JPH08319186A - Cvd-siliconcarbide-coated member - Google Patents

Cvd-siliconcarbide-coated member

Info

Publication number
JPH08319186A
JPH08319186A JP14818795A JP14818795A JPH08319186A JP H08319186 A JPH08319186 A JP H08319186A JP 14818795 A JP14818795 A JP 14818795A JP 14818795 A JP14818795 A JP 14818795A JP H08319186 A JPH08319186 A JP H08319186A
Authority
JP
Japan
Prior art keywords
cvd
sic
film
oxygen
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14818795A
Other languages
Japanese (ja)
Other versions
JP3698372B2 (en
Inventor
Shuichi Takeda
修一 武田
Takeshi Inaba
毅 稲葉
Shigeo Kato
茂男 加藤
Masahiko Ichijima
雅彦 市島
Katsunori Sato
勝憲 佐藤
Yukio Ito
幸夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP14818795A priority Critical patent/JP3698372B2/en
Publication of JPH08319186A publication Critical patent/JPH08319186A/en
Application granted granted Critical
Publication of JP3698372B2 publication Critical patent/JP3698372B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a CVD-SiC coated member, capable of more preventing a semiconductor from being contaminated by diffusion of impurities and excellent in adhesion. CONSTITUTION: This CVD-SiC-coated member is obtained by coating the surface of a substrate having a lower thermal expansion coefficient than that of CVD- SiC with an SiC film containing oxygen according to CVD. The oxygen concentration of the SiC film containing the oxygen is continuously or stepwise increased from the surface of the film in the substrate direction and is <=0.05wt.% in the surface layer and <=25wt.% in the bonding area layer to the substrate. A silicon crystal substance is used as the substrate and the contained oxygen concentration in the SiC film has <=1wt.%/μm concentration gradient from the surface layer in the film thickness direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、CVD−SiC被覆部
材に関し、詳しくは、半導体製造における熱処理工程に
使用されるサセプター、ウエハボート、ダミーウエハ等
の部材として利用されるCVD−SiC被覆部材に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a CVD-SiC coated member, and more particularly to a CVD-SiC coated member used as a member such as a susceptor, a wafer boat and a dummy wafer used in a heat treatment process in semiconductor manufacturing.

【0002】[0002]

【従来の技術】従来から、半導体製造工程においては、
表面上にCVD−SiC膜を被覆したCVD−SiC被
覆部材が多く用いられている。CVD−SiC膜は、
(1)耐熱性、耐食性に優れる、(2)金属不純物の含
有量が極めて少ない、(3)基材内部の金属等の不純物
のウエハへの拡散を抑制できる、(4)緻密質で内在気
孔を有さず、高硬度で、研磨特性に優れる等の優れた特
性を有している。CVD−SiC被覆部材はこの表面の
CVD−SiC膜の特性をそのまま部材特性として保持
し、特に、半導体製造用の熱処理工程用治具として好適
に用いられている。熱処理工程用治具としてのCVD−
SiC被覆部材は、一般に、基材上に熱CVD処理法で
約20μm以上の膜厚で上記CVD−SiC膜が被覆さ
れている。このCVD−SiC被覆部材の基材としては
各種の耐熱材が用いられるが、従来、SiC膜との密着
性を確保するため等方性カーボン、炭化珪素(SiC)
と炭素(C)との混合物に珪素(Si)を反応させて得
られる反応焼結SiC(Si−SiC)、常圧焼結Si
C等の熱膨張係数がCVD−SiCに近似するものが用
いられている。
2. Description of the Related Art Conventionally, in the semiconductor manufacturing process,
A CVD-SiC coating member having a surface coated with a CVD-SiC film is often used. The CVD-SiC film is
(1) Heat resistance and corrosion resistance are excellent, (2) Content of metal impurities is extremely low, (3) Diffusion of impurities such as metal inside the substrate to the wafer can be suppressed, (4) Dense and internal pores It has excellent characteristics such as high hardness and excellent polishing characteristics. The CVD-SiC coated member retains the characteristics of the CVD-SiC film on the surface as it is as a member characteristic, and is particularly preferably used as a jig for a heat treatment process for semiconductor manufacturing. CVD as a jig for heat treatment process
In the SiC-coated member, a CVD-SiC film is generally coated on a base material by a thermal CVD treatment method so as to have a film thickness of about 20 μm or more. Various heat-resistant materials are used as the base material of the CVD-SiC coated member, but conventionally, isotropic carbon or silicon carbide (SiC) is used to ensure adhesion with the SiC film.
Sintered SiC (Si-SiC) obtained by reacting silicon (Si) with a mixture of carbon and carbon (C), normal pressure sintered Si
A material having a coefficient of thermal expansion similar to that of CVD-SiC such as C is used.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来から用い
られている熱膨張係数の近似する基材の殆どは不純物を
含有し、CVD−SiC膜に不純物拡散抑制作用がある
とはいえ、基材に含有される不純物がCVD−SiC膜
を通過して外部に拡散して汚染源となることが問題にさ
れている。そのため、例えば、特開昭64−61376
号公報では、不純物含有のSiC質系基材を用い、CV
D−SiC膜との中間にシリカ膜を形成することことを
提案し、不純物の拡散防止を著しく向上させている。ま
た、比較的不純物の少ない高純化処理した等方性カーボ
ンは、気孔率が高く内部に残留ガスを有するためCVD
で表面被覆した場合、内部ガスが膨張する等によりCV
D−SiC膜を剥離させることがある。上記従来のCV
D−SiC被覆部材が、SiC膜の不純物拡散抑制効果
の下に不純物含有基材の使用を前提とし、密着性から熱
膨張係数を合わせるように基材を選択していることに対
し、本発明は、治具等の装置部材からの不純物拡散によ
る半導体汚染をより一層防止することを目的とし、密着
性を基準にSiCの熱膨張係数に合う基材を選択するも
のでなく、不純物の多少を基準に基材を選択すると共
に、基材とCVD−SiC膜との密着性も良好となるよ
うにCVD−SiC膜の熱膨張係数を制御することを企
図した。
However, most of conventionally used base materials having a similar thermal expansion coefficient contain impurities, and although the CVD-SiC film has an impurity diffusion suppressing effect, It has been a problem that the impurities contained in (3) pass through the CVD-SiC film and diffuse to the outside to become a pollution source. Therefore, for example, Japanese Patent Laid-Open No. 64-61376.
In the publication, a SiC-based base material containing impurities is used, and CV
It is proposed to form a silica film in the middle of the D-SiC film, and the diffusion prevention of impurities is significantly improved. Further, the highly purified isotropic carbon having relatively few impurities has a high porosity and has a residual gas inside, so that it is CVD.
When the surface is coated with CV, the internal gas expands, etc.
The D-SiC film may be peeled off. Above-mentioned conventional CV
According to the present invention, the D-SiC coating member selects the base material so that the coefficient of thermal expansion is matched from the adhesiveness on the assumption that the base material containing the impurity is used under the effect of suppressing the impurity diffusion of the SiC film. Aims to further prevent semiconductor contamination due to impurity diffusion from device members such as jigs, and does not select a base material that matches the coefficient of thermal expansion of SiC on the basis of adhesiveness, but does not select the amount of impurities. It was attempted to select the base material as a reference and control the thermal expansion coefficient of the CVD-SiC film so that the adhesion between the base material and the CVD-SiC film was good.

