、この原料液を織布に塗布、スプレ
ーする等して、乾燥した後、焼成すればよい。この乾燥
は、150℃以下で30分以上行うことが好ましい。ま
た、液担持後乾燥まで及び乾燥後焼成までの昇温速度は
10℃/分以下が好ましい。また、最終焼成工程は織布
の耐熱性を考慮して行う必要があるが、550℃以下の
温度で焼成することが好ましい。
As the organic resin, acrylic resin,
Olefin-based compounds are generally used, but the decomposition temperature is 2 because oxidative decomposition is required in the firing process during the manufacturing process.
It is only necessary for the resin to be at least 00 ° C. and not more than the firing temperature as long as it is compatible with the titanium oxide precursor, and is not limited by the type and molecular weight of the monomer. As described above, a solution obtained by dissolving the selected precursor and the organic resin in a compatible solvent is used as a starting material for producing a titanium oxide photocatalyst. That is, in order to obtain a photocatalyst from this starting raw material, a woven fabric composed of inorganic fibers containing silicon oxide such as glass fibers serving as a carrier is dipped in this raw material liquid, or this raw material liquid is woven. The composition may be applied, sprayed, or the like to dry and then baked. This drying is preferably performed at 150 ° C. or lower for 30 minutes or more. In addition, the rate of temperature increase from the liquid loading to the drying and the drying to the firing is preferably 10 ° C./min or less. Further, the final firing step needs to be performed in consideration of the heat resistance of the woven fabric, but it is preferable to perform firing at a temperature of 550 ° C. or lower.

【0010】また、光源は、低圧水銀灯や殺菌灯あるい
はブラックライト蛍光灯等を用いるとよいが、反応速度
を考慮しなければ一般蛍光灯でもかまわない。
The light source may be a low-pressure mercury lamp, a germicidal lamp, a black light fluorescent lamp, or the like, but a general fluorescent lamp may be used if the reaction speed is not taken into consideration.

【0011】排水処理装置に用いる反応容器は、排水を
バッチ式で処理する封入型でも、あるいは循環式で処理
する流通型でもかまわないが、前者の封入型の場合には
排水を攪拌する装置を、また循環式の場合には循環ポン
プ等を具備した方が望ましい。
The reaction vessel used in the wastewater treatment device may be an enclosed type for treating the wastewater in a batch type or a circulation type for treating the wastewater in a circulating type. In the former enclosed type, a device for stirring the wastewater is required. Moreover, in the case of the circulation type, it is desirable to equip a circulation pump or the like.

【0012】さらに、前記排水処理装置の構造として
は、例えば反応容器をプラスチック類、ホウ珪酸塩ガラ
スあるいは石英ガラス等による透明容器として内部に光
触媒を配置し該反応容器の外側に設置した光源から光を
照射するいわゆる外部照射型にしてもよく、また、該反
応容器を特に透明容器にすることなく該反応容器内に光
源と光触媒を配置するいわゆる内部照射型にしてもよ
い。
Further, as the structure of the waste water treatment apparatus, for example, a reaction vessel is a transparent vessel made of plastics, borosilicate glass, quartz glass, or the like, and a photocatalyst is disposed inside, and light is emitted from a light source installed outside the reaction vessel. May be a so-called external irradiation type, or may be a so-called internal irradiation type in which a light source and a photocatalyst are arranged in the reaction container without making the reaction container a transparent container.

【0013】[0013]

【作用】例えば、酸化チタン系の光触媒は400nm以
下の波長の光により容易に励起される。ここで、励起さ
れた光触媒は水を分解し、ヒドロキシラジカル(・O
H)を生成する。このヒドロキシラジカルは高い酸化力
を有し、式1に示すように有害なテトラクロロエチレン
(C2C14)を無害なCO2とHClとに分解する。 C2C14+4[・OH]→2CO2+4HCl・・・(式1)
For example, the titanium oxide photocatalyst is easily excited by light having a wavelength of 400 nm or less. Here, the excited photocatalyst decomposes water to generate hydroxy radicals (.O).
H) is generated. This hydroxy radical has a high oxidizing power, and decomposes harmful tetrachloroethylene (C 2 C 1 4 ) into harmless CO 2 and HCl as shown in Formula 1. C 2 C 1 4 +4 [.OH] → 2CO 2 + 4HCl ... (Formula 1)

【0014】また、本発明のうちTi−O−Si結合を
形成した光触媒担持織布は、強固な結合で酸化チタンと
無機質繊維とを接合してあるため、光触媒が脱落するこ
となく長寿命で担持することができる。
In the present invention, the Ti—O—Si bond-formed photocatalyst-supporting woven fabric has a strong bond between the titanium oxide and the inorganic fibers, so that the photocatalyst does not drop out and has a long life. It can be carried.

