JPH08320717A - Method for correcting attitude and position of industrial robot - Google Patents

Method for correcting attitude and position of industrial robot

Info

Publication number
JPH08320717A
JPH08320717A JP12825395A JP12825395A JPH08320717A JP H08320717 A JPH08320717 A JP H08320717A JP 12825395 A JP12825395 A JP 12825395A JP 12825395 A JP12825395 A JP 12825395A JP H08320717 A JPH08320717 A JP H08320717A
Authority
JP
Japan
Prior art keywords
point
measurement
posture
robot
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12825395A
Other languages
Japanese (ja)
Inventor
Yoshikazu Hakoda
良和 羽子田
Koji Shiraishi
宏司 白石
Eiji Sasaki
英二 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12825395A priority Critical patent/JPH08320717A/en
Publication of JPH08320717A publication Critical patent/JPH08320717A/en
Pending legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

PURPOSE: To precisely cut a work irrelevantly to a work gripping error by measuring three arbitrary measuring points provided on the cut surface of the work, calculating a three-point measuring surface attitude and position correction values, and making corrections at the time of the cutting according to the correction values. CONSTITUTION: A reference work 3 is fitted to the hand 2 of a robot flange 1. The distances (30RG, 3XX, and 3XY) between measuring instruments 4-3, 4-5, and 4-6 and each measuring point are recorded and stored as comparison reference values. When the work of the same rod is gripped slantingly owing to burrs, respective measured values (30RG', 3XX', and 3XY') in regard to each measuring point are compared with the comparison reference values to obtain differences in regard to the point. With the obtained differences, a position difference component (X0 ) is an axial direction perpendicular to the measuring surface is calculated form attitude differences (θx, θy) in directions around other two othogonal axes except an axis perpendicular to the measurement surface centering on a measuring reference point (30RG') and the differences in regard to a reference measuring point, and the attitude and position of the robot are corrected on the basis of the correction value obtained by summing up the values.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、加工対象ワークを直
接把持し、加工作業を行わせ得るようにした産業用ロボ
ットの姿勢位置補正方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a posture position correcting method for an industrial robot, which is capable of directly gripping a workpiece to be machined and performing a machining operation.

【0002】[0002]

【従来の技術】周知のように各種の加工工程に産業用ロ
ボットが導入されている。最近では特に大型ロボットが
市販化された結果、ロボットハンドで加工対象ワークを
直接把持し、ロボット動作エリア内に固定的に設置され
た加工用ツール(切断ブレード等)の設置場所に移動さ
せ、加工作業を行わせ得るようになってきた。この種の
産業用ロボットはプレイバック方式のものが多く、これ
は手動操作(ティーチングモード)によってロボットを
動かし、その際の軌跡や移動点のデータをロボットに算
出・記憶させてティーチングを行い、その結果得られた
データによって同一の動作を繰返し行わせるものであ
る。
As is well known, industrial robots have been introduced into various processing steps. Recently, especially as a result of the commercialization of large robots, the robot hand directly grips the workpiece to be machined and moves it to the installation location of the machining tool (cutting blade, etc.) that is fixedly installed in the robot operation area. You can get the work done. Most of this type of industrial robots are of the playback type, which moves the robot by manual operation (teaching mode), and the robot calculates and stores the data of the locus and movement point at that time for teaching. The same operation is repeated according to the obtained data.

【0003】[0003]

【発明が解決しようとする課題】ところでティーチング
操作によつて得られるデータは、その操作の際にロボッ
トのハンドに把持したワークに関するデータではなく、
実質上はロボットのハンドに関する軌跡や移動点のデー
タを記憶するのが一般的である。従って同一ワークで
も、ワークに生じているバリ等によりそれを把持する際
に生じる掴み誤差や、鋳物ワーク等に生じる寸法誤差が
あった場合には精度良く加工することが困難であるとい
う問題があった。
By the way, the data obtained by the teaching operation is not the data concerning the work held by the robot hand at the time of the operation, but the data obtained by the teaching operation.
In practice, it is common to store the trajectory and movement point data relating to the robot hand. Therefore, even with the same work, there is a problem that it is difficult to machine accurately if there is a gripping error that occurs when gripping the work due to burrs or the like that occurs in the work, or a dimensional error that occurs in the cast work or the like. It was

【0004】この発明は上記の事情に鑑み、ワークの表
面に予め設けられた計測点をワーク加工に先立ち所定位
置で計測を行い、これを比較用基準値と比較し、その差
に基づいてワークの姿勢及び位置ズレ補正値を演算し、
所定作業位置で該補正値に基づいてロボットの姿勢と位
置を補正することにより、ロボットのハンドによるワー
クの掴み誤差やワークの寸法誤差に拘わらず、所期通り
の加工精度を確保することのできる補正値が得られる産
業用ロボットの姿勢位置補正方法を提供することを目的
とするものである。
In view of the above circumstances, the present invention measures a measurement point previously provided on the surface of a work at a predetermined position prior to machining the work, compares this with a reference value for comparison, and based on the difference, the work. Calculate the posture and position deviation correction value of
By correcting the posture and the position of the robot based on the correction value at a predetermined work position, it is possible to ensure the desired processing accuracy regardless of the error in gripping the work by the robot hand and the work size error. An object of the present invention is to provide a posture position correction method for an industrial robot that can obtain a correction value.

【0005】[0005]

【課題を解決するための手段】この発明は、上記の目的
を達成するために、本発明の産業用ロボットの姿勢位置
補正方法は、 1.ロボットにワークを把持させた後に、所定位置で所
定姿勢を保ちながら、任意の直交座標系の軸方向に合わ
せて該所定位置に設置された計測器により、該ワークの
任意の一面に三点計測面として予め設けられた一点の計
測基準点及び二点の計測参照点までの距離を各々計測し
て各々の比較用距離基準値と比較しその差分から前記計
測基準点位置を中心とし計測面に垂直方向の軸を除外し
た他の直交した二軸の軸廻り方向の姿勢差成分を演算し
ロボットの姿勢変更補正値としさらに前記計測基準点に
関する差分から計測面に垂直な軸方向位置差成分を演算
しロボットの位置変更補正値としそれらを合算して三点
計測面姿勢位置補正値とし、所定作業位置で該補正値に
基づいてロボットの姿勢と位置を補正する。
In order to achieve the above object, the present invention provides a method for correcting the position of an industrial robot according to the following: After the robot grips the work, the measuring instrument installed at the predetermined position according to the axial direction of the arbitrary Cartesian coordinate system, while maintaining the predetermined posture at the predetermined position, measures three points on any one surface of the work. Measures the distances to one measurement reference point and two measurement reference points, which are provided in advance as surfaces, and compares them with the respective comparison distance reference values. The posture difference component in the axial directions of the two orthogonal two axes excluding the vertical axis is calculated to be the robot posture change correction value, and the axial position difference component perpendicular to the measurement surface is calculated from the difference regarding the measurement reference point. Is calculated and used as a position change correction value of the robot, and these are summed to obtain a three-point measurement plane posture position correction value, and the posture and position of the robot are corrected at a predetermined work position based on the correction value.

【0006】2.前記1項記載の方法によりロボットの
姿勢と位置を補正した後に、さらにワークの他の任意の
一面に一点計測面として予め設けられた一点の計測基準
点までの距離を計測して比較用距離基準値と比較しその
差分から前記計測基準点位置を中心とし計測面に垂直な
軸方向位置差成分を演算してロボットの一点計測面位置
補正値とし、さらに前記三点計測面姿勢位置補正値と合
算して三点及び一点計測面姿勢位置補正値とし、所定作
業位置で該補正値に基づいてロボットの姿勢と位置を補
正する。
2. After correcting the posture and position of the robot by the method described in the above item 1, the distance to a measurement reference point, which is previously provided as a one-point measurement surface on another arbitrary surface of the workpiece, is measured to measure a distance reference for comparison. The value is compared and the axial position difference component perpendicular to the measurement surface with the measurement reference point position as the center is calculated from the difference to obtain the robot one-point measurement surface position correction value, and the three-point measurement surface attitude position correction value The three-point and one-point measurement plane posture position correction values are added together, and the posture and position of the robot are corrected at a predetermined work position based on the correction values.

【0007】3.前記1項記載の方法によりロボットの
姿勢と位置を補正した後に、さらにワークの他の任意の
一面に二点計測面として予め設けられた一点の計測基準
点及び一点の計測参照点までの距離を各々計測して各々
の比較用距離基準値と比較しその差分から前記計測基準
点位置を中心とし計測面に垂直方向の軸及び計測参照点
方向の軸を除外した他の直交した一軸の軸廻り方向の姿
勢差成分を演算しロボットの姿勢変更補正値としさらに
前記計測基準点に関する差分から計測面に垂直な軸方向
位置差成分を演算しロボットの位置変更補正値としそれ
らを合算して二点計測面姿勢位置補正値とし、さらに前
記三点計測面姿勢位置補正値と合算して三点及び二点計
測面姿勢位置補正値とし、所定作業位置で該補正値に基
づいてロボットの姿勢と位置を補正する。
3. After correcting the posture and position of the robot by the method described in the above item 1, the distance to one measurement reference point and one measurement reference point, which are previously provided as two-point measurement surfaces on another arbitrary surface of the workpiece, is measured. Around each orthogonal one axis, which is measured and compared with each comparative distance reference value, and the difference is the center of the measurement reference point position and the axis perpendicular to the measurement plane and the axis of the measurement reference point are excluded. The posture difference component in the direction is calculated to be the posture change correction value of the robot, and the axial position difference component perpendicular to the measurement surface is calculated from the difference with respect to the measurement reference point to obtain the position change correction value of the robot. The measurement plane posture position correction value is further added to the three-point measurement plane posture position correction value to obtain a three-point and two-point measurement plane posture position correction value, and the posture and position of the robot based on the correction value at a predetermined work position. Correct That.

【0008】4.前記3項記載の方法によりロボットの
姿勢と位置を補正した後に、さらにワークの他の任意の
一面に一点計測面として予め設けられた一点の計測基準
点までの距離を計測して比較用距離基準値と比較しその
差分から前記計測基準点位置を中心とし計測面に垂直な
軸方向位置差成分を演算してロボットの一点計測面位置
補正値とし、さらに前記三点及び二点計測面姿勢位置補
正値と合算して三点、二点及び一点計測面姿勢位置補正
値とし、所定作業位置で該補正値に基づいてロボットの
姿勢と位置を補正する。
4. After correcting the posture and position of the robot by the method described in the above item 3, the distance to a measurement reference point, which is previously provided as a one-point measurement surface on another arbitrary surface of the work, is measured to compare with the reference distance reference. Compared with the value, the axial position difference component perpendicular to the measurement plane centered on the measurement reference point position is calculated from the difference and used as the robot one-point measurement surface position correction value, and the three-point and two-point measurement surface attitude positions The correction values are added together to obtain three-point, two-point, and one-point measurement plane posture position correction values, and the posture and position of the robot are corrected at a predetermined work position based on the correction values.

【0009】5.ロボットにワークを把持させた後に、
所定位置で所定姿勢を保ちながら、任意の直交座標系の
軸方向に合わせて該所定位置に設置された計測器によ
り、該ワークの任意の一面に二点計測面として予め設け
られた一点の計測基準点及び一点の計測参照点までの距
離を各々計測して各々の比較用距離基準値と比較しその
差分から前記計測基準点位置を中心とし計測面に垂直方
向の軸及び計測参照点方向の軸を除外した他の直交した
一軸の軸廻り方向の姿勢差成分を演算しロボットの姿勢
変更補正値としさらに前記計測基準点に関する差分から
計測面に垂直な軸方向位置差成分を演算しロボットの位
置変更補正値としそれらを合算して二点計測面姿勢位置
補正値とし、所定作業位置で該補正値に基づいてロボッ
トの姿勢と位置を補正する。
5. After making the robot grip the work,
Measurement of one point previously provided as a two-point measurement surface on any one surface of the workpiece by a measuring device installed at the predetermined position in accordance with the axial direction of an arbitrary rectangular coordinate system while maintaining a predetermined posture at a predetermined position The distances to the reference point and one measurement reference point are respectively measured and compared with respective comparison distance reference values, and from the difference between the measurement reference point position and the axis perpendicular to the measurement surface and the measurement reference point direction. The posture difference component in the direction around the axis of another orthogonal one axis excluding the axis is calculated to be the posture change correction value of the robot, and the axial position difference component perpendicular to the measurement surface is calculated from the difference regarding the measurement reference point to calculate the robot position. The position change correction values are added together to form a two-point measurement surface posture position correction value, and the posture and position of the robot are corrected at a predetermined work position based on the correction value.