【0004】[0004]

【課題を解決するための手段】本発明によれば、CVD
−SiCより小さな熱膨張係数を有する基材表面をCV
Dにより酸素含有SiC膜で被覆してなり、該酸素含有
SiC膜の酸素濃度が膜表面から基材方向に連続的にま
たは段階的に増加すると共に、表面層で0.05重量%
以下で、且つ、該基材との接合面層で25重量%以下で
あることを特徴とするCVD−SiC被覆部材が提供さ
れる。上記本発明のCVD−SiC被覆部材において、
前記SiC膜の含有酸素濃度が、前記表面層から膜厚方
向に1重量%/μm以下の濃度勾配を有することが好ま
しく、また表面層が10μm以上の厚さであることが好
ましく、さらに、急激なヒートサイクルに対する高い耐
熱衝撃性を得るためには、0.5〜0.1重量%/μm
とすることが好ましい。また、前記基材がシリコン結晶
体であることが好ましい。
According to the present invention, CVD
-CV is applied to the surface of the substrate having a thermal expansion coefficient smaller than that of SiC.
D is coated with an oxygen-containing SiC film, the oxygen concentration of the oxygen-containing SiC film increases continuously or stepwise from the film surface toward the substrate, and 0.05% by weight in the surface layer.
A CVD-SiC coated member is provided below, which is 25% by weight or less in a bonding surface layer with the base material. In the above CVD-SiC coated member of the present invention,
The concentration of oxygen contained in the SiC film preferably has a concentration gradient of 1% by weight / μm or less in the film thickness direction from the surface layer, and the surface layer preferably has a thickness of 10 μm or more. 0.5-0.1% by weight / μm in order to obtain high thermal shock resistance against various heat cycles
It is preferable that Further, it is preferable that the base material is a silicon crystal body.

【0005】[0005]

【作用】本発明は上記のように構成され、熱膨張係数に
よることなく基材を選択することができ、高純度材質を
選択して基材に使用でき、半導体製造用治具等のCVD
−SiC被覆部材として従来に比し、不純物拡散をより
一層低減することができる。また、CVD−SiC膜中
に、CVD−SiC膜の熱膨張が基材に合うようにその
濃度を制御して酸素を含有させ、且つ、表面から基材方
向に濃度勾配を有するように制御するため、基材とCV
D−SiC膜との密着性を向上させることができる。し
かも、表面層には酸素を含有せず、SiC単一組成とな
るため化学的安定等のCVD−SiC膜の優れた特性も
保持することができる。このため、本発明のCVD−S
iC被覆部材は、近年の高集積化半導体を高純度で、且
つ、高歩留で円滑に安定して製造することができ半導体
処理の信頼性を著しく高めることができる。
The present invention is configured as described above, and the base material can be selected without depending on the coefficient of thermal expansion, a high-purity material can be selected and used for the base material, and CVD for semiconductor manufacturing jigs and the like can be performed.
As an SiC-coated member, it is possible to further reduce impurity diffusion as compared with the conventional case. Further, in the CVD-SiC film, the concentration is controlled so that the thermal expansion of the CVD-SiC film matches the base material to contain oxygen, and the concentration is controlled so as to have a concentration gradient from the surface toward the base material. Therefore, the base material and CV
The adhesion with the D-SiC film can be improved. Moreover, since the surface layer does not contain oxygen and has a single composition of SiC, excellent characteristics of the CVD-SiC film such as chemical stability can be maintained. Therefore, the CVD-S of the present invention
The iC coating member can manufacture a highly integrated semiconductor of recent years with high purity, high yield, and smoothly and stably, and can significantly improve the reliability of semiconductor processing.