【0015】[0015]

【実施例】以下、本発明の実施例を図面に基づき説明す
る。図1は本発明のドライクリーニング排水処理装置の
一実施例を示すもので、封入型外部照射型の一例であ
る。図中1は透明石英ガラスからなる反応容器を示し、
該反応容器1内には光触媒を担持した織布2が配置さ
れ、該容器容器1内にテトラクロロエチレン含有排水を
封入して攪拌羽根3により攪拌するようにした。さら
に、該反応容器1の近傍に設けた光源4から光を照射し
てテトラクロロエチレンを分解し排水を浄化するように
構成されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of the dry cleaning wastewater treatment apparatus of the present invention, which is an example of a sealed external irradiation type. In the figure, 1 indicates a reaction vessel made of transparent quartz glass,
A woven fabric 2 carrying a photocatalyst was placed in the reaction vessel 1, and tetrachloroethylene-containing wastewater was enclosed in the vessel 1 and stirred by a stirring blade 3. Further, light is emitted from a light source 4 provided in the vicinity of the reaction container 1 to decompose tetrachloroethylene and purify waste water.

【0016】図2は流通型内部照射型のドライクリーニ
ング排水処理装置の一例である。図中5は不透明ステン
レスからなる反応容器を示し、該反応容器5内には光触
媒を担持した織布2と光源4とが配置され、該反応容器
5内に供給路6を介して排水貯蔵タンク7よりテトラク
ロロエチレン含有排水が供給され、排水路8を介して排
水貯蔵タンク7に戻され、循環通過するように構成され
ている。なお、図中9は循環用のポンプを示す。
FIG. 2 shows an example of a distribution type internal irradiation type dry cleaning wastewater treatment apparatus. Reference numeral 5 in the figure denotes a reaction container made of opaque stainless steel, in which a woven fabric 2 carrying a photocatalyst and a light source 4 are arranged, and a drainage storage tank is provided in the reaction container 5 via a supply path 6. The waste water containing tetrachloroethylene is supplied from 7, is returned to the waste water storage tank 7 through the drainage channel 8, and is configured to circulate. In the figure, 9 indicates a circulation pump.

【0017】次に、前記図1に示す装置の使用例に即
し、具体的な実施例を比較例と共に説明する。 (実施例1)反応容器1内にアナターゼ形酸化チタンか
らなる光触媒を3重量%担持したEガラス繊維製織布2
(繊維径7μm,目付け490g/m2 ,打込み密度タ
テ31本/25mm,ヨコ24本/25mm,厚さ0.
63mm,模紗織り)を30g配置し、さらに、テトラ
クロロエチレン含有排水450mlを封入した。このと
きのテトラクロロエチレン濃度をJIS K0125
「用水・排水中の低分子量ハロゲン化炭化水素試験方
法」の溶媒抽出・ガスクロマトグラフ法により測定した
ところ、500mg/lであった。なお、光源4として
は松下電器産業(株)製20W殺菌灯GL−20を8本
配置した。次いで、マグネチックスターラにより攪拌し
ながら約2時間光照射を行ったところ、排水中のテトラ
クロロエチレン濃度は0.1mg/l以下と低濃度にな
った。また、排水を随時入れ替えてこの操作を10回繰
り返し行っても分解効率が低下することなく、同様の結
果となった。
Next, a concrete example will be described along with a comparative example in accordance with a usage example of the apparatus shown in FIG. (Example 1) E glass fiber woven fabric 2 in which 3% by weight of a photocatalyst consisting of anatase type titanium oxide was loaded in a reaction vessel 1
(Fiber diameter 7 μm, basis weight 490 g / m 2 , driving density vertical 31/25 mm, width 24/25 mm, thickness 0.
30 mm (63 mm, mock weave) was placed, and further 450 ml of tetrachloroethylene-containing wastewater was enclosed. The concentration of tetrachloroethylene at this time is JIS K0125
It was 500 mg / l when measured by the solvent extraction / gas chromatograph method of “Testing method for low molecular weight halogenated hydrocarbon in water / wastewater”. As the light source 4, eight 20W germicidal lamps GL-20 manufactured by Matsushita Electric Industrial Co., Ltd. were arranged. Next, when light irradiation was carried out for about 2 hours while stirring with a magnetic stirrer, the concentration of tetrachloroethylene in the waste water was as low as 0.1 mg / l or less. Further, even if the drainage was changed at any time and this operation was repeated 10 times, the decomposition efficiency did not decrease and the same result was obtained.