【0010】6.前記5項記載の方法によりロボットの
姿勢と位置を補正した後に、さらにワークの他の任意の
一面に一点計測面として予め設けられた一点の計測基準
点までの距離を計測して比較用距離基準値と比較しその
差分から前記計測基準点位置を中心とし計測面に垂直な
軸方向位置差成分を演算してロボットの一点計測面位置
補正値とし、さらに前記二点計測面姿勢位置補正値と合
算して二点及び一点計測面姿勢位置補正値とし、所定作
業位置で該補正値に基づいてロボットの姿勢と位置を補
正する。
6. After correcting the posture and the position of the robot by the method described in the above item 5, the distance to a measurement reference point, which is previously provided as a one-point measurement surface on another arbitrary surface of the work, is measured to compare with the reference distance reference. The value is compared and the axial position difference component centered on the measurement reference point position and perpendicular to the measurement surface is calculated from the difference to obtain the robot one-point measurement surface position correction value, and the two-point measurement surface attitude position correction value The two-point and one-point measurement plane posture position correction values are added together, and the posture and position of the robot are corrected at a predetermined work position based on the correction values.

【0011】7.前記5項記載の方法によりロボットの
姿勢と位置を補正した後に、さらにワークの他の任意の
一面に三点計測面として予め設けられた一点の計測基準
点及び二点の計測参照点までの距離を各々計測して各々
の比較用距離基準値と比較しその差分から前記計測基準
点位置を中心とし計測面に垂直方向の軸を除外した他の
直交した二軸の軸廻り方向の姿勢差成分を演算しロボッ
トの姿勢変更補正値としさらに前記計測基準点に関する
差分から計測面に垂直な軸方向位置差成分を演算しロボ
ットの位置変更補正値としそれらを合算して三点計測面
姿勢位置補正値とし、さらに前記二点計測面姿勢位置補
正値と合算して二点及び三点計測面姿勢位置補正値と
し、所定作業位置で該補正値に基づいてロボットの姿勢
と位置を補正する。
7. After correcting the posture and position of the robot by the method described in the item 5, the distance to one measurement reference point and two measurement reference points that are previously provided as three-point measurement surfaces on another arbitrary surface of the work. Is measured and compared with each comparative distance reference value, and the posture difference component in the direction around the axis of the other two orthogonal axes with the measurement reference point position as the center and the axis perpendicular to the measurement surface is excluded from the difference Is calculated as the robot posture change correction value, and the axial position difference component perpendicular to the measurement surface is calculated from the difference with respect to the measurement reference point, and is used as the robot position change correction value, and these are added together, and the three-point measurement plane posture position correction is performed. The value is further added to the two-point measurement plane posture position correction value to obtain a two-point and three-point measurement plane posture position correction value, and the posture and position of the robot are corrected at a predetermined work position based on the correction value.

【0012】8.前記7項記載の方法によりロボットの
姿勢と位置を補正した後に、さらにワークの他の任意の
一面に一点計測面として予め設けられた一点の計測基準
点までの距離を計測して比較用距離基準値と比較しその
差分から前記計測基準点位置を中心とし計測面に垂直な
軸方向位置差成分を演算してロボットの一点計測面位置
補正値とし、さらに前記二点及び三点計測面姿勢位置補
正値と合算して二点、三点及び一点計測面姿勢位置補正
値とし、所定作業位置で該補正値に基づいてロボットの
姿勢と位置を補正する。
8. After correcting the posture and position of the robot by the method described in the above item 7, the distance to a measurement reference point, which is previously provided as a one-point measurement surface on another arbitrary surface of the workpiece, is measured to measure a distance reference for comparison. Compared with the value, the axial position difference component centered on the measurement reference point position and perpendicular to the measurement surface is calculated from the difference to obtain the robot one-point measurement surface position correction value, and the two-point and three-point measurement surface attitude positions Two, three, and one point measurement surface posture position correction values are added together with the correction values, and the posture and position of the robot are corrected based on the correction values at a predetermined work position.

【0013】[0013]

【作用】したがってこの発明では、作業内容により、ワ
ークの一面のみをその切断位置と切断面姿勢を保ちなが
ら繰り返し切断する場合、例えば、ワークの一面を切断
ブレード等で切断する作業の場合はそのワークの切断面
側に予め任意の三点の計測点を設け、それらを切断作業
前に計測して三点計測面姿勢位置補正値を演算記憶し切
断時に該補正値に従って補正することによりワーク掴み
誤差等に無関係に切断を精度良く行うことができる。
Therefore, according to the present invention, depending on the work content, when only one surface of the work is repeatedly cut while maintaining the cutting position and the cutting surface posture, for example, in the case of the work of cutting one surface of the work with a cutting blade or the like, the work is cut. Arrange three arbitrary measurement points in advance on the cutting surface side, measure them before cutting work, calculate and store the three-point measurement surface attitude position correction value, and correct according to the correction value at the time of cutting. The cutting can be performed accurately regardless of the above.

【0014】ワークの一面のみをその切断位置と切断線
姿勢を保ちながら繰り返し切断する場合、例えば、ワー
クの一面にある湯口等を切断ブレード等で切断する作業
の場合はそのワークの切断面側に予め任意の二点の計測
点を設け、それらを切断作業前に計測して二点計測面姿
勢位置補正値を演算記憶し切断時に該補正値に従って補
正することによりワーク掴み誤差等に無関係に切断を精
度良く行うことができる。
In the case of repeatedly cutting only one surface of the work while maintaining the cutting position and the cutting line posture, for example, in the case of the work of cutting the sprue or the like on the one surface of the work with a cutting blade, the cutting surface side of the work is cut. Two arbitrary measurement points are provided in advance, these are measured before cutting work, and the two-point measurement surface posture position correction values are calculated and stored, and correction is performed according to the correction values at the time of cutting to cut regardless of work gripping errors, etc. Can be performed accurately.

【0015】また、ワークの二面を繰り返し切断する作
業等の場合はその二面の切断面の内の任意の一面に予め
任意の三点の計測点を設け、他の一面に任意の二点の計
測点を設け、それらを切断作業前に計測して三点及び二
点計測面姿勢位置補正値または二点及び三点計測面姿勢
位置補正値を演算記憶し切断時に該補正値に従って補正
することにより、ワーク掴み誤差等に無関係にその各々
の切断面の切断を精度良く行うことができる。
Further, in the case of the work of repeatedly cutting two surfaces of a work, arbitrary three measurement points are provided in advance on one of the two cut surfaces, and two arbitrary points are formed on the other surface. Measurement points are provided, and these are measured before cutting work, and the three-point and two-point measurement surface attitude position correction values or the two-point and three-point measurement surface attitude position correction values are arithmetically stored and corrected according to the correction values when cutting. As a result, it is possible to accurately cut each of the cut surfaces irrespective of work gripping errors and the like.

【0016】さらに、ワークの三面を繰り返し切断する
作業等の場合はその三面の切断面の内の任意の一面に予
め任意の三点の計測点を設け、他の一面に任意の二点の
計測点を設け、さらに他の一面に任意の一点の計測点を
設け、それらを切断作業前に計測して三点、二点及び一
点計測面姿勢位置補正値または二点、三点及び一点計測
面姿勢位置補正値を演算記憶し切断時に該補正値に従っ
て補正することにより、その各々の切断面の切断を容易
に精度良く行うことができる。
Further, in the case of the work of repeatedly cutting three surfaces of a work, arbitrary three measuring points are provided in advance on any one of the three cutting surfaces, and two arbitrary points are measured on the other surface. Point is provided, and another arbitrary measurement point is provided on the other side, and these points are measured before cutting work to obtain three-point, two-point and one-point measurement plane attitude position correction values or two-point, three-point and one-point measurement plane. By calculating and storing the posture position correction value and correcting it according to the correction value at the time of cutting, it is possible to easily and accurately cut each cutting surface.

【0017】[0017]

【実施例】以下、この発明の実施例を図面を参照して説
明する。図1は、ロボットフランジ1に取り付けられた
ハンド2にワーク3を把持させた状態とワーク3上の三
点計測面、二点計測面及び一点計測面に設けられた各計
測点を示した一例を表している。これらの各点は次工程
の為に予め鋳出された加工基準証を流用してもよいし、
また単にワーク表面に形成されている面の任意の点を選
定してもよい。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an example showing a state in which a hand 2 attached to a robot flange 1 holds a work 3 and measurement points provided on a three-point measurement surface, a two-point measurement surface, and a one-point measurement surface on the work 3. Is represented. For each of these points, a processing standard certificate that has been cast in advance for the next process may be used,
Further, any point on the surface formed on the work surface may be selected.

【0018】さらに、三点計測面には、一点の計測基準
点(3ORG点)と二点の計測参照点(3XX点,3X
Y点)が含まれ、二点計測面には、一点の計測基準点
(2ORG点)と一点の計測参照点(2XX点)が含ま
れ、一点計測面には、一点の計測基準点(1ORG点)
が含まれている。
Furthermore, on the three-point measurement surface, one measurement reference point (3ORG point) and two measurement reference points (3XX points, 3X points).
Y point), the two-point measurement surface includes one measurement reference point (2ORG point) and one measurement reference point (2XX point), and the one-point measurement surface includes one measurement reference point (1ORG). point)
It is included.

【0019】図2は、所定計測位置に設置された計測器
4−1〜4−6とワーク3を計測姿勢に保った時の位置
関係を示し、予め各計測点に位置合わせを行った六個の
計測器4−1〜4−6を設けた一例である。ここで、前
記所定計測位置には、計測に寄与する任意方向の直交座
標系(以下、計測用直交座標系と定義する)が設定され
ているものとし、各計測器4−1〜4−6は該計測用直
交座標系の軸方向に合致して各々固定されるものとす
る。また計測時には、ワークを前記計測用直交座標系に
対して一定な計測姿勢例えばロボット姿勢角(Tx,T
y,Tz)が(0,0,0)等計測に都合の良い姿勢及
び位置関係になるように制御されるものとする。ここで
(Tx,Ty,Tz)は各々計測用直交座標系のX軸、
Y軸、Z軸まわりの回転角を表すものとする。
FIG. 2 shows a positional relationship when the measuring instruments 4-1 to 4-6 installed at predetermined measuring positions and the work 3 are kept in a measuring posture, and the measuring points are preliminarily aligned with each other. This is an example in which individual measuring instruments 4-1 to 4-6 are provided. Here, it is assumed that an orthogonal coordinate system in an arbitrary direction that contributes to measurement (hereinafter, referred to as an orthogonal coordinate system for measurement) is set at the predetermined measurement position, and each measuring instrument 4-1 to 4-6. Shall be fixed in conformity with the axial direction of the measurement orthogonal coordinate system. Further, at the time of measurement, the workpiece is kept in a constant measurement posture with respect to the measurement orthogonal coordinate system, for example, the robot posture angle (Tx, T).
It is assumed that y, Tz) is controlled so that the posture and positional relationship are convenient for measurement such as (0, 0, 0). Here, (Tx, Ty, Tz) is the X axis of the orthogonal coordinate system for measurement,
It represents the rotation angle around the Y axis and the Z axis.