【0006】以下、本発明について詳しく説明する。本
発明のCVD−SiC被覆部材において、CVD法で酸
素含有SiCを被覆する基材は、CVD−SiC膜より
熱膨張係数が小さいものを適宜選択することができる。
CVD−SiC膜中に酸素を含有させてCVD−SiC
膜の熱膨張係数を低下させることができ、基材の熱膨張
係数に合わせるためである。CVD−SiC膜中に所定
量の酸素を制御して含有させることにより、実質的にS
iCとSiO2 との複合体となし、CVD−SiCと石
英ガラスの熱膨張係数の範囲にある任意の熱膨張係数を
有するCVD−SiC膜を形成することができる。この
範囲のCVD−SiC膜の熱膨張係数より小さい基材と
しては、特に、シリコン単結晶及びシリコン多結晶のシ
リコン結晶体を用いることが好ましい。シリコン結晶体
を基材として用いた本発明のCVD−SiC被覆部材
は、特に密着性に優れ熱的に安定な部材となる。
The present invention will be described in detail below. In the CVD-SiC coated member of the present invention, the base material coated with the oxygen-containing SiC by the CVD method can be appropriately selected from those having a smaller thermal expansion coefficient than the CVD-SiC film.
CVD-SiC film containing oxygen
This is because the coefficient of thermal expansion of the film can be lowered and the coefficient of thermal expansion of the substrate can be adjusted. By controlling and containing a predetermined amount of oxygen in the CVD-SiC film, S
A composite of iC and SiO 2 can be formed to form a CVD-SiC film having an arbitrary coefficient of thermal expansion within the range of the coefficients of thermal expansion of CVD-SiC and quartz glass. As the base material having a thermal expansion coefficient smaller than that of the CVD-SiC film in this range, it is particularly preferable to use silicon single crystal or silicon polycrystal silicon crystal. The CVD-SiC coated member of the present invention using a silicon crystal as a base material has a particularly excellent adhesion and becomes a thermally stable member.

【0007】本発明において、上記CVD−SiC膜中
に含有させる酸素量は、SiC膜の厚さ、基材の種類等
によって異なるが、CVD−SiC被覆部材の表面層、
例えば表面より10μm〜100μmの表面域におい
て、酸素濃度を0.05重量%以下に保持することが好
ましく、さらには、0.01重量%以下とすることがよ
り好ましい。表面層はSiC単体の組成とすることによ
り、耐蝕性等CVD−SiC膜の優れた特性を保持で
き、半導体製造の熱処理工程の各種部材として従来と同
様に好適に使用することができる。本発明においては、
上記のようにCVD−SiC膜表面から少なくとも厚さ
10μmは極微量の酸素濃度とする一方、更に、表面層
から膜内部即ち基材方向に酸素濃度を徐々に増加させ、
基材との接合面層において、その基材の熱膨張係数にほ
ぼ一致するような酸素濃度となるように制御することが
好ましい。この場合、酸素濃度は、上記CVD−SiC
膜表面の濃度から連続的に25%以下まで増加させるこ
とが好ましく、特に、表面を被覆する基材を上記のシリ
コン結晶体を用いる場合には、接合面層の酸素濃度は5
〜25重量%が好ましく、更には10〜20重量%がよ
り好ましい。尚、上記酸素濃度の増加は、段階的なもの
でも構わない。また、CVD−SiC膜の基材に向かう
厚さ方向に酸素濃度勾配は、表面層の厚さにより密着性
の良否に大きく影響されるが、一般的には、表面層の厚
さを一定とした場合には1重量%/μm以下が好まし
い。より好ましくは1〜0.1重量%/μm、更に好ま
しくは0.5〜0.1重量%/μmである。特に、急激
なヒートサイクルに対する高い耐熱衝撃性を得るために
は酸素濃度勾配を0.5〜0.1重量%/μmとするの
が好ましい。酸素濃度が25%を超えたり、酸素濃度勾
配が1重量%/μmより大きいと、いずれもSiCとS
iO2 との熱膨張係数の差が大きくなりすぎ、膜内部で
の歪みが大きく、膜自体に亀裂や破損が発生するおそれ
が有るためである。また、酸素濃度が5重量%未満であ
ったり、酸素濃度勾配が0.1重量%/μm未満で小さ
過ぎると接合面付近から剥離が起こり易い。なお、本発
明のCVD−SiC被覆部材の酸素含有SiC層は、2
0〜120μmの厚さで形成され、通常、約60μmで
ある。
In the present invention, the amount of oxygen contained in the CVD-SiC film varies depending on the thickness of the SiC film, the type of the substrate, etc., but the surface layer of the CVD-SiC coating member,
For example, in the surface region of 10 μm to 100 μm from the surface, the oxygen concentration is preferably maintained at 0.05% by weight or less, and more preferably 0.01% by weight or less. When the surface layer is composed of a simple substance of SiC, excellent characteristics such as corrosion resistance of the CVD-SiC film can be maintained, and the surface layer can be suitably used as various members in the heat treatment step of semiconductor manufacturing as in the conventional case. In the present invention,
As described above, at least a thickness of 10 μm from the surface of the CVD-SiC film has an extremely small amount of oxygen concentration, and further, the oxygen concentration is gradually increased from the surface layer toward the inside of the film, that is, toward the substrate,
It is preferable to control the oxygen concentration in the joint surface layer with the base material so as to approximately match the thermal expansion coefficient of the base material. In this case, the oxygen concentration is the above-mentioned CVD-SiC.
It is preferable to continuously increase the concentration from the surface of the film to 25% or less. Particularly, when the above-mentioned silicon crystal is used as the base material for coating the surface, the oxygen concentration of the bonding surface layer is 5% or less.
-25 wt% is preferable, and 10-20 wt% is more preferable. The oxygen concentration may be increased stepwise. Further, the oxygen concentration gradient in the thickness direction of the CVD-SiC film toward the base material is largely influenced by the quality of the adhesiveness depending on the thickness of the surface layer, but generally, the thickness of the surface layer is constant. In that case, it is preferably 1% by weight / μm or less. It is more preferably 1 to 0.1% by weight / μm, and even more preferably 0.5 to 0.1% by weight / μm. In particular, in order to obtain high thermal shock resistance against a sudden heat cycle, it is preferable to set the oxygen concentration gradient to 0.5 to 0.1% by weight / μm. If the oxygen concentration exceeds 25% or if the oxygen concentration gradient is greater than 1 wt% / μm, both SiC and S
This is because the difference in the coefficient of thermal expansion from iO 2 becomes too large, the strain inside the film is large, and the film itself may be cracked or damaged. Further, when the oxygen concentration is less than 5% by weight or the oxygen concentration gradient is less than 0.1% by weight / μm, which is too small, peeling easily occurs from the vicinity of the joint surface. The oxygen-containing SiC layer of the CVD-SiC coated member of the present invention has 2
It is formed with a thickness of 0 to 120 μm, and is usually about 60 μm.