【0018】(比較例1)前記実施例で用いた光触媒を
3重量%担持したEガラス繊維製織布2の代わりに活性
炭30gを入れた以外は前記実施例1と同様の方法で試
験を行ったところ、約2時間後のテトラクロロエチレン
濃度は8mg/lとなった。また排水を随時入れ替えて
この操作を10回繰り返し行ったところ、回数を重ねる
毎に効率は低下し10回目ではテトラクロロエチレンを
ほとんど除去できなかった。
Comparative Example 1 A test was conducted in the same manner as in Example 1 except that 30 g of activated carbon was added instead of the E glass fiber woven cloth 2 carrying 3% by weight of the photocatalyst used in the above example. As a result, the tetrachloroethylene concentration after about 2 hours was 8 mg / l. When this operation was repeated 10 times by changing the drainage at any time, the efficiency decreased as the number of times was repeated, and tetrachloroethylene could hardly be removed at the 10th time.

【0019】上記、実施例1と比較例1の試験結果を表
1にまとめた。なお、表中の数字は試験後の排水中のテ
トラクロロエチレン濃度をmg/lで示したものであ
る。
The test results of Example 1 and Comparative Example 1 are summarized in Table 1. The numbers in the table show the concentration of tetrachloroethylene in the waste water after the test in mg / l.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【発明の効果】このように、本発明によるドライクリー
ニング排水処理方法ならびに処理装置は、従来法と異な
り織布に担持した光触媒によりテトラクロロエチレンを
分解して排水を浄化する方法であるため、高効率でかつ
繰り返し処理しても性能が低下しないといった効果を有
する。また、織布を構成する繊維一本一本に均一にかつ
強固なTi−O−Si結合で光触媒の酸化チタンを接合
した場合、光触媒の剥離や脱落がなく、長期にわたり高
効率を維持することができる。
As described above, the dry cleaning wastewater treatment method and treatment apparatus according to the present invention is a method for degrading tetrachlorethylene by a photocatalyst carried on a woven fabric to purify the wastewater, unlike the conventional method. Further, it has an effect that the performance is not deteriorated even if it is repeatedly processed. Further, when the titanium oxide of the photocatalyst is bonded to each of the fibers constituting the woven fabric uniformly and with a strong Ti—O—Si bond, the photocatalyst does not peel off or fall off, and high efficiency can be maintained for a long time. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のドライクリーニング排水処理装置の一
例の封入型外部照射型のモデル図である。
FIG. 1 is a model diagram of a sealed type external irradiation type of an example of a dry cleaning wastewater treatment device of the present invention.

【図2】本発明のドライクリーニング排水処理装置の一
例の流通型内部照射型のモデル図である。
FIG. 2 is a model diagram of a distribution type internal irradiation type of an example of the dry cleaning wastewater treatment apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 透明石英ガラス反応容器 2 織布 3 攪拌羽根 4 光源 5 不透明ステンレス反応容器 6 供給路 7 排水貯蔵タンク 8 排出路 9 ポンプ 1 Transparent Quartz Glass Reaction Container 2 Woven Cloth 3 Stirring Blade 4 Light Source 5 Opaque Stainless Reaction Container 6 Supply Channel 7 Waste Water Storage Tank 8 Discharge Channel 9 Pump

フロントページの続き (72)発明者 川島 孝一 岐阜県不破郡垂井町630 日本無機株式会 社垂井工場内Front page continuation (72) Inventor Koichi Kawashima 630 Tarui-cho, Fuwa-gun, Gifu Prefecture Japan Inorganic Stock Company Tarui factory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 テトラクロロエチレンを使用するドライ
クリーニング機から排出される排水中のテトラクロロエ
チレンを、織布に担持した光触媒により分解して該排水
を浄化することを特徴とするドライクリーニング排水処
理方法。
1. A dry cleaning wastewater treatment method, characterized in that tetrachloroethylene in wastewater discharged from a dry cleaning machine using tetrachloroethylene is decomposed by a photocatalyst carried on a woven cloth to purify the wastewater.
【請求項2】 前記光触媒は酸化チタンであることを特
徴とする請求項1記載のドライクリーニング排水処理方
法。
2. The dry cleaning wastewater treatment method according to claim 1, wherein the photocatalyst is titanium oxide.
【請求項3】 前記光触媒をTi−O−Si結合層を介
して酸化珪素を含む無機質繊維からなる織布に担持させ
たものであることを特徴とする請求項2記載のドライク
リーニング排水処理方法。
3. The dry cleaning wastewater treatment method according to claim 2, wherein the photocatalyst is supported on a woven fabric made of inorganic fibers containing silicon oxide through a Ti—O—Si bonding layer. .
【請求項4】 テトラクロロエチレン含有排水を封入も
しくは通過させる容器内に、織布に担持した光触媒を配
置すると共に該光触媒に光を照射するための光源を備え
たことを特徴とするドライクリーニング排水処理装置。
4. A dry cleaning wastewater treatment apparatus comprising a photocatalyst supported on a woven cloth and a light source for irradiating the photocatalyst with light, in a container in which the tetrachlorethylene-containing wastewater is enclosed or passed. .
【請求項5】 前記光触媒は酸化チタンであることを特
徴とする請求項4記載のドライクリーニング排水処理装
置。
5. The dry cleaning wastewater treatment apparatus according to claim 4, wherein the photocatalyst is titanium oxide.
【請求項6】 前記光触媒をTi−O−Si結合層を介
して酸化珪素を含む無機質繊維からなる織布に担持させ
たものであることを特徴とする請求項5記載のドライク
リーニング排水処理装置。
6. The dry cleaning wastewater treatment apparatus according to claim 5, wherein the photocatalyst is supported on a woven fabric made of inorganic fibers containing silicon oxide through a Ti—O—Si bonding layer. .
JP7160054A 1995-06-02 1995-06-02 Method and device for treating dry cleaning waste water Pending JPH08323346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7160054A JPH08323346A (en) 1995-06-02 1995-06-02 Method and device for treating dry cleaning waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7160054A JPH08323346A (en) 1995-06-02 1995-06-02 Method and device for treating dry cleaning waste water