【0020】図3は計測器を三個に減数した一例を表し
ている。この場合、計測に際して、各計測面に各々対応
した計測器4−1〜4−3に、且つ前記計測用直交座標
系(図示せず)に対し計測姿勢を保ったままロボットを
直交方向に平行移動させて計測位置に位置合わせを行い
ながら計測を行うものとする。このように計測器の数
は、図示していないがロボットフランジを計測座標軸の
任意の一軸廻りに90度回転させて計測することによ
り、一台の計測器を複数の計測面に対応させることが可
能になり、さらに減数することができる。
FIG. 3 shows an example in which the number of measuring instruments is reduced to three. In this case, at the time of measurement, the robot is parallel to the orthogonal direction with the measuring instruments 4-1 to 4-3 respectively corresponding to the respective measurement planes and with the measuring posture maintained with respect to the orthogonal coordinate system for measurement (not shown). It is assumed that measurement is performed while moving and aligning with the measurement position. Although the number of measuring instruments is not shown in the figure, one measuring instrument can be made to correspond to a plurality of measuring planes by rotating the robot flange by 90 degrees around any one of the measurement coordinate axes for measurement. It is possible and can be further reduced.

【0021】図4は各計測面を計測するときの他の計測
姿勢を示した一例であり、このように計測面の計測時姿
勢方向は任意で良いことは言うまでもない。
FIG. 4 is an example showing another measurement posture when measuring each measurement surface, and it goes without saying that the measurement posture of the measurement surface may be arbitrary.

【0022】本発明では便宜上三点計測面を水平方向に
向けた例、即ちロボットのフランジ姿勢が水平方向に向
いた例で説明しているが図4に図示するように該フラン
ジ姿勢が垂直真下方向に向くようにしても、即ち計測器
を下から上方向に向けて設置し計測を行っても同等の結
果が得られる。特にロボットのフランジ姿勢が素直に垂
直真下方向に向いた状態で計測を行い得るように考慮す
ると、ロボットの手首軸の剛性不足による撓み等に起因
する姿勢誤差が最小になり、計測後の補正値演算誤差を
少なくすることができる。
In the present invention, for the sake of convenience, the three-point measurement surface is oriented in the horizontal direction, that is, the robot flange orientation is oriented in the horizontal direction. However, as shown in FIG. The same result can be obtained even if the measurement device is oriented in the direction, that is, the measurement device is installed from the bottom to the top. In particular, considering that the robot's flange posture can be measured straight down vertically, the posture error caused by bending due to insufficient rigidity of the wrist axis of the robot will be minimized, and the correction value after measurement will be reduced. The calculation error can be reduced.

【0023】図5 (I)(II)(III)は、三点計測面を計測
するときの位置関係を示した説明図である。
FIGS. 5 (I) (II) (III) are explanatory views showing the positional relationship when measuring a three-point measuring surface.

【0024】図5 (I) は、基準ワークをハンドに精度
良く把持させたときの計測状態を表しており、予め各計
測器4−3,4−5,4−6と各計測点までの距離(3
ORG,3XX,3XY)が比較用距離基準値として記
憶保管される。
FIG. 5 (I) shows the measurement state when the hand holds the reference work with high accuracy, and shows the measurement devices 4-3, 4-5, 4-6 and measurement points in advance. Distance (3
ORG, 3XX, 3XY) is stored and stored as a distance reference value for comparison.

【0025】次に、図5 (II) は、同一ロッドのワーク
がバリ等の影響により把持状態が斜めになった場合の計
測状態を表しており、各計測点に関する各々の計測値
(3ORG’,3XX’,3XY’)を予め得られた比
較用基準値(3ORG,3XX,3XY)と比較するこ
とにより、各点に関してその差分(3ORG−3OR
G’,3XX−3XX’,3XY−3XY’)が得られ
る。
Next, FIG. 5 (II) shows the measurement state when the work of the same rod is tilted in the gripping state due to the influence of burrs or the like, and each measurement value (3ORG ') at each measurement point is shown. , 3XX ′, 3XY ′) is compared with a reference value for comparison (3ORG, 3XX, 3XY) obtained in advance to obtain the difference (3ORG-3OR) for each point.
G ', 3XX-3XX', 3XY-3XY ') is obtained.

【0026】図5(III) はその得られた差分より、計測
基準点(3ORG’点)を中心とし計測面に垂直方向の
軸を除外した他の直交した二軸の軸廻り方向の姿勢差成
分(θx,θy)と、計測基準点(3ORG’点)に関
する差分から計測面に垂直な軸方向の位置差成分(Z
0)を演算し、それらを合算して得られた補正値即ち三
点計測面姿勢位置補正値に基づいてロボットの姿勢と位
置を補正した状態を表している。
From FIG. 5 (III), from the obtained difference, the posture difference in the direction around the axis of the other two orthogonal axes around the measurement reference point (3ORG 'point) and excluding the axis in the direction perpendicular to the measurement surface is shown. From the difference between the component (θx, θy) and the measurement reference point (3ORG ′ point), the position difference component (Z
0) is calculated and the posture and position of the robot are corrected based on the correction value obtained by adding them, that is, the three-point measurement surface posture position correction value.

【0027】図6 (I)(II)(III)は三点計測面の各点を
計測するために計測用直交座標系(図示せず)の軸方向
に合わせた一個の計測器4−3を設置し、該計測器に対
してロボットを直交方向に平行移動させながら計測して
いる状態を表し、図6 (I)は計測基準点(3ORG’
点)、図6(II)は計測参照点(3XX’点)、図6(II
I) は計測参照点(3XY’点)を計測中の計測姿勢を
表している。図7 (I)(II)(III)は、二点計測面を計測
するときの位置関係を示した説明図である。
FIGS. 6 (I) (II) (III) show one measuring instrument 4-3 aligned in the axial direction of a measuring orthogonal coordinate system (not shown) for measuring each point on the three-point measuring surface. Is installed, and the robot is measuring while moving the robot in a direction orthogonal to the measuring instrument. FIG. 6 (I) shows a measurement reference point (3ORG ′).
6), and FIG. 6 (II) is a measurement reference point (3XX 'point), FIG.
I) represents the measurement posture during measurement of the measurement reference point (3XY 'point). 7 (I) (II) (III) are explanatory views showing the positional relationship when measuring the two-point measurement surface.

【0028】図7 (I) は、基準ワーク3をハンド2に
精度良く把持させたときの計測状態を表しており、各計
測器4−2、4−4と各計測点までの距離(2ORG,
2XX)が比較用距離基準値として記憶保管される。
FIG. 7 (I) shows a measurement state when the hand 2 holds the reference work 3 with high precision, and the distances (2ORG) between the measuring instruments 4-2 and 4-4 and the measuring points are shown. ,
2XX) is stored and stored as a comparative distance reference value.

【0029】次に、図7(II)は、同一ロッドのワークが
バリ等の影響により把持状態が斜めになった場合の計測
状態を表しており、各計測点に関する各々の計測値(2
ORG’,2XX’)を予め得られた比較用基準値(2
ORG,2XX)と比較することにより、各点に関して
その差分(2ORG−2ORG’,2XX−2XX’)
が得られる。
Next, FIG. 7 (II) shows the measurement state when the work of the same rod is tilted in the gripping state due to the influence of burrs or the like, and each measurement value (2
ORG ', 2XX') is a reference value for comparison (2
ORG, 2XX), the difference (2ORG-2ORG ', 2XX-2XX') for each point.
Is obtained.

【0030】図7(III) はその得られた差分より、計測
基準点(2ORG’点)を中心とし計測面に垂直方向の
軸及び計測参照点方向の軸を除外した他の直交した一軸
の軸廻り方向の姿勢差成分(θz)と、計測基準点(2
ORG’点)に関する差分から計測面に垂直な軸方向の
位置差成分(X0)を演算し、それらを合算して得られ
た補正値即ち二点計測面姿勢位置補正値に基づいてロボ
ットの姿勢と位置を補正した状態を表している。
FIG. 7 (III) shows that, based on the obtained difference, the center of the measurement reference point (2ORG 'point) and the axis perpendicular to the measurement plane and the axis of the measurement reference point are excluded from the other orthogonal one axis. Attitude difference component (θz) around the axis and measurement reference point (2
The position of the robot is calculated based on the correction value obtained by calculating the position difference component (X0) in the axial direction perpendicular to the measurement surface from the difference regarding the And the position is corrected.

【0031】図8(I)(II) は二点計測面の各点を計測
するために計測用直交座標系(図示せず)の軸方向に合
わせた一個の計測器4−2を設置し、該計測器に対して
ロボットを直交方向に平行移動させながら計測している
状態を表し、図8 (I) は計測基準点(2ORG’
点)、図8(II)は計測参照点(2XX’点)を計測中の
計測姿勢を表している。
In FIGS. 8 (I) and (II), in order to measure each point on the two-point measuring surface, one measuring instrument 4-2 is installed which is aligned with the axial direction of the orthogonal coordinate system for measurement (not shown). , (I) shows a state in which measurement is performed while moving the robot in a direction orthogonal to the measuring instrument, and FIG.
8) shows the measurement posture during measurement of the measurement reference point (2XX 'point).

【0032】図9 (I)(II)(III)は、一点計測面を計測
するときの位置関係を示した説明図である。
FIGS. 9 (I) (II) (III) are explanatory views showing the positional relationship when measuring a one-point measuring surface.

【0033】図9 (I) は、基準ワーク3をハンド2に
精度良く把持させたときの計測状態を表しており、計測
器4−1と各計測点までの距離(1ORG)が比較用距
離基準値として記憶保管される。
FIG. 9 (I) shows the measurement state when the reference work 3 is accurately held by the hand 2, and the distance (1ORG) between the measuring instrument 4-1 and each measurement point is the comparison distance. It is stored and stored as a reference value.

【0034】次に、図9(II)は、同一ロッドのワーク3
がバリ等の影響により把持状態がずれた場合の計測状態
を表しており、各計測点に関する各々の計測値(1OR
G’)を予め得られた比較用基準値(1ORG)と比較
することにより、その差分(1ORG−1ORG’)が
得られる。
Next, FIG. 9 (II) shows the work 3 of the same rod.
Indicates the measurement state when the gripping state is deviated due to the influence of burrs and the like, and each measurement value (1OR
By comparing G ′) with the reference value for comparison (1ORG) obtained in advance, the difference (1ORG-1ORG ′) is obtained.

【0035】図9(III) はその得られた差分より、計測
基準点(1ORG’点)を中心とし計測面に垂直な軸方
向の位置差成分(Y0)を演算し、その補正値即ち一点
計測面位置補正値に基づいてロボットの位置を補正した
状態を表している。
In FIG. 9 (III), the position difference component (Y0) in the axial direction perpendicular to the measurement surface centering on the measurement reference point (1ORG 'point) is calculated from the obtained difference, and its correction value, that is, one point is calculated. The state where the position of the robot is corrected based on the measurement surface position correction value is shown.

【0036】次に三点計測面姿勢位置補正値を得る方法
について説明する。先ず、計測方法として前述の図6
(I)(II)(III)の如く計測を行った場合について説明す
ると、各点計測時にロボット現在位置(直交座標系)と
して、次のように前記計測用直交座標系上の位置及び姿
勢角が得られるものとする(一定の計測姿勢が保たれる
結果、各点に関する姿勢角が同値となる)。
Next, a method of obtaining the three-point measurement surface posture position correction value will be described. First, as a measurement method, FIG.
The case where the measurement is performed as in (I), (II), and (III) will be described. The position and posture angle on the measurement orthogonal coordinate system are as follows as the robot current position (orthogonal coordinate system) at each point measurement. Is obtained (as a result of maintaining a constant measurement posture, the posture angles for each point have the same value).