【0008】本発明において、酸素含有SiC膜を基板
に被覆するCVD法は、従来のCVD−SiCを形成す
る方法とほぼ同様にして行うことができ、SiCl4
のクロロシラン系ガス、メタン(CH4 )、プロパン
(C38 )等の炭化水素及び水素からなる原料ガスと
共に、酸素ガス(O2 )、または、酸素原子を含むガ
ス、例えば、一酸化炭素ガス(CO)を添加混入してC
VD処理域に流通して行うことができる。また、本発明
のCVD−SiC被覆部材において、被覆膜である酸素
含有SiC層は、表面から基材方向に酸素含有量が増加
して酸素濃度に勾配を有するようにするため、原料ガス
中に添加する酸素または酸素原子を含むガスの配合量
は、基材表面でのCVD膜形成から次第に減少させ、最
終的にはゼロとして、外表面層のCVD膜がSiC単層
となるように制御する。通常、原料ガス中の炭化水素と
酸素若しくは酸素を含むガスとを相対的に増減させ、例
えば、炭化水素ガス流量を標準状態で(以下同様)0.
2リットル/分から0.25リットル/分に連続的に増
加すると共に、COガス流量を0.2リットル/分から
ゼロへ減少させる。また、基材表面へのCVD膜の形成
時における酸素を含むガスの配合量は、上記のように基
材の熱膨張係数値に応じて形成されるCVD膜中の酸素
濃度を25重量%以下で変化させ、基材の熱膨張係数に
ほぼ合うように適宜選択することができる。例えば、ポ
リシリコンを基材として用いる場合は、単結晶シリコン
に比し熱膨張係数が大きく、CO等酸素含むガスの配合
量は少なくする。CVD処理条件は、上記原料ガス組成
を変化させる以外は従来と同様にして行うことができ
る。通常、温度800〜1300℃、圧力30〜760
Torrで行うことができ、基板の種類によりその溶融
温度等に応じて適宜選択することができる。
In the present invention, the CVD method for coating the oxygen-containing SiC film on the substrate can be carried out in substantially the same manner as the conventional method for forming CVD-SiC, and a chlorosilane-based gas such as SiCl 4 or methane (CH 3). 4 ), propane (C 3 H 8 ) and other raw material gas consisting of hydrocarbons and hydrogen, and oxygen gas (O 2 ) or a gas containing oxygen atoms, for example, carbon monoxide gas (CO) is added and mixed. C
It can be distributed to the VD processing area. In addition, in the CVD-SiC coated member of the present invention, the oxygen-containing SiC layer that is the coating film has a higher oxygen content in the direction from the surface to the base material so that the oxygen concentration has a gradient in the source gas. The amount of oxygen or a gas containing oxygen atoms added to is gradually decreased from the formation of the CVD film on the surface of the base material, and finally set to zero so that the CVD film of the outer surface layer is controlled to be a SiC single layer. To do. Usually, the hydrocarbons in the raw material gas and oxygen or a gas containing oxygen are relatively increased / decreased, and, for example, the hydrocarbon gas flow rate is set to 0.
The CO gas flow rate is reduced from 0.2 l / min to zero with a continuous increase from 2 l / min to 0.25 l / min. Further, the amount of the gas containing oxygen at the time of forming the CVD film on the surface of the base material is set such that the oxygen concentration in the CVD film formed according to the thermal expansion coefficient value of the base material is 25% by weight or less. And can be appropriately selected so as to approximately match the coefficient of thermal expansion of the substrate. For example, when polysilicon is used as the base material, the coefficient of thermal expansion is larger than that of single crystal silicon, and the amount of a gas containing oxygen such as CO is reduced. The CVD treatment conditions can be the same as the conventional one except that the composition of the raw material gas is changed. Usually, temperature is 800-1300 ° C, pressure is 30-760
It can be performed at Torr, and can be appropriately selected according to the melting temperature and the like depending on the type of the substrate.