Publications (1)

Publication Number Publication Date
JPH08323346A true JPH08323346A (en) 1996-12-10

Family

ID=15706917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7160054A Pending JPH08323346A (en) 1995-06-02 1995-06-02 Method and device for treating dry cleaning waste water

Country Status (1)

Country Link
JP (1) JPH08323346A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6471874B2 (en) 2000-04-07 2002-10-29 Yamaha Corporation Effluent treating method, an effluent treating apparatus, and a cleaning apparatus using the same
JP2007090153A (en) * 2005-09-27 2007-04-12 Hitachi Housetec Co Ltd Method for producing solid phosphorus removing agent
CN106082425A (en) * 2016-08-02 2016-11-09 胡积宝 A kind of method of opto-electronic conversion catalysis oxidation Organic substance in water
CN106082424A (en) * 2016-08-02 2016-11-09 胡积宝 A kind of device of opto-electronic conversion catalysis oxidation Organic substance in water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6471874B2 (en) 2000-04-07 2002-10-29 Yamaha Corporation Effluent treating method, an effluent treating apparatus, and a cleaning apparatus using the same
JP2007090153A (en) * 2005-09-27 2007-04-12 Hitachi Housetec Co Ltd Method for producing solid phosphorus removing agent
CN106082425A (en) * 2016-08-02 2016-11-09 胡积宝 A kind of method of opto-electronic conversion catalysis oxidation Organic substance in water
CN106082424A (en) * 2016-08-02 2016-11-09 胡积宝 A kind of device of opto-electronic conversion catalysis oxidation Organic substance in water

Similar Documents

Publication Publication Date Title
JP5141846B2 (en) Ultraviolet oxidation apparatus, ultrapure water production apparatus using the same, ultraviolet oxidation method, and ultrapure water production method
EP0997439B1 (en) Method for decomposing bromic acid by photocatalyst
JPH08323346A (en) Method and device for treating dry cleaning waste water
JP5376670B2 (en) Waste water treatment apparatus and waste water treatment method
JPH10249336A (en) Water treating method and water treating device using photocatalyst
JPH0975929A (en) Circulative purifying device for liquid, purifying method for liquid and circulative purifying system for liquid
JPH09155160A (en) Apparatus for decomposing and removing volatile organic compound and method therefor
JP2012000301A (en) Air cleaner using photocatalyst
JPH09103644A (en) Apparatus for treating volatile organic compound
KR100706536B1 (en) Rapid waste water treatment apparatus and rapid waste water treatment method using the apparatus
JPH08323347A (en) Method and device for treating trichloroethylene-containing waste water
JP4066041B2 (en) Water purification equipment
JPH0985052A (en) Method for treating trichroloethylene-containing exhaust gas and apparatus therefor
JPH09192637A (en) Photocatalytic purifier
JP3358826B2 (en) Photocatalyst for treating toxic substances in liquids and equipment for treating toxic substances in liquids
JPH0985051A (en) Dry cleaning exhaust gas treatment method and apparatus therefor
JPH10180044A (en) Fluid purifier utilizing photocatalyst
JPH0975746A (en) Magnetic photocatalyst material, water treatment the same and water treating device using
JP3900460B2 (en) Water treatment equipment
JPH09155337A (en) Method and apparatus for decomposing and removing volatile organic compound
KR101623554B1 (en) Processing device for sewage purification using organic-inorganic hybrid nano-porous materials and methods therefor
JPH11179154A (en) Method and apparatus for cleaning of air pollution hazardous substance
JP3144302B2 (en) Fluid treatment equipment
JP3586732B2 (en) Water treatment method and apparatus
JPH08323129A (en) Gas treatment device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050215