JPH08317919A - Sound oscillation evaluating device - Google Patents

Sound oscillation evaluating device

Info

Publication number
JPH08317919A
JPH08317919A JP7130084A JP13008495A JPH08317919A JP H08317919 A JPH08317919 A JP H08317919A JP 7130084 A JP7130084 A JP 7130084A JP 13008495 A JP13008495 A JP 13008495A JP H08317919 A JPH08317919 A JP H08317919A
Authority
JP
Japan
Prior art keywords
sound
vibration
biological signal
detecting
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7130084A
Other languages
Japanese (ja)
Other versions
JP3687135B2 (en
Inventor
Yasuhiro Umekage
康裕 梅景
Takuo Shimada
拓生 嶋田
Yoshiyuki Yamauchi
美幸 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13008495A priority Critical patent/JP3687135B2/en
Publication of JPH08317919A publication Critical patent/JPH08317919A/en
Application granted granted Critical
Publication of JP3687135B2 publication Critical patent/JP3687135B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PURPOSE: To evaluate sound and oscillation by detecting generation of sound or oscillation, detecting biological signals, and analyzing change in the biological signals at that time. CONSTITUTION: A sound evaluating device is equipped with a microphone 4 to receive sound from a machine, a sound oscillation detecting device 5 to detect that the signal therefrom has exceeded a predetermined level, a heart beat meter 6 using a piezoelectric sensor as a biological signal detecting device to measure heart beats of the human body, and a variation analyzing device 7 to put the signal therefrom on power spectrum analysis. Biological signals are inputted sequentially from the heart beat meter 6, and signals from the sound oscillation detecting device 5 which determines whether a sound signal has exceeded the predetermined level are inputted sequentially. Then, the biological signals are measured for a predetermined measurement period of time to perform the power spectrum analysis. Specifically, it is possible to measure in a distinguishable manner the changes in the biological signals when sound is generated and when no sound is generated, and the sound can be evaluated by evaluating how the biological signals have changed by the sound.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、騒音や振動などを受け
た場合に人体が感じる官能評価を生体信号の変動分析に
より行う音振動評価装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sound and vibration evaluation apparatus for performing sensory evaluation that a human body feels when it receives noise, vibration, etc., by analyzing fluctuations in biological signals.

【0002】[0002]

【従来の技術】従来の音振動評価には、音楽のような心
地良い音の評価と、騒音のような不快な音の評価がある
が、ここでは不快な音の評価として最もよく用いられて
いる騒音レベルによる評価手法を用いて説明する。
2. Description of the Related Art Conventional sound and vibration evaluation includes evaluation of a pleasant sound such as music and evaluation of an unpleasant sound such as noise. Here, it is most often used as an evaluation of an unpleasant sound. An explanation will be given using the evaluation method based on the existing noise level.

【0003】騒音レベルによる評価は、図11に示すよ
うに騒音を発生する機械1の音をマイクロホン2で受け
て電気信号に変換し、その電気信号を騒音計3によって
所定の重み付けを行って数値化し、定量的に評価するも
のである。
In the evaluation based on the noise level, as shown in FIG. 11, the sound of the machine 1 which generates noise is received by the microphone 2 and converted into an electric signal, and the electric signal is given a predetermined weight by the sound level meter 3 to obtain a numerical value. And evaluate quantitatively.

【0004】上記構成において、騒音計3によって測定
した騒音レベルにより、機械1から発生される騒音の不
快感を評価するものである。
In the above structure, the uncomfortable feeling of the noise generated from the machine 1 is evaluated by the noise level measured by the sound level