【0009】[0009]

【実施例】本発明について実施例に基づき、更に詳細に
説明する。但し、本発明は、下記の実施例に制限される
ものでない。 実施例1 基材としての単結晶シリコン円盤(150mmφ)を、
炉内で1300℃に加熱し、原料ガスのSiCl4 、C
4 、H2 及びCOをそれぞれ標準状態で0.50、
0.2、2.5及び0.3リットル/分で供給流通させ
た。総処理時間120分で単結晶シリコン基材上に60
μmの被膜を形成した。この間、SiCl4 及びH2
流量を一定に保持し、CH4 流量を0.2から0.3リ
ットル/分に増加させる一方、CO流量を0.3から
0.0リットル/分に減少させた。得られた単結晶シリ
コン上に形成されたCVD被覆された酸素含有SiC膜
中の酸素濃度をSIMS(二次イオン質量分析法)によ
り行った。その結果を図1に示した。図1において、横
軸は被覆膜厚さを示し、0μmが膜表面に相当し、60
μmが膜と基材との接合部に相当する。図1により、酸
素濃度は、表面からの膜厚さ(表面層)が10μmを超
えると徐々に増加し、接合部まで(接合層)連続的に2
5%まで増加していることが分かる。この場合、膜中の
接合層の酸素濃度勾配は、0.5重量%/μmであっ
た。なお、SIMSによる酸素測定法においては、予め
酸素濃度を調整したSiC標準サンプルを準備し、Si
C中のSiイオン強度と酸素イオン強度から、相対感度
係数(RSF)CR を下式(1)により求め、得られた
RSFを基に下式(2)により試料中の酸素濃度DS
算出した。このSIMSによる酸素濃度定量測定は、p
pm以下の感度にて精度10〜20%程度で容易に行う
ことができる。但し、式中、DO は標準サンプルに注入
した酸素濃度(原子数/cm2 )、Ir はマトリックス
(Siまたは炭素(C))の測定イオン強度、Is は試
料中の酸素元素の測定イオン強度、dは測定深さ(c
m)、nは測定深さまでのデータ数をそれぞれ表す。 CR =DO ・Ir ・n/d・ΣIs (1) DS =CR ・Is /Ir (2) 本実施例においては、酸素濃度1×1015原子数/cm
2 に調整したSiC標準サンプルを準備し、パーキン・
エルマー・6600・SIMSを用い、一次イオン種C
s+ 、一次イオン加速電圧5KeV、一次イオン電流5
00nA、ラスター領域200×315(μm)、分析
領域90×140(μm)の条件で測定した。
EXAMPLES The present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples. Example 1 A single crystal silicon disk (150 mmφ) as a base material was
It is heated to 1300 ° C in the furnace and the raw material gas is SiCl 4 , C
H 4 , H 2 and CO are 0.50 in the standard state,
It was supplied and distributed at 0.2, 2.5 and 0.3 l / min. 60 on single crystal silicon substrate with total processing time of 120 minutes
A μm film was formed. During this period, the flow rates of SiCl 4 and H 2 were kept constant, the CH 4 flow rate was increased from 0.2 to 0.3 liter / min, and the CO flow rate was reduced from 0.3 to 0.0 liter / min. It was The oxygen concentration in the obtained CVD-containing oxygen-containing SiC film formed on the obtained single crystal silicon was measured by SIMS (secondary ion mass spectrometry). The results are shown in Fig. 1. In FIG. 1, the horizontal axis represents the coating film thickness, and 0 μm corresponds to the film surface.
μm corresponds to the joint between the film and the base material. According to FIG. 1, the oxygen concentration gradually increases when the film thickness from the surface (surface layer) exceeds 10 μm, and continuously increases to 2 at the bonding portion (bonding layer).
It can be seen that it has increased to 5%. In this case, the oxygen concentration gradient of the bonding layer in the film was 0.5% by weight / μm. In the oxygen measurement method by SIMS, a SiC standard sample whose oxygen concentration is adjusted in advance is prepared.
The relative sensitivity coefficient (RSF) C R is calculated from the Si ion strength and oxygen ion strength in C by the following equation (1), and the oxygen concentration D S in the sample is calculated by the following equation (2) based on the obtained RSF. It was calculated. The oxygen concentration quantitative measurement by SIMS is p
It can be easily performed with a sensitivity of pm or less and an accuracy of about 10 to 20%. Here, in the formula, D O is the oxygen concentration (atoms / cm 2 ) injected into the standard sample, I r is the measured ionic strength of the matrix (Si or carbon (C)), and I s is the measurement of oxygen element in the sample. Ionic strength, d is measurement depth (c
m) and n respectively represent the number of data up to the measurement depth. C R = D O · I r · n / d · ΣI s (1) D S = CR · I s / I r (2) In this embodiment, the oxygen concentration is 1 × 10 15 atoms / cm 2.
Prepare a SiC standard sample adjusted to 2 and
Using Elmer 6600 SIMS, primary ion species C
s + , primary ion acceleration voltage 5 KeV, primary ion current 5
The measurement was performed under the conditions of 00 nA, raster area 200 × 315 (μm), and analysis area 90 × 140 (μm).

【0010】実施例2〜4 原料ガス中のSiCl4 及びH2 の流量を一定に保持
し、CH4 流量を0.2から0.3リットル/分に増加
させると共に、CO流量を次のように変化させた。即
ち、CO流量を0.2から0.0リットル/分に(実施
例2)、0.05から0.0リットル/分(実施例
3)、0.2から0.0リットル/分(実施例4)にそ
れぞれ減少させ、また実施例4では接合層の厚さを25
μmとして全体のCVD被覆SiC膜厚を35μmとし
た以外は、実施例1と同様に単結晶シリコン上に酸素含
有SiC膜をCVD被覆形成した。得られた各CVD被
覆SiC膜について実施例1と同様に酸素濃度分布をS
IMSで測定し、その表面層と接合面での濃度及び接合
層の酸素濃度勾配を表1に示した。なお、実施例1の結
果も表1に共に示した。
Examples 2 to 4 The flow rates of SiCl 4 and H 2 in the source gas were kept constant, the CH 4 flow rate was increased from 0.2 to 0.3 liter / min, and the CO flow rate was as follows. Changed to. That is, the CO flow rate was changed from 0.2 to 0.0 liter / min (Example 2), 0.05 to 0.0 liter / min (Example 3), and 0.2 to 0.0 liter / min (Example). Example 4) respectively, and in Example 4 the thickness of the bonding layer was 25
The oxygen-containing SiC film was CVD-coated on the single crystal silicon in the same manner as in Example 1 except that the entire CVD-coated SiC film thickness was 35 μm. The oxygen concentration distribution of each of the obtained CVD-coated SiC films was changed to S in the same manner as in Example 1.
Table 1 shows the concentrations of the surface layer and the bonding surface, and the oxygen concentration gradient of the bonding layer, which were measured by IMS. The results of Example 1 are also shown in Table 1.