【0037】計測基準点(3ORG’点)に関して ロボット位置(x1,y1,z1)、姿勢角(Tx1,
Ty1,Tz1) 計測参照点(3XX’点)に関して ロボット位置(x2,y2,z2)、姿勢角(Tx1,
Ty1,Tz1) 計測参照点(3XY’点)に関して ロボット位置(x3,y3,z3)、姿勢角(Tx1,
Ty1,Tz1) が得られる。
Regarding the measurement reference point (3ORG 'point), the robot position (x1, y1, z1) and the posture angle (Tx1,
Ty1, Tz1) Regarding the measurement reference point (3XX ′ point), robot position (x2, y2, z2), posture angle (Tx1,
Ty1, Tz1) Regarding the measurement reference point (3XY 'point), robot position (x3, y3, z3), posture angle (Tx1,
Ty1, Tz1) is obtained.

【0038】ここで、図6のように計測用直交座標系の
Z軸方向が計測器の計測方向と合致している場合、Z軸
座標値のみ同時に得られる各差分値(3ORG−3OR
G’,3XX−3XX’,3XY−3XY’)を各々加
減することにより各計測点のZ軸方向の座標値が特定で
きる。前記座標値はその演算後の値とする。通常ロボッ
トの現在位置(直交座標系)はその時のロボットフラン
ジ先端に定義されているツール座標系の原点(以降制御
点と定義する)の空間位置データ(x,y,z)及び姿
勢データ(Tx,Ty,Tz)で表すのが一般的であ
り、ここで得られる現在位置は各点計測位置での該制御
点の空間位置及び姿勢を示している。本説明では、計測
基準点(3ORG’点)が既に制御点として登録設定さ
れているものとする。このため、求められた各点座標値
(x1,y1,z1)、(x2,y2,z2)、(x
3,y3,z3)から、さらに計測基準点(3ORG’
点)即ち座標点(x1,y1,z1)を通り計測用直交
座標系のZ軸と平行な線に対して線対称な点(3ORG
x,3ORGy,3ORGz)、(3XXx,3XX
y,3XXz)、(3XYx,3XYy,3XYz)の
座標値を次のように求める。
Here, when the Z-axis direction of the measuring Cartesian coordinate system coincides with the measuring direction of the measuring device as shown in FIG. 6, each difference value (3ORG-3OR) obtained only at the same time as the Z-axis coordinate value is obtained.
G ', 3XX-3XX', 3XY-3XY ') can be respectively added or subtracted to specify the coordinate value of each measurement point in the Z-axis direction. The coordinate value is a value after the calculation. Usually, the current position (orthogonal coordinate system) of the robot is the spatial position data (x, y, z) and attitude data (Tx) of the origin (hereinafter, referred to as control point) of the tool coordinate system defined at the robot flange tip at that time. , Ty, Tz), and the current position obtained here indicates the spatial position and orientation of the control point at each point measurement position. In this description, it is assumed that the measurement reference point (3ORG 'point) has already been registered and set as a control point. Therefore, the calculated point coordinate values (x1, y1, z1), (x2, y2, z2), (x
3, y3, z3), the measurement reference point (3ORG '
Point), that is, a point (3ORG that is line-symmetrical with respect to a line that passes through the coordinate point (x1, y1, z1) and is parallel to the Z axis of the Cartesian coordinate system for measurement.
x, 3ORGy, 3ORGz), (3XXx, 3XX
y, 3XXz) and (3XYx, 3XYy, 3XYz) are calculated as follows.

【0039】計測基準点(3ORG’点)に関して 3ORGx=x1 3ORGy=y1 3ORGz=z1 計測参照点(3XX’点)に関して 3XXx=x1+(x1−x2) 3XXy=y1+(y1−y2) 3XXz=z2 計測参照点(3XY’点)に関して 3XYx=x1+(x1−x3) 3XYy=y1+(y1−y3) 3XYz=z3 として、各計測点の空間座標値が得られる。このように
して得られる各計測点座標値は、図5(II)に示される計
測状態での各点位置を表すことになる。
Regarding the measurement reference point (3ORG 'point) 3ORGx = x1 3ORGy = y1 3ORGz = z1 Regarding the measurement reference point (3XX' point) 3XXx = x1 + (x1-x2) 3XXy = y1 + (y1-y2) 3XXz = z2 Measurement Regarding the reference point (3XY 'point), 3XYx = x1 + (x1-x3) 3XYy = y1 + (y1-y3) 3XYz = z3, and the spatial coordinate value of each measurement point is obtained. The coordinate value of each measurement point thus obtained represents the position of each point in the measurement state shown in FIG. 5 (II).

【0040】以上、便宜上図6 (I)(II)(III)を用いて
説明したが、これは図5(II)に示される如く各点を一度
に計測した場合は上記演算を行う必要がないことは言う
までもない。但し、この場合は予め計測用直交座標系の
X軸及びY軸方向に関する各点の空間位置関係が解って
いるものとする。
The above description has been made with reference to FIGS. 6 (I) (II) (III) for the sake of convenience. However, as shown in FIG. 5 (II), it is necessary to perform the above calculation when each point is measured at one time. Needless to say However, in this case, it is assumed that the spatial positional relationship of each point in the X-axis and Y-axis directions of the measurement orthogonal coordinate system is known in advance.

【0041】このようにして求められた各計測点の空間
位置を図10に於いて(3ORG’点,3XX’点,3
XY’点)で表す。
The spatial position of each measurement point thus obtained is shown in FIG. 10 as (3ORG 'point, 3XX' point, 3
XY 'points).

【0042】ここで、図10に従い三点計測面の各計測
点(3ORG’点,3XX’点,3XY’点)より計測
基準点(3ORG’点)を中心とし計測面に垂直方向の
軸を除外した他の直交した二軸(X軸及びY軸)の軸廻
り方向の姿勢差成分(θX,θy)と、計測面に垂直な
軸(Z軸)方向の位置差成分(Z0)を演算する方法即
ち三点計測面姿勢位置補正値を得る方法について説明す
る。
Here, according to FIG. 10, an axis extending in the direction perpendicular to the measurement surface from each measurement point (3ORG 'point, 3XX' point, 3XY 'point) on the three-point measurement surface as the center of the measurement reference point (3ORG' point). Calculating the posture difference components (θX, θy) around the axes of the other two orthogonal orthogonal axes (X axis and Y axis) that have been excluded, and the position difference component (Z0) in the axis (Z axis) direction perpendicular to the measurement surface. A method of performing the above, that is, a method of obtaining a three-point measurement surface posture position correction value will be described.

【0043】先ず、この内の計測参照点(3XX’点)
が、計測基準点(3ORG’点)を通り且つ計測用直交
座標系のYZ軸がなす平面に平行な面に投影する点(3
XX”点)の座標値(xa,ya,za)を次のように
求める。
First, the measurement reference point (3XX 'point) in this
Is a point (3 that passes through the measurement reference point (3ORG 'point) and is parallel to the plane formed by the YZ axes of the Cartesian coordinate system for measurement.
The coordinate value (xa, ya, za) of XX "point) is obtained as follows.

【0044】xa=x1 ya=((z2−z1)×y3−(z3−z1)×y
2)÷((z2−z1)−(z3−z1)) za=((z2−z1)×z3−(z3−z1)×z
2)÷((z2−z1)−(z3−z1)) これは計測参照点(3XY’点)と計測参照点(3X
X’点)を結んだ直線の延長線が前記平面と交わる点、
換言すれば計測基準点(3ORG’点)と同一高さの位
置へ投影された点を示している。次に、前記計測基準点
(3ORG’点)、計測参照点(3XY’点)及び投影
点(3XX”点)が計測基準点(3ORG’点)を通り
且つ計測用直交座標系のXY軸がなす平面に平行な面に
面対称に投影する点(3O点)、(3X点)及び(3Y
点)の座標値(3Ox,3Oy,3Oz)、(3Xx,
3Xy,3Xz)及び(3Yx,3Yy,3Yz)を次
のように求める。
Xa = x1 ya = ((z2-z1) * y3- (z3-z1) * y
2) ÷ ((z2-z1)-(z3-z1)) za = ((z2-z1) × z3- (z3-z1) × z
2) ÷ ((z2-z1)-(z3-z1)) This is the measurement reference point (3XY 'point) and the measurement reference point (3X
A point where an extension line of a straight line connecting the X'points) intersects with the plane,
In other words, it shows a point projected at the same height as the measurement reference point (3ORG 'point). Next, the measurement reference point (3ORG 'point), the measurement reference point (3XY' point) and the projection point (3XX "point) pass through the measurement reference point (3ORG 'point), and the XY axes of the measurement orthogonal coordinate system are Points (3O points), (3X points), and (3Y) that are projected symmetrically on a plane parallel to the plane
Coordinate values (3Ox, 3Oy, 3Oz) of (point), (3Xx,
3Xy, 3Xz) and (3Yx, 3Yy, 3Yz) are obtained as follows.

【0045】計測基準点(3ORG’点)の投影点(3
O点)に関して 3Ox=x1 3Oy=y1 3Oz=z1 投影点(3XX”点)の投影点(3X点)に関して 3Xx=xa 3Xy=ya 3Xz=z1+(z1−za) 計測参照点(3XY’点)の投影点(3Y点)に関して 3Yx=x3 3Yy=y3 3Yz=z1+(z1−z3) このようにして求められた各投影点を図10に於いて
(3O点)、(3X点)、(3Y点)で表す。
The projection point (3) of the measurement reference point (3ORG 'point)
Regarding O point) 3Ox = x1 3Oy = y1 3Oz = z1 Regarding projection point (3X point) of projection point (3XX ″ point) 3Xx = xa 3Xy = ya 3Xz = z1 + (z1-za) Measurement reference point (3XY ′ point) Projection point (3Y point) 3Yx = x3 3Yy = y3 3Yz = z1 + (z1-z3) In FIG. 10, the projection points thus obtained are (3O point), (3X point), and (3Y point). Represented by dots).

【0046】ここで、(3O点)を原点とし、(3X
点)を直交一軸上の点とし、(3Y点)を他の直交軸で
作られる平面上の点即ち該他の直交軸の方向のみを表す
点とみなした直交座標系(以降三点計測面演算座標系と
定義する)を演算定義すると、該三点計測面演算座標系
と前記計測用直交座標系のZ軸に関する回転姿勢差がな
くなる。このため、該三点計測面演算座標系から見た計
測基準点(3ORG’点)計測時のロボット姿勢を演算
すると該座標系上のロボット姿勢角(Tx0,Ty0,
Tz1)が得られ、前述のZ軸に関する回転姿勢角は
(Tz1)となる。
Here, (3O point) is the origin, and (3X
Cartesian coordinate system (hereinafter, three-point measurement plane) where (point 3) is regarded as a point on a plane formed by other orthogonal axes, that is, a point on the plane formed by other orthogonal axes (Defined as the calculation coordinate system) is calculated and defined, there is no difference in rotational attitude between the calculation coordinate system of the three-point measurement plane and the measurement orthogonal coordinate system with respect to the Z axis. Therefore, when the robot posture at the time of measuring the measurement reference point (3ORG 'point) viewed from the three-point measurement plane calculation coordinate system is calculated, the robot posture angle (Tx0, Ty0,
Tz1) is obtained, and the rotation posture angle with respect to the Z axis is (Tz1).

【0047】既に計測基準点(3ORG’点)計測時に
計測用直交座標系上のロボット位置(x1,y1,z
1)及び姿勢角(Tx1,Ty1,Tz1)が得られて
いるので、この内の姿勢角について、その差を次のよう
に演算すると計測基準点(3ORG’点)を中心とし計
測面に垂直方向の軸を除外した他の直交した二軸(X軸
及びY軸)の軸廻り方向の姿勢差成分(θX,θy)が
得られる。
When the measurement reference point (3ORG 'point) is already measured, the robot position (x1, y1, z) on the measurement rectangular coordinate system is measured.
1) and the posture angles (Tx1, Ty1, Tz1) are obtained, and the difference between the posture angles in these is calculated as follows, the measurement reference point (3ORG ′ point) is the center and the measurement plane is perpendicular. The posture difference components (θX, θy) in the directions around the axes of the other two orthogonal axes (X axis and Y axis) excluding the axis of the direction are obtained.

【0048】X軸回りの姿勢差に関して θX=Tx0−Tx1 Y軸回りの姿勢差に関して θy=Ty0−Ty1 ここで計測時の計測姿勢を姿勢角(0,0,0)に保っ
た場合はTx1、Ty1共に0となり、Tx0、Ty0
が直接姿勢差成分となる。
Regarding the attitude difference around the X axis θX = Tx0-Tx1 Regarding the attitude difference around the Y axis θy = Ty0-Ty1 Here, when the measurement attitude during measurement is maintained at the attitude angle (0,0,0), Tx1 , Ty1 both become 0, and Tx0, Ty0
Is the direct attitude difference component.

【0049】一方、基準点(3ORG’点)に関する計
測面に垂直な軸方向(Z軸)の位置差成分を(Z0)と
すると、(3ORG−3ORG’)そのものであるか
ら、その極性を位置差が縮まる方向に選定すればよい。
On the other hand, if the position difference component in the axial direction (Z axis) perpendicular to the measurement surface with respect to the reference point (3ORG 'point) is (Z0), it is (3ORG-3ORG') itself, and therefore its polarity is the position. It may be selected in the direction in which the difference is reduced.

【0050】即ち、Z軸方向の位置差に関して Z0=3ORG−3ORG’ となる。That is, the positional difference in the Z-axis direction is Z0 = 3ORG-3ORG '.

【0051】従って、三点計測面姿勢位置補正値は
(0,0,Z0,θX,θy,0)となる。
Therefore, the three-point measurement surface posture position correction value is (0, 0, Z0, θX, θy, 0).

【0052】ここで、(0,0,Z0,θX,θy,
0)は、姿勢変更補正値(θX,θy,0)と位置変更
補正値(0,0,Z0)をまとめて表記したものとす
る。
Here, (0, 0, Z0, θX, θy,
0) is the collective description of the posture change correction value (θX, θy, 0) and the position change correction value (0, 0, Z0).

【0053】以上の方法で姿勢位置変更補正値を演算す
ると姿勢修正のための動き量が最少となり、補正時に加
工用ツールのホルダー部分等にワークを衝突させる危険
性を避けることができる。
When the posture position change correction value is calculated by the above method, the amount of movement for posture correction is minimized, and it is possible to avoid the risk of colliding the work with the holder portion or the like of the machining tool during correction.

【0054】次に、二点計測面姿勢位置補正値を得る方
法について説明する。先ず、計測方法として前述の図8
(I)(II) の如く計測を行った場合について説明する
と、各点計測時にロボット現在位置(直交座標系)とし
て、次のように前記計測用直交座標系上の位置及び姿勢
角が得られるものとする(一定の計測姿勢が保たれる結
果、各点に関する姿勢角が同値となる)。
Next, a method of obtaining the two-point measurement surface attitude position correction value will be described. First, as a measurement method, FIG.
The case where the measurement is performed as in (I) and (II) will be described. The position and posture angle on the measurement orthogonal coordinate system are obtained as the robot current position (orthogonal coordinate system) at each point measurement as follows. (As a result of maintaining a constant measurement posture, the posture angles for each point have the same value).

【0055】計測基準点(2ORG’点)に関して ロボット位置(x4,y4,z4)、姿勢角(Tx1,
Ty1,Tz1) 計測参照点(2XX’点)に関して ロボット位置(x5,y5,z5)、姿勢角(Tx1,
Ty1,Tz1) が得られる。
Regarding the measurement reference point (2ORG 'point), the robot position (x4, y4, z4) and posture angle (Tx1,
Ty1, Tz1) Regarding the measurement reference point (2XX 'point), robot position (x5, y5, z5), posture angle (Tx1,
Ty1, Tz1) is obtained.

【0056】ここで、図8のように計測用直交座標系の
X軸方向が計測器の計測方向と合致している場合は、X
軸座標値のみ同時に得られる各差分値(2ORG−2O
RG’,2XX−2XX’)を各々加減することにより
各計測点のX軸方向の座標値が特定できる。前記座標値
はその演算後の値とする。ここで得られる現在位置は各
点計測位置での前記制御点の空間位置及び姿勢を示して
いる。
Here, if the X-axis direction of the measurement orthogonal coordinate system matches the measurement direction of the measuring instrument as shown in FIG.
Each difference value (2ORG-20
The coordinate value of each measurement point in the X-axis direction can be specified by adjusting (RG ', 2XX-2XX'). The coordinate value is a value after the calculation. The current position obtained here indicates the spatial position and orientation of the control point at each point measurement position.

【0057】本説明では、計測基準点(3ORG’点)
が制御点として登録設定されているものとする。このた
め、求められた各点座標値(x4,y4,z4)、(x
5,y5,z5)から、さらに計測基準点(2ORG’
点)即ち座標点(x4,y4,z4)を通り計測用直交
座標系のZ軸と平行な線に対して線対称な点(2ORG
x,2ORGy,2ORGz)、(2XXx,2XX
y,2XXz)の座標値を次のように求める。
In this description, the measurement reference points (3ORG 'points)
Is registered and set as a control point. Therefore, the calculated coordinate values of each point (x4, y4, z4), (x
5, y5, z5), the measurement reference point (2ORG '
Point), that is, a point (2ORG that is line-symmetrical with respect to a line that passes through the coordinate points (x4, y4, z4) and is parallel to the Z axis of the orthogonal coordinate system for measurement.
x, 2ORGy, 2ORGz), (2XXx, 2XX
The coordinate value of y, 2XXz) is calculated as follows.

【0058】計測基準点(2ORG’点)に関して、 2ORGx=x4 2ORGy=y4 2ORGz=z4 計測参照点(2XX’点)に関して、 2XXx=x4+(x4−x5) 2XXy=y4+(y4−y5) 2XXz=z5 として、各計測点の空間座標値が得られる。このように
して得られる各計測点座標値は、図7(II)に示される計
測状態での各点位置を表すことになる。
Regarding the measurement reference point (2ORG 'point), 2ORGx = x4 2ORGy = y4 2ORGz = z4 Regarding the measurement reference point (2XX' point), 2XXx = x4 + (x4-x5) 2XXy = y4 + (y4-y5) 2XXz = The spatial coordinate value of each measurement point is obtained as z5. The coordinate value of each measurement point thus obtained represents the position of each point in the measurement state shown in FIG. 7 (II).

【0059】以上、便宜上図8 (I)(II) を用いて説明
したが、図7(II)に示される如く各点を一度に計測した
場合は上記演算を行う必要がないことは言うまでもな
い。但し、この場合は予め計測用直交座標系のY軸及び
Z軸方向に関する各点の空間位置関係が解っているもの
とする。このようにして求められた各計測点の空間位置
を図11に於いて(2ORG’点,2XX’点)で表
す。
Although the above description has been made with reference to FIGS. 8 (I) and (II) for the sake of convenience, it is needless to say that the above calculation need not be performed when each point is measured at once as shown in FIG. 7 (II). . However, in this case, it is assumed that the spatial positional relationship of each point in the Y-axis and Z-axis directions of the orthogonal measurement coordinate system is known in advance. The spatial position of each measurement point thus obtained is represented by (2ORG 'point, 2XX' point) in FIG.

【0060】ここで、図11に従い二点計測面の各点計
測値(2ORG’,2XX’)より計測基準点(2OR
G’点)を中心とし計測面に垂直方向の軸及び計測参照
点方向の軸を除外した他の直交した一軸(Z軸)の軸廻
り方向の姿勢差成分(θZ)と、計測面に垂直な軸(X
軸)方向の位置差成分(X0)を演算する方法即ち二点
計測面姿勢位置補正値を得る方法について説明する。
Here, according to FIG. 11, the measurement reference point (2OR) is calculated from the measured values (2ORG ', 2XX') of each point on the two-point measurement surface.
G'point is the center, and the axis perpendicular to the measurement plane and the axis of the measurement reference point are excluded, and the other posture difference component (θZ) around the axis of one orthogonal axis (Z axis) and the measurement plane Axis (X
A method of calculating the position difference component (X0) in the (axis) direction, that is, a method of obtaining the two-point measurement surface posture position correction value will be described.

【0061】先ず、この内の計測参照点(2XX’点)
が、計測基準点(2ORG’点)を通り且つ計測用直交
座標系のXY軸がなす平面に平行な面に投影する点(2
XX”点)の座標値(xb,yb,zb)を次のように
求める。
First, the measurement reference point (2XX 'point) in this
Is a point that is projected on a plane that passes through the measurement reference point (2ORG 'point) and is parallel to the plane formed by the XY axes of the measurement orthogonal coordinate system (2
The coordinate value (xb, yb, zb) of the XX "point) is obtained as follows.

【0062】xb=x5 yb=y5 zb=z4 次に、前記計測基準点(2ORG’点)及び投影点(2
XX”点)が計測基準点(2ORG’点)を通り且つ計
測用直交座標系のYZ軸がなす平面に平行な面に面対称
に投影する点(2O点)、及び(2X点)の座標値(2
Ox,2Oy,2Oz)及び(2Xx,2Xy,2X
z)を次のように求める。
Xb = x5 yb = y5 zb = z4 Next, the measurement reference point (2ORG ′ point) and the projection point (2
XX "point) passes through the measurement reference point (2ORG 'point) and is projected symmetrically on a plane parallel to the plane formed by the YZ axis of the measurement orthogonal coordinate system (2O point), and the coordinates of (2X point) Value (2
Ox, 2Oy, 2Oz) and (2Xx, 2Xy, 2X
z) is calculated as follows.

【0063】計測基準点(2ORG’点)の投影点(2
O点)に関して、 2Ox=x4 2Oy=y4 2Oz=z4 投影点(2XX”点)の投影点(2X点)に関して、 2Xx=xb 2Xy=yb 2Xz=z4+(z4−zb) このようにして求められた各投影点を図11に於いて
(2O点)、(2X点)で表す。ここで、(2O点)を
原点とし、(2X点)を直交一軸上の点とし、さらに
(2O点)を通り且つ計測用直交座標系のX軸と平行な
直線上の架空の点(2Y点)を他の直交軸で作られる平
面上の点即ち該他の直交軸の方向のみを表す点とみなし
た直交座標系(以降二点計測面演算座標系と定義する)
を演算定義すると、該二点計測面演算座標系と前記計測
用直交座標系のX軸、Y軸に関する回転姿勢差がなくな
る。このため、該二点計測面演算座標系から見た計測基
準点(2ORG’点)計測時のロボット姿勢を演算する
と該座標系上のロボット姿勢角(Tx1,Ty1,Tz
0)が得られ、前述のX軸、Y軸に関する回転姿勢角は
(Tx1,Ty1)となる。既に計測基準点(2OR
G’点)計測時に計測用直交座標系上のロボット位置
(x4,y4,z4)及び姿勢角(Tx1,Ty1,T
z1)が得られているので、この内の姿勢角について、
その差を次のように演算すると計測基準点(2ORG’
点)を中心とし計測面に垂直方向の軸及び計測参照点方
向の軸を除外した他の直交した一軸の軸廻り方向の姿勢
差成分(θz)が得られる。
The projection point (2) of the measurement reference point (2ORG 'point)
O point), 2Ox = x4 2Oy = y4 2Oz = z4 Regarding the projection point (2X point) of the projection point (2XX ″ point), 2Xx = xb 2Xy = yb 2Xz = z4 + (z4-zb) Each projected point is represented by (2O point) and (2X point) in Fig. 11. Here, (2O point) is the origin, (2X point) is a point on one orthogonal axis, and further (2O point). An imaginary point (2Y point) on a straight line passing through and parallel to the X axis of the orthogonal coordinate system for measurement is regarded as a point on a plane formed by another orthogonal axis, that is, a point representing only the direction of the other orthogonal axis. Cartesian coordinate system (hereinafter defined as two-point measurement plane calculation coordinate system)
Is defined, there is no difference in rotational attitude between the two-point measurement plane calculation coordinate system and the measurement orthogonal coordinate system with respect to the X axis and the Y axis. Therefore, when the robot posture at the time of measuring the measurement reference point (2ORG ′ point) viewed from the two-point measurement plane calculation coordinate system is calculated, the robot posture angles (Tx1, Ty1, Tz on the coordinate system are calculated.
0) is obtained, and the rotation posture angle with respect to the X axis and the Y axis is (Tx1, Ty1). Already the measurement reference point (2OR
G'point) Robot position (x4, y4, z4) and posture angle (Tx1, Ty1, T on the orthogonal coordinate system for measurement at the time of measurement)
z1) is obtained, the attitude angle in this is
When the difference is calculated as follows, the measurement reference point (2ORG '
A posture difference component (θz) in the direction around the axis of another orthogonal one axis excluding the axis in the direction perpendicular to the measurement plane and the axis in the direction of the measurement reference point is obtained.

【0064】Z軸回りの姿勢差に関して θz=Tz0−Tz1 ここで計測時の計測姿勢を姿勢角(0,0,0)に保っ
た場合はTz1が0となり、Tz0が直接姿勢差成分と
なる。
Regarding Attitude Difference Around Z Axis θz = Tz0-Tz1 When the measurement attitude at the time of measurement is maintained at the attitude angle (0,0,0), Tz1 becomes 0 and Tz0 becomes a direct attitude difference component. .

【0065】一方、基準点(2ORG’点)に関する計
測面に垂直な軸方向(X軸)の位置差成分を(X0)と
すると、(2ORG−2ORG’)そのものであるか
ら、その極性を位置差が縮まる方向に選定すればよい。
On the other hand, if the position difference component in the axial direction (X axis) perpendicular to the measurement surface with respect to the reference point (2ORG 'point) is (X0), it is (2ORG-2ORG') itself, so its polarity is the position. It may be selected in the direction in which the difference is reduced.

【0066】即ち、X軸方向の位置差に関して、 X0=2ORG−2ORG’ となる。That is, regarding the position difference in the X-axis direction, X0 = 2ORG-2ORG '.

【0067】但し、通常姿勢の補正は制御点を中心とし
て補正回転するのが一般的であり、本説明では前述の如
く三点計測面上の計測基準点(3ORG’点)が既に制
御点として登録設定されているものとしているので、こ
こで得られた補正値で補正すると計測基準点(2OR
G’点)の位置がずれてしまう。このため、得られた二
点計測面姿勢補正値に応じて、例えば次のような演算を
行う必要が生じる。
However, in the correction of the normal posture, the correction rotation is generally performed around the control point, and in this description, the measurement reference point (3ORG 'point) on the three-point measurement surface is already set as the control point as described above. Since it is assumed that the registration setting has been made, if correction is performed using the correction value obtained here, the measurement reference point (2OR
The position of point G ') is displaced. Therefore, for example, the following calculation needs to be performed according to the obtained two-point measurement surface orientation correction value.

【0068】ここで、得られた姿勢差演算補正値をθと
し、計測用直交座標系に関して制御点から見た計測基準
点(2ORG’点)の位置を(x,y)とすると、回転
後の位置(X,Y)は X=±y・SINθ+x・COSθ Y=y・COSθ±x・SINθ で表される。(上式で±符号はその時の基準点の位置関
係により、どちらかを選択する) 従って、位置補正量は、X軸に関する位置補正量(d
X)は、 dX=X−x Y軸に関する位置補正量(dY)は、 dY=Y−y となる。
Here, when the obtained attitude difference calculation correction value is θ and the position of the measurement reference point (2ORG ′ point) viewed from the control point with respect to the measurement orthogonal coordinate system is (x, y), after rotation. The position (X, Y) is represented by X = ± y · SINθ + x · COSθ Y = y · COSθ ± x · SINθ. (The ± sign in the above formula selects either one depending on the positional relationship of the reference points at that time.) Therefore, the position correction amount is the position correction amount (d
X) is: dX = X−x The position correction amount (dY) on the Y axis is dY = Y−y.

【0069】従って、二点計測面姿勢位置補正値は(X
0+dX,dY,0,0,0,θz)となる。ここで、
(X0+dX,dY,0,0,0,θz)は、姿勢変更
補正値(0,0,θz)と位置変更補正値(X0+d
X,dY,0)をまとめて表記したものとする。
Therefore, the two-point measurement surface posture position correction value is (X
0 + dX, dY, 0, 0, 0, θz). here,
(X0 + dX, dY, 0, 0, 0, θz) is the posture change correction value (0, 0, θz) and the position change correction value (X0 + d
(X, dY, 0) are collectively described.

【0070】次に、一点計測面姿勢位置補正値を得る方
法について説明する。
Next, a method for obtaining the one-point measurement surface posture position correction value will be described.

【0071】先ず、計測方法として前述の図9(II)の
如く計測を行った場合について説明すると、計測時にロ
ボット現在位置(直交座標系)として、次のように前記
計測用直交座標系上の位置及び姿勢角が得られるものと
する(一定の計測姿勢が保たれる結果、姿勢角が同値と
なる)。
First, the case where the measurement is performed as shown in FIG. 9 (II) will be described as a measuring method. The robot current position (orthogonal coordinate system) at the time of measurement is as follows on the measuring orthogonal coordinate system. It is assumed that the position and the attitude angle are obtained (as a result of maintaining a constant measurement attitude, the attitude angles have the same value).

【0072】計測基準点(1ORG’点)に関して ロボット位置(x6,y6,z6)、姿勢角(Tx1,
Ty1,Tz1) が得られる。
Regarding the measurement reference point (1ORG 'point), the robot position (x6, y6, z6) and posture angle (Tx1,
Ty1, Tz1) is obtained.

【0073】ここで、図9のように計測用直交座標系の
Y軸方向が計測器の計測方向と合致している場合は、Y
軸座標値のみ同時に得られる差分値(1ORG−1OR
G’)を加減することにより計測点のY軸方向の座標値
が特定できる。前記座標値はその演算後の値とする。一
方、基準点(1ORG’点)に関する計測面に垂直な軸
(Y軸)方向の位置差成分を(Y0)とすると、(1O
RG−1ORG’)そのものであるから、その極性を位
置差が縮まる方向に選定すればよい。即ち、Y軸方向の
位置差に関して、 Y0=1ORG−1ORG’ となる。
Here, when the Y-axis direction of the measurement orthogonal coordinate system matches the measurement direction of the measuring instrument as shown in FIG.
Difference value (1ORG-1OR) that can be obtained at the same time only axis coordinate values
By adjusting G ′), the coordinate value of the measurement point in the Y-axis direction can be specified. The coordinate value is a value after the calculation. On the other hand, assuming that the position difference component in the direction of the axis (Y axis) perpendicular to the measurement surface with respect to the reference point (1ORG 'point) is (Y0), (1O
RG-1ORG ′) itself, its polarity may be selected in the direction in which the positional difference is reduced. That is, regarding the position difference in the Y-axis direction, Y0 = 1ORG-1ORG '.

【0074】従って、一点計測面姿勢位置補正値は
(0,Y0,0,0,0,0)となる。ここで、(0,
Y0,0,0,0,0)は、姿勢変更補正値(0,0,
0)と位置変更補正値(0,Y0,0)をまとめて表記
したものとする。
Therefore, the one-point measurement surface posture position correction value is (0, Y0, 0, 0, 0, 0). Where (0,
Y0,0,0,0,0) is the posture change correction value (0,0,
0) and the position change correction value (0, Y0, 0) are collectively described.

【0075】以上、説明の便宜上、各計測面の姿勢位置
補正値を得る方法に関して、各々独立した状態で説明し
たが、各計測面に対する補正を任意に組み合わせてもよ
いことは言うまでもない。
As described above, for the sake of convenience of description, the method of obtaining the attitude position correction value of each measurement surface has been described in an independent state, but it goes without saying that the corrections for each measurement surface may be arbitrarily combined.

【0076】但し、その際には、最初に任意の計測面を
計測した後にその計測結果に従って補正を行った後、次
の面の計測を行うことで同等の結果が得られる。
However, in that case, the same result can be obtained by first measuring an arbitrary measurement surface, correcting it according to the measurement result, and then measuring the next surface.

【0077】ここで、各計測面を組み合わせた例とし
て、三点、二点及び一点計測面を計測して、同姿勢位置
補正値を得るようにする場合につき、説明する。
Here, as an example in which the respective measurement planes are combined, the case where three-point, two-point and one-point measurement planes are measured to obtain the same posture position correction value will be described.

【0078】先ず、補正計測に先立ってロボットにサン
プルとなるワークを把持させた後、所定計測位置で所定
姿勢を保ちながら、該ワーク上の三点計測面の各計測点
(三点)を計測し、その計測値を採取し、比較用距離基
準値として記憶する。次に計測姿勢を変化させないよう
に該ワーク上の二点計測面の各計測点(二点)を計測
し、その計測値を採取し、比較用距離基準値として記憶
する。さらに、計測姿勢を変化させないように該ワーク
上の一点計測面の計測点(一点)を計測し、その計測値
を採取し、比較用距離基準値として記憶する。
First, before the correction measurement, the robot grips a sample work, and then measures each measurement point (three points) on the three-point measurement surface while maintaining a predetermined posture at a predetermined measurement position. Then, the measured value is sampled and stored as a comparative distance reference value. Next, each measurement point (two points) on the two-point measurement surface on the workpiece is measured so as not to change the measurement posture, and the measured value is sampled and stored as a comparative distance reference value. Further, a measurement point (one point) on one point measurement surface on the work is measured so as not to change the measurement posture, and the measured value is sampled and stored as a comparative distance reference value.

【0079】このようにして、各計測点に関し次のよう
な比較用距離基準値が得られる。
In this way, the following comparative distance reference value is obtained for each measurement point.

【0080】計測基準点(3ORG点)に関する比較用
距離基準値として、(3ORG)、計測参照点(3XX
点)に関する比較用距離基準値として、(3XX)、計
測参照点(3XY点)に関する比較用距離基準値とし
て、(3XY)、計測基準点(2ORG点)に関する比
較用距離基準値として、(2ORG)、計測参照点(2
XX点)に関する比較用距離基準値として、(2X
X)、計測基準点(1ORG点)に関する比較用距離基
準値として、(1ORG)。
As the comparative distance reference value regarding the measurement reference point (3ORG point), (3ORG), the measurement reference point (3XX)
(3XX) as the comparison distance reference value for the point), (3XY) as the comparison distance reference value for the measurement reference point (3XY point), (2ORG as the comparison distance reference value for the measurement reference point (2ORG point) ), Measurement reference point (2
As a comparative distance reference value for (XX point), (2X
X), (1ORG) as the distance reference value for comparison regarding the measurement reference point (1ORG point).

【0081】このように、比較用距離基準値は標準ワー
クを補正をかけないで所定位置で計測のみを行い、その
値を記憶しておき、それを基準値とすることで容易に決
定できる。
As described above, the comparative distance reference value can be easily determined by measuring only the predetermined position without correcting the standard work, storing the value, and setting it as the reference value.

【0082】また、場合により、その方法のみならず、
任意の固定値としても良いのは言うまでもない。次に、
ロボットに通常ワークを把持させた後、所定計測位置で
所定姿勢を保ちながら、該ワーク上の三点計測面の各計
測点(三点)を計測し、その計測値を採取し、予め記憶
している各計測点毎の比較用距離基準値と比較し、前述
の如く三点計測面姿勢位置補正値を演算し、同補正値
(0,0,Z0,θX,θy,0)を得る。次に該補正
値に従ってロボット姿勢位置を補正した後、該ワーク上
の二点計測面の各計測点(二点)を計測し、その計測値
を採取し、予め記憶している各計測点毎の比較用距離基
準値と比較し、前述の如く二点計測面姿勢位置補正値を
演算し、同補正値(X0+dX,dY,0,0,0,θ
z)を得た後予め記憶している三点計測面姿勢位置補正
値と加算し、新たな補正値(X0+dX,dY,Z0,
θX,θy,θz)を得る。次に該補正値に従ってロボ
ット姿勢位置を補正した後、該ワーク上の一点計測面の
各計測点(一点)を計測し、その計測値を採取し、予め
記憶している該当の比較用距離基準値と比較し、前述の
如く一点計測面姿勢位置補正値を演算し、同補正値
(0,Y0,0,0,0,0)を得る。このようにして
得られた各計測面毎の三種類の補正値を加算すると、総
合補正値として、(X0+dX,Y0+dY,Z0,θ
X,θy,θz)を得ることができる。
In some cases, not only that method,
It goes without saying that any fixed value may be used. next,
After the robot normally grips the work, each measurement point (three points) on the three-point measurement surface on the work is measured while maintaining the predetermined posture at the predetermined measurement position, and the measured values are collected and stored in advance. The measured distance is compared with the reference distance reference value for each measurement point, and the three-point measurement surface attitude position correction value is calculated as described above to obtain the same correction value (0, 0, Z0, θX, θy, 0). Next, after correcting the robot posture position according to the correction value, each measurement point (two points) on the two-point measurement surface on the workpiece is measured, and the measurement value is sampled and stored in advance for each measurement point. And the two-point measurement surface posture position correction value is calculated as described above, and the correction value (X0 + dX, dY, 0, 0, 0, θ) is calculated.
After obtaining z), it is added to the three-point measurement surface posture position correction value stored in advance to obtain a new correction value (X0 + dX, dY, Z0,
θX, θy, θz) is obtained. Next, after correcting the robot posture position according to the correction value, each measurement point (one point) on the one-point measurement surface on the work is measured, the measured value is sampled, and the corresponding comparison distance reference stored in advance. By comparing with the value, the one-point measurement surface posture position correction value is calculated as described above, and the same correction value (0, Y0, 0, 0, 0, 0) is obtained. When the three types of correction values for each measurement surface obtained in this way are added, the total correction value is (X0 + dX, Y0 + dY, Z0, θ
X, θy, θz) can be obtained.

【0083】ここで、特筆することは、計測用直交座標
系の軸方向即ちロボット座標系に対する計測用直交座標
系の姿勢角と、計測姿勢即ち計測時の制御点のロボット
座標系に対する姿勢角とを一致させ、前述のような方法
で総合補正値を演算することにより、その得られた演算
値を所定作業位置でのロボットに対するシフト補正値と
して使用することができ、該作業位置でのティーチング
が任意の位置姿勢でなされていてもその時のワークの姿
勢及び位置ズレ方向に応じて容易に補正することができ
るということである。
Here, it should be noted that the attitude angle of the measurement Cartesian coordinate system with respect to the axial direction of the measurement Cartesian coordinate system, that is, the robot coordinate system, and the measurement attitude, that is, the attitude angle of the control point at the time of measurement with respect to the robot coordinate system. And the total correction value is calculated by the method as described above, the obtained calculated value can be used as a shift correction value for the robot at a predetermined work position, and teaching at the work position can be performed. This means that even if the work is performed in an arbitrary position and posture, it can be easily corrected according to the posture and the position shift direction of the work at that time.

【0084】以上、説明として、三点計測面、二点計測
面、一点計測面の順で計測する方法に関して記述した
が、計測の順番は任意でよいことは言うまでもない。
As described above, the method of measuring in the order of the three-point measuring surface, the two-point measuring surface, and the one-point measuring surface has been described, but it goes without saying that the measuring order may be arbitrary.

【0085】さらに、各点毎の比較用距離基準値に他の
プリセット値を加減算して、ワーク加工作業時の加工時
姿勢及び位置を微調整しても良いことは言うまでもな
い。
Further, it goes without saying that it is also possible to finely adjust the processing posture and position during the work processing operation by adding or subtracting other preset values to the reference distance reference value for each point.

【0086】[0086]

【発明の効果】以上の説明から明らかなように、産業用
ロボットのワーク加工作業に於いて、ワークに生じてい
るバリ等によりそれを把持する際に生じる掴み誤差があ
った場合でも、この発明の方法によつて得られた姿勢位
置補正値に基づいて、所定作業位置でロボットの姿勢と
位置を補正することにより所期通りの繰り返し加工精度
が容易に得られる。また、この発明の方法によれば、ワ
ーク掴みズレのみでなく、鋳物鋳造等に於けるワーク寸
法誤差を吸収する効果もあり、生産性の向上を図ること
が可能になり産業に寄与する。
As is apparent from the above description, in the work processing work of the industrial robot, even when there is a grip error generated when gripping the work due to burrs or the like generated on the work, the present invention By correcting the posture and position of the robot at a predetermined work position based on the posture position correction value obtained by the method described above, it is possible to easily obtain the desired repeat machining accuracy. Further, according to the method of the present invention, not only the work grip misalignment, but also the effect of absorbing the work size error in casting or the like is absorbed, and it is possible to improve the productivity and contribute to the industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例の各計測点を示した説明図
である。
FIG. 1 is an explanatory diagram showing each measurement point according to an embodiment of the present invention.

【図2】 同計測器とワーク計測姿勢の位置関係を示し
た説明図である。
FIG. 2 is an explanatory diagram showing a positional relationship between the measuring instrument and a workpiece measurement posture.

【図3】 同計測器とワーク計測姿勢の位置関係の他の
一例を示した説明図である。
FIG. 3 is an explanatory diagram showing another example of the positional relationship between the measuring instrument and the workpiece measurement posture.

【図4】 同計測器とワーク計測姿勢の位置関係の他の
一例を示した説明図である。
FIG. 4 is an explanatory diagram showing another example of the positional relationship between the measuring instrument and the workpiece measurement posture.

【図5】 (I)(II)(III)は同三点計測面を計測すると
きの位置関係を示した説明図である。
5 (I), (II), and (III) are explanatory views showing a positional relationship when measuring the same three-point measurement surface.

【図6】 (I)(II)(III)は同三点計測面を計測する方
法の他の一例を示した説明図である。
6 (I) (II) (III) are explanatory views showing another example of the method for measuring the same three-point measurement surface.

【図7】 (I)(II)(III)は同二点計測面を計測すると
きの位置関係を示した説明図である。
7 (I), (II) and (III) are explanatory views showing a positional relationship when measuring the same two-point measurement surface.

【図8】 (I)(II) は同二点計測面を計測する方法の
他の一例を示した説明図である。
8 (I) and (II) are explanatory views showing another example of the method of measuring the same two-point measurement surface.

【図9】 (I)(II)(III)は同一点計測面を計測すると
きの位置関係を示した説明図である。
9 (I), (II), and (III) are explanatory views showing a positional relationship when measuring the same point measurement plane.

【図10】 同三点計測面の補正値を得る方法を示した
説明図である。
FIG. 10 is an explanatory diagram showing a method of obtaining a correction value for the same three-point measurement surface.

【図11】 同二点計測面の補正値を得る方法を示した
説明図である。
FIG. 11 is an explanatory diagram showing a method of obtaining a correction value for the two-point measurement surface.

【符号の説明】[Explanation of symbols]

1 ロボットフランジ、2 ハンド、3 ワーク、4−
1〜4−6 計測器、5計測用直交座標系
1 Robot flange, 2 hands, 3 workpieces, 4-
1-4-6 Measuring instrument, Cartesian coordinate system for 5 measurements

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 ロボットにワークを把持させた後に、所
定位置で所定姿勢を保ちながら、任意の直交座標系の軸
方向に合わせて該所定位置に設置された計測器により、
該ワークの任意の一面に三点計測面として予め設けられ
た一点の計測基準点及び二点の計測参照点までの距離を
各々計測して各々の比較用距離基準値と比較しその差分
から前記計測基準点位置を中心とし計測面に垂直方向の
軸を除外した他の直交した二軸の軸廻り方向の姿勢差成
分を演算しロボットの姿勢変更補正値としさらに前記計
測基準点に関する差分から計測面に垂直な軸方向位置差
成分を演算しロボットの位置変更補正値としそれらを合
算して三点計測面姿勢位置補正値とし、所定作業位置で
該補正値に基づいてロボットの姿勢と位置を補正するこ
とを特徴とする産業用ロボットの姿勢位置補正方法。
1. A measuring instrument installed at a predetermined position according to an axial direction of an arbitrary rectangular coordinate system while holding a predetermined posture at a predetermined position after a robot grips a work.
The distances to one measurement reference point and two measurement reference points, which are provided in advance as three-point measurement surfaces on any one surface of the workpiece, are respectively measured, and the distances are compared with respective comparison distance reference values, and the difference is used to calculate the distance. The posture difference component in the direction around the axis of the other two orthogonal axes excluding the axis in the direction perpendicular to the measurement plane, centered on the position of the measurement reference point, is used as the robot posture change correction value and further measured from the difference with respect to the measurement reference point. The axial position difference component perpendicular to the plane is calculated and used as the position change correction value of the robot, and these are added together to form the three-point measurement plane posture position correction value, and the robot posture and position based on the correction value at the specified work position. A method for correcting posture position of an industrial robot, characterized in that
【請求項2】 請求項1記載の産業用ロボットの姿勢位
置補正方法によりロボットの姿勢と位置を補正した後
に、さらにワークの他の任意の一面に一点計測面として
予め設けられた一点の計測基準点までの距離を計測して
比較用距離基準値と比較しその差分から前記計測基準点
位置を中心とし計測面に垂直な軸方向位置差成分を演算
してロボットの一点計測面位置補正値とし、さらに前記
三点計測面姿勢位置補正値と合算して三点及び一点計測
面姿勢位置補正値とし、所定作業位置で該補正値に基づ
いてロボットの姿勢と位置を補正することを特徴とする
産業用ロボットの姿勢位置補正方法。
2. A measurement reference for one point provided as a one-point measurement surface on another arbitrary surface of the work after the attitude and position of the robot are corrected by the attitude position correction method for an industrial robot according to claim 1. The distance to a point is measured and compared with a distance reference value for comparison, and the axial position difference component, which is centered on the measurement reference point position and is perpendicular to the measurement surface, is calculated from the difference as the robot one point measurement surface position correction value. Further, it is characterized in that the robot further corrects the posture and position of the robot based on the correction values at a predetermined work position by adding the three-point measurement surface posture position correction values to obtain three-point and one-point measurement surface posture position correction values. Attitude position correction method for industrial robots.
【請求項3】 請求項1記載の産業用ロボットの姿勢位
置補正方法によりロボットの姿勢と位置を補正した後
に、さらにワークの他の任意の一面に二点計測面として
予め設けられた一点の計測基準点及び一点の計測参照点
までの距離を各々計測して各々の比較用距離基準値と比
較しその差分から前記計測基準点位置を中心とし計測面
に垂直方向の軸及び計測参照点方向の軸を除外した他の
直交した一軸の軸廻り方向の姿勢差成分を演算しロボッ
トの姿勢変更補正値としさらに前記計測基準点に関する
差分から計測面に垂直な軸方向位置差成分を演算しロボ
ットの位置変更補正値としそれらを合算して二点計測面
姿勢位置補正値とし、さらに前記三点計測面姿勢位置補
正値と合算して三点及び二点計測面姿勢位置補正値と
し、所定作業位置で該補正値に基づいてロボットの姿勢
と位置を補正することを特徴とする産業用ロボットの姿
勢位置補正方法。
3. After the posture and position of the robot are corrected by the posture position correction method for an industrial robot according to claim 1, measurement of one point previously provided as a two-point measurement surface on another arbitrary surface of the work. The distances to the reference point and one measurement reference point are respectively measured and compared with respective comparison distance reference values, and from the difference between the measurement reference point position and the axis perpendicular to the measurement surface and the measurement reference point direction. The posture difference component in the direction around the axis of another orthogonal one axis excluding the axis is calculated to be the posture change correction value of the robot, and the axial position difference component perpendicular to the measurement surface is calculated from the difference regarding the measurement reference point to calculate the robot position. The position change correction values are added together to form a two-point measurement surface attitude position correction value, and the three-point measurement surface attitude position correction value is added to form a three-point and two-point measurement surface attitude position correction value, and a predetermined work position And the supplement A posture position correction method for an industrial robot, characterized in that the posture and position of a robot are corrected based on a positive value.
【請求項4】 請求項3記載の産業用ロボットの姿勢位
置補正方法によりロボットの姿勢と位置を補正した後
に、さらにワークの他の任意の一面に一点計測面として
予め設けられた一点の計測基準点までの距離を計測して
比較用距離基準値と比較しその差分から前記計測基準点
位置を中心とし計測面に垂直な軸方向位置差成分を演算
してロボットの一点計測面位置補正値とし、さらに前記
三点及び二点計測面姿勢位置補正値と合算して三点、二
点及び一点計測面姿勢位置補正値とし、所定作業位置で
該補正値に基づいてロボットの姿勢と位置を補正するこ
とを特徴とする産業用ロボットの姿勢位置補正方法。
4. After the posture and position of the robot have been corrected by the industrial robot posture position correction method according to claim 3, one point measurement reference previously provided as a one point measurement face on another arbitrary surface of the work. The distance to a point is measured and compared with a distance reference value for comparison, and the axial position difference component, which is centered on the measurement reference point position and is perpendicular to the measurement surface, is calculated from the difference as the robot one point measurement surface position correction value. Further, the three-point and two-point measurement surface attitude position correction values are added to obtain three-point, two-point and one-point measurement surface attitude position correction values, and the robot attitude and position are corrected based on the correction values at a predetermined work position. A posture correction method for an industrial robot, comprising:
【請求項5】 ロボットにワークを把持させた後に、所
定位置で所定姿勢を保ちながら、任意の直交座標系の軸
方向に合わせて該所定位置に設置された計測器により、
該ワークの任意の一面に二点計測面として予め設けられ
た一点の計測基準点及び一点の計測参照点までの距離を
各々計測して各々の比較用距離基準値と比較しその差分
から前記計測基準点位置を中心とし計測面に垂直方向の
軸及び計測参照点方向の軸を除外した他の直交した一軸
の軸廻り方向の姿勢差成分を演算しロボットの姿勢変更
補正値としさらに前記計測基準点に関する差分から計測
面に垂直な軸方向位置差成分を演算しロボットの位置変
更補正値としそれらを合算して二点計測面姿勢位置補正
値とし、所定作業位置で該補正値に基づいてロボットの
姿勢と位置を補正することを特徴とする産業用ロボット
の姿勢位置補正方法。
5. A measuring instrument installed at a predetermined position according to an axial direction of an arbitrary rectangular coordinate system while maintaining a predetermined posture at a predetermined position after the robot grips the work.
The distances to one measurement reference point and one measurement reference point, which are previously provided as two-point measurement surfaces on any one surface of the work, are measured, and each distance is compared with each comparison distance reference value, and the measurement is performed from the difference. The posture difference component in the direction around the axis of another orthogonal one axis excluding the axis perpendicular to the measurement surface and the axis in the measurement reference point direction with the reference point position as the center is used as the robot posture change correction value, and the measurement reference The axial position difference component perpendicular to the measurement surface is calculated from the difference regarding the points and used as the position change correction value of the robot, and these are added together to form the two-point measurement surface posture position correction value, and the robot is based on the correction value at the predetermined work position. Posture correction method for an industrial robot, characterized in that the posture and position of the robot are corrected.
【請求項6】 請求項5記載の産業用ロボットの姿勢位
置補正方法によりロボットの姿勢と位置を補正した後
に、さらにワークの他の任意の一面に一点計測面として
予め設けられた一点の計測基準点までの距離を計測して
比較用距離基準値と比較しその差分から前記計測基準点
位置を中心とし計測面に垂直な軸方向位置差成分を演算
してロボットの一点計測面位置補正値とし、さらに前記
二点計測面姿勢位置補正値と合算して二点及び一点計測
面姿勢位置補正値とし、所定作業位置で該補正値に基づ
いてロボットの姿勢と位置を補正することを特徴とする
産業用ロボットの姿勢位置補正方法。
6. After the posture and position of the robot have been corrected by the industrial robot posture position correction method according to claim 5, a measurement reference of one point previously provided as a one-point measurement surface on another arbitrary surface of the work. The distance to a point is measured and compared with a distance reference value for comparison, and the axial position difference component, which is centered on the measurement reference point position and is perpendicular to the measurement surface, is calculated from the difference as the robot one point measurement surface position correction value. Further, it is characterized in that the two-point and one-point measurement plane posture position correction values are added to the two-point measurement plane posture position correction value, and the posture and position of the robot are corrected at a predetermined work position based on the correction values. Attitude position correction method for industrial robots.
【請求項7】 請求項5記載の産業用ロボットの姿勢位
置補正方法によりロボットの姿勢と位置を補正した後
に、さらにワークの他の任意の一面に三点計測面として
予め設けられた一点の計測基準点及び二点の計測参照点
までの距離を各々計測して各々の比較用距離基準値と比
較しその差分から前記計測基準点位置を中心とし計測面
に垂直方向の軸を除外した他の直交した二軸の軸廻り方
向の姿勢差成分を演算しロボットの姿勢変更補正値とし
さらに前記計測基準点に関する差分から計測面に垂直な
軸方向位置差成分を演算しロボットの位置変更補正値と
しそれらを合算して三点計測面姿勢位置補正値とし、さ
らに前記二点計測面姿勢位置補正値と合算して二点及び
三点計測面姿勢位置補正値とし、所定作業位置で該補正
値に基づいてロボットの姿勢と位置を補正することを特
徴とする産業用ロボットの姿勢位置補正方法。
7. The position and position of the robot are corrected by the method for correcting the position and position of an industrial robot according to claim 5, and then the measurement of one point previously provided as a three-point measurement surface on another arbitrary surface of the workpiece. The distances to the reference point and the two measurement reference points are respectively measured and compared with respective comparison distance reference values, and from the difference, the axis perpendicular to the measurement plane with the measurement reference point position as the center is excluded. The posture difference component in the directions around the axes of the two orthogonal axes is calculated as the robot posture change correction value, and the axial position difference component perpendicular to the measurement plane is calculated as the robot position change correction value from the difference related to the measurement reference point. The three-point measurement surface attitude position correction value is added together, and the two-point measurement surface attitude position correction value is added to the two-point and three-point measurement surface attitude position correction values, and the correction value is set at the predetermined work position. Robot based Posture correction method for an industrial robot, characterized in that the posture and position of the robot are corrected.
【請求項8】 請求項7記載の産業用ロボットの姿勢位
置補正方法によりロボットの姿勢と位置を補正した後
に、さらにワークの他の任意の一面に一点計測面として
予め設けられた一点の計測基準点までの距離を計測して
比較用距離基準値と比較しその差分から前記計測基準点
位置を中心とし計測面に垂直な軸方向位置差成分を演算
してロボットの一点計測面位置補正値とし、さらに前記
二点及び三点計測面姿勢位置補正値と合算して二点、三
点及び一点計測面姿勢位置補正値とし、所定作業位置で
該補正値に基づいてロボットの姿勢と位置を補正するこ
とを特徴とする産業用ロボットの姿勢位置補正方法。
8. A measurement reference for one point provided in advance as a one-point measurement surface on another arbitrary surface of the work after the attitude and position of the robot are corrected by the attitude position correction method for an industrial robot according to claim 7. The distance to a point is measured and compared with a distance reference value for comparison, and the axial position difference component, which is centered on the measurement reference point position and is perpendicular to the measurement surface, is calculated from the difference as the robot one point measurement surface position correction value. Further, the two-point, three-point, and one-point measurement plane posture position correction values are added together to obtain two-point, three-point, and one-point measurement plane posture position correction values, and the posture and position of the robot are corrected based on the correction values at a predetermined work position. A posture correction method for an industrial robot, comprising:
JP12825395A 1995-05-26 1995-05-26 Method for correcting attitude and position of industrial robot Pending JPH08320717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12825395A JPH08320717A (en) 1995-05-26 1995-05-26 Method for correcting attitude and position of industrial robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12825395A JPH08320717A (en) 1995-05-26 1995-05-26 Method for correcting attitude and position of industrial robot

Publications (1)

Publication Number Publication Date
JPH08320717A true JPH08320717A (en) 1996-12-03

Family

ID=14980287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12825395A Pending JPH08320717A (en) 1995-05-26 1995-05-26 Method for correcting attitude and position of industrial robot

Country Status (1)

Country Link
JP (1) JPH08320717A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017047479A (en) * 2015-08-31 2017-03-09 セイコーエプソン株式会社 Robot, control device and robot system
JP2019089148A (en) * 2017-11-13 2019-06-13 株式会社Ihi Processing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017047479A (en) * 2015-08-31 2017-03-09 セイコーエプソン株式会社 Robot, control device and robot system
JP2019089148A (en) * 2017-11-13 2019-06-13 株式会社Ihi Processing device

Similar Documents

Publication Publication Date Title
CN109483322B (en) Zero calibration method of five-axis numerical control machine tool
US8554502B2 (en) Method for calculating probe mounting position in on-machine measuring device
CN109454281B (en) Method for calibrating propeller workpiece coordinate system in robot milling
US20130282328A1 (en) Error measurment device and error measurement method
CN112070133B (en) Three-dimensional space point positioning method based on distance measuring instrument and machine vision
JPS61281305A (en) Articulated robot control device
JP2011173234A (en) Control method for machine tool
TWI604290B (en) Numerically controlled machine tool with spatial positional error compensation
CN113146613B (en) Three-dimensional self-calibration device and method for D-H parameters of industrial robot
WO2020230568A1 (en) Workpiece machining method and workpiece machining device
JP2014075031A (en) Geometrical error identification method and numerical control method, numerical control device, and machining center using the same
CN211440081U (en) Robot calibration device at zero point
JP2011224672A (en) Deriving method and calibration method for tool vector of robot
US20090228144A1 (en) Method For Calculating Rotation Center Point And Axis Of Rotation, Method For Generating Program, Method For Moving Manipulator And Positioning Device, And Robotic System
JP2010064181A (en) Fixture-coordinate specification method for machining apparatus, and machining apparatus using the method
JPH08320717A (en) Method for correcting attitude and position of industrial robot
KR20220023271A (en) Method for measuring geometric errors of 5-axis machine tools
JP6628170B1 (en) Measurement system and measurement method
KR101581523B1 (en) Method for correcting tool parameter of robot
JP4847049B2 (en) Reference point error measuring method and polar coordinate control machining center in polar coordinate machining center
CN111922785A (en) Correction tool, machine tool virtual rotating shaft compensation method and system and five-axis machine tool
JP2010260119A (en) Method of automatically measuring correction value of spindle or attachment spindle
KR102577351B1 (en) Geometric error measuring method of five axis machine tool
JPH1019540A (en) Device for measuring layout data
JPH07182016A (en) Work path correcting method for robot

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040507

A02 Decision of refusal

Effective date: 20040910

Free format text: JAPANESE INTERMEDIATE CODE: A02