【0011】比較例1〜5 CVD条件を次のように変える以外は実施例1と同様に
してCVD被覆処理した。即ち、CH4 流量を0.0か
ら0.3リットル/分に増加し(比較例1)、膜厚を3
5μmとし(比較例2)、CO流量を当初0.35リッ
トル/分とし(比較例3)、COを全く配合することな
くCH4 流量を0.3リットル/分としてそのまま変化
することなく維持し(比較例4:従来のCVD−SiC
被覆法)、CH4 及びCO流量をそのまま変化すること
なく維持して(比較例5)、それぞれCVD−SiC膜
を被覆した。得られた各CVD被覆膜中の酸素濃度を実
施例1と同様にSIMSで測定し、その表面層と接合面
での濃度及び酸素濃度勾配を表1に示した。
Comparative Examples 1 to 5 CVD coating processing was performed in the same manner as in Example 1 except that the CVD conditions were changed as follows. That is, the CH 4 flow rate was increased from 0.0 to 0.3 liter / min (Comparative Example 1), and the film thickness was 3
5 μm (Comparative Example 2), CO flow rate was initially 0.35 L / min (Comparative Example 3), CH 4 flow rate was 0.3 L / min without adding any CO and maintained unchanged. (Comparative Example 4: Conventional CVD-SiC
Coating method), the CH 4 and CO flow rates were maintained unchanged (Comparative Example 5), and the CVD-SiC films were coated respectively. The oxygen concentration in each obtained CVD coating film was measured by SIMS in the same manner as in Example 1, and the concentration and oxygen concentration gradient in the surface layer and the bonding surface are shown in Table 1.

【0012】[0012]

【表1】 尚、◎、○、△は耐用回数を示し、◎>○>△である。[Table 1] In addition, ⊚, ◯, and Δ indicate the number of times of service, and ⊚>∘> Δ.

【0013】評価1(不純物拡散防止効果の評価) 上記実施例1〜4及び比較例1〜5で得られた各CVD
−SiC膜被覆の単結晶シリコン円盤上に、ウエハを載
置し酸化雰囲気炉内で1000℃で10時間熱処理し
た。その結果、ウエハ表面に形成された酸化膜中に取り
込まれた不純物Na、Al、Fe及びCuの各含有量
(原子数/cm2 )レベルを測定した。その結果を表1
に示した。
Evaluation 1 (Evaluation of Effect of Impurity Diffusion Prevention) Each of the CVDs obtained in Examples 1 to 4 and Comparative Examples 1 to 5 above.
A wafer was placed on a single crystal silicon disk coated with a SiC film and heat-treated at 1000 ° C. for 10 hours in an oxidizing atmosphere furnace. As a result, the levels of each of the impurities Na, Al, Fe, and Cu (atoms / cm 2 ) incorporated in the oxide film formed on the wafer surface were measured. The results are shown in Table 1.
It was shown to.

【0014】評価2及び3(被膜と基材との密着性評
価) 上記実施例1〜4及び比較例1〜5で得られた各CVD
−SiC膜被覆の単結晶シリコン円盤をヒートサイクル
試験した。ヒートサイクル試験は、1200℃の炉内に
10分間保持し、炉外に出して10分間保持し、再び炉
内に入れるサイクルを炉内外への搬出入速度200mm
/分で1000回繰り返し行った。その結果、本発明の
表面から接合面に増加する濃度勾配を有して所定の酸素
量を含有するCVD−SiC膜が被覆された単結晶シリ
コン円盤部材は、表面が酸化膜が形成された以外は以上
がなく、膜の剥離もなく良好であった。一方、比較例で
得られ接合層で酸素濃度勾配を有さないものは、剥離や
亀裂が発生した。また、実施例1〜4で得られた各CV
D−SiC膜被覆の単結晶シリコン円盤について水冷ヒ
ートサイクル試験を行った。水冷ヒートサイクル試験
は、上記ヒートサイクルにおいて、1200℃の炉内に
10分間保持した後、20℃の水中に投入し、再び炉内
に入れるサイクルを炉内、水中への搬出入速度200m
m/分で繰り返し行い、その耐用回数を測定し、その結
果を表1に示した。なお、比較例1〜4で得られたCV
D−SiC膜被覆単結晶シリコン円盤部材は、ヒートサ
イクル試験で膜剥離や亀裂が生じ、水冷ヒートサイクル
試験は行わなかった。また、比較例5のものは、ヒート
サイクルで亀裂や剥離は生じないが、表面層に酸素が含
有されるため半導体プロセス用部材としては適さない。
即ち、例えば、半導体製造用のボートとして用いる場
合、熱処理では酸化膜、LPCVD処理ではCVD膜が
付着するため、使用後ボート表面は、通常、HFやHF
−HNO3 による酸洗浄が行われる。比較例5の部材の
表面層には、酸素の存在によりSiO2 が形成されてお
り、そのSiO2 が酸洗浄において溶出し部材表面が次
第に劣化されパーティクル発生の原因となり、半導体を
汚染するため使用することができない。
Evaluations 2 and 3 (Evaluation of Adhesion between Coating and Substrate) Each CVD obtained in the above Examples 1 to 4 and Comparative Examples 1 to 5
The SiC film-coated single crystal silicon disks were heat cycle tested. In the heat cycle test, a cycle of holding in a furnace at 1200 ° C. for 10 minutes, taking out of the furnace and holding for 10 minutes, and then putting it in the furnace again was carried out at an in / out speed of 200 mm.
Repeated 1000 times / min. As a result, the single-crystal silicon disc member of the present invention, which is covered with the CVD-SiC film having a concentration gradient increasing from the surface to the bonding surface and containing a predetermined amount of oxygen, except that an oxide film is formed on the surface. There was no above, and the film was good without peeling. On the other hand, in the joining layer obtained in the comparative example and having no oxygen concentration gradient, peeling or cracking occurred. Moreover, each CV obtained in Examples 1 to 4
A water-cooled heat cycle test was conducted on the single crystal silicon disk coated with the D-SiC film. In the water cooling heat cycle test, in the above heat cycle, after holding in a 1200 ° C. furnace for 10 minutes, it is put in 20 ° C. water and then put in the furnace again.
Repeatedly at m / min, the number of times of service was measured, and the results are shown in Table 1. The CVs obtained in Comparative Examples 1 to 4
The D-SiC film-coated single crystal silicon disk member suffered film peeling and cracks in the heat cycle test, and was not subjected to the water cooling heat cycle test. Further, the sample of Comparative Example 5 is not suitable as a semiconductor process member because the surface layer contains oxygen although cracks and peeling do not occur in the heat cycle.
That is, for example, when used as a boat for semiconductor manufacturing, an oxide film is attached by heat treatment and a CVD film is attached by LPCVD treatment, so that the boat surface after use is usually HF or HF.
An acid wash with HNO 3 is performed. In the surface layer of the member of Comparative Example 5, SiO 2 was formed due to the presence of oxygen, and the SiO 2 was eluted during acid cleaning to gradually deteriorate the member surface and cause particles to be generated, which was used for contaminating the semiconductor. Can not do it.

【0015】[0015]

【発明の効果】本発明のCVD−SiC被覆部材は、C
VD−SiC膜中に、基材方向に所定の増加する濃度勾
配で酸素を含有させ、その外表面は従来のCVD−Si
C膜と同様に保持することにより、従来、熱膨張係数が
小さく、CVD−SiC被覆用基材としては適さないと
されていた高純度材のシリコン結晶体等を基材に用いる
ことができ、膜の剥離もなく、且つ、不純物の拡散を著
しく防止できる。そのため、半導体製造における熱処理
工程等で用いる各種部材として好適である。
The CVD-SiC coated member of the present invention is C
Oxygen is contained in the VD-SiC film at a predetermined increasing concentration gradient in the direction of the substrate, and the outer surface thereof is formed by conventional CVD-Si.
By holding in the same manner as the C film, a high-purity material such as a silicon crystal body, which has been conventionally considered to have a small thermal expansion coefficient and is not suitable as a CVD-SiC coating base material, can be used as the base material. There is no peeling of the film, and the diffusion of impurities can be significantly prevented. Therefore, it is suitable as various members used in a heat treatment step or the like in semiconductor manufacturing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のCVD法で形成した酸素含
有SiC膜の厚さと酸素濃度との関係図である。
FIG. 1 is a relationship diagram between the thickness and oxygen concentration of an oxygen-containing SiC film formed by a CVD method according to an embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 市島 雅彦 山形県西置賜郡小国町大字小国町378 東 芝セラミックス株式会社小国製造所内 (72)発明者 佐藤 勝憲 山形県西置賜郡小国町大字小国町378 東 芝セラミックス株式会社小国製造所内 (72)発明者 伊藤 幸夫 山形県西置賜郡小国町大字小国町378 東 芝セラミックス株式会社小国製造所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masahiko Ichijima 378 Oguni-machi, Oguni-cho, Nishiokitama-gun, Yamagata Prefecture Inside the Oguni Factory of Toshiba Ceramics Co., Ltd. (72) Katsunori Sato 378 Oguni-machi, Oguni-cho, Nishiokitama-gun, Yamagata (72) Inventor Yukio Ito Oguni-machi, Nishikitama-gun, Yamagata Prefecture 378 Oguni-machi, Toshiba Ceramics Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 CVD−SiCより小さな熱膨張係数を
有する基材表面をCVDにより酸素含有SiC膜で被覆
してなり、該酸素含有SiC膜の酸素濃度が膜表面から
基材方向に連続的にまたは段階的に増加すると共に、表
面層で0.05重量%以下で、且つ、該基材との接合面
層で25重量%以下であることを特徴とするCVD−S
iC被覆部材。
1. A substrate surface having a thermal expansion coefficient smaller than that of CVD-SiC is coated with an oxygen-containing SiC film by CVD, and the oxygen concentration of the oxygen-containing SiC film is continuous from the film surface toward the substrate. Alternatively, the CVD-S is characterized by gradually increasing and being 0.05% by weight or less in the surface layer and 25% by weight or less in the bonding surface layer with the base material.
iC coating member.
【請求項2】 前記SiC膜の含有酸素濃度が、前記表
面層から膜厚方向に1重量%/μm以下の濃度勾配を有
する請求項1記載のCVD−SiC被覆部材。
2. The CVD-SiC coated member according to claim 1, wherein the contained oxygen concentration of the SiC film has a concentration gradient of 1% by weight / μm or less from the surface layer in the film thickness direction.
【請求項3】 前記表面層が、10μm以上の厚さであ
る請求項1または2記載のCVD−SiC被覆部材。
3. The CVD-SiC coated member according to claim 1, wherein the surface layer has a thickness of 10 μm or more.
【請求項4】 前記基材が、シリコン結晶体である請求
項1、2または3記載のCVD−SiC被覆部材。
4. The CVD-SiC coated member according to claim 1, 2 or 3, wherein the base material is a silicon crystal body.
JP14818795A 1995-05-23 1995-05-23 CVD-SiC coated member Expired - Fee Related JP3698372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14818795A JP3698372B2 (en) 1995-05-23 1995-05-23 CVD-SiC coated member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14818795A JP3698372B2 (en) 1995-05-23 1995-05-23 CVD-SiC coated member

Publications (2)

Publication Number Publication Date
JPH08319186A true JPH08319186A (en) 1996-12-03
JP3698372B2 JP3698372B2 (en) 2005-09-21

Family

ID=15447195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14818795A Expired - Fee Related JP3698372B2 (en) 1995-05-23 1995-05-23 CVD-SiC coated member

Country Status (1)

Country Link
JP (1) JP3698372B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222768A (en) * 2001-01-24 2002-08-09 Ibiden Co Ltd Jig for semiconductor
JP2003045812A (en) * 2001-07-31 2003-02-14 Tokai Carbon Co Ltd Component for apparatus for manufacturing silicon carbide semiconductor and method for manufacturing the same
US6737746B2 (en) 2001-11-14 2004-05-18 Renesas Technology Corp. Semiconductor device containing copper diffusion preventive film of silicon carbide
JPWO2007139015A1 (en) * 2006-05-31 2009-10-08 コニカミノルタオプト株式会社 Film forming method, mold and mold manufacturing method
JP2014114509A (en) * 2012-12-06 2014-06-26 Industry-Academic Cooperation Foundation Yonsei Univ FORMATION METHOD AND DEVICE OF C/SiC INCLINATION COATING FILM
US9062370B2 (en) 2009-04-02 2015-06-23 Spawnt Private S.A.R.L. Bodies coated by SiC and method for creating SiC-coated bodies

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222768A (en) * 2001-01-24 2002-08-09 Ibiden Co Ltd Jig for semiconductor
JP2003045812A (en) * 2001-07-31 2003-02-14 Tokai Carbon Co Ltd Component for apparatus for manufacturing silicon carbide semiconductor and method for manufacturing the same
JP4556090B2 (en) * 2001-07-31 2010-10-06 東海カーボン株式会社 Member for silicon carbide semiconductor manufacturing apparatus and method for manufacturing the same
US6737746B2 (en) 2001-11-14 2004-05-18 Renesas Technology Corp. Semiconductor device containing copper diffusion preventive film of silicon carbide
JPWO2007139015A1 (en) * 2006-05-31 2009-10-08 コニカミノルタオプト株式会社 Film forming method, mold and mold manufacturing method
US9062370B2 (en) 2009-04-02 2015-06-23 Spawnt Private S.A.R.L. Bodies coated by SiC and method for creating SiC-coated bodies
JP2014114509A (en) * 2012-12-06 2014-06-26 Industry-Academic Cooperation Foundation Yonsei Univ FORMATION METHOD AND DEVICE OF C/SiC INCLINATION COATING FILM
KR101469713B1 (en) * 2012-12-06 2014-12-05 연세대학교 산학협력단 METHOD AND APPARATUS FOR FORMING C/SiC FUNCTIONALLY GRADED COATING

Also Published As

Publication number Publication date
JP3698372B2 (en) 2005-09-21

Similar Documents

Publication Publication Date Title
WO2006023894A9 (en) Semiconductor processing components and semiconductor processing utilizing same
US4123571A (en) Method for forming smooth self limiting and pin hole free SiC films on Si
KR100715703B1 (en) Graphite material coated with silicon carbide
JP2548949B2 (en) Semiconductor manufacturing components
JP2009269792A (en) Silicon melting crucible and mold release agent used for it
JPH08319186A (en) Cvd-siliconcarbide-coated member
JP4781232B2 (en) Silicon melting crucible used in the manufacture of polycrystalline silicon blocks
US4424193A (en) Constituent members of a semiconductor element-manufacturing apparatus and a reaction furnace for making said constituent members
WO2009085703A2 (en) Method for treating semiconductor processing components and components formed thereby
JP2000302577A (en) Graphite member coated with silicon carbide
JP4531435B2 (en) Silicon member and manufacturing method thereof
JP2009274905A (en) Crucible for melting silicon
JP2000302576A (en) Graphite material coated with silicon carbide
KR102571434B1 (en) Method of coating silica crucibles with silicon nitride
JP2531572B2 (en) Method for oxynitriding quartz glass and method for surface treatment
JP3642446B2 (en) Semiconductor wafer processing tool
US6183553B1 (en) Process and apparatus for preparation of silicon crystals with reduced metal content
KR102211607B1 (en) Silicon member and method of producing the same
JP3185653B2 (en) Material for semiconductor manufacturing equipment and method for manufacturing the same
US6071343A (en) Heat treatment jig and method of producing the same
JPS59189622A (en) Diffusion furnace process tube for semiconductor
JPH11130451A (en) Quartz glass jig for semiconductor heat treatment apparatus
KR20180117760A (en) Method of coating silica crucibles with silicon nitride
JPH01249679A (en) Graphite-silicon carbide composite body and production thereof
JP2003277933A (en) Method of purifying silicon carbide-coated member

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20050303

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20050426

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050704

A61 First payment of annual fees (during grant procedure)

Effective date: 20050704

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20080715

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20080715

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090715

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100715

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110715

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110715

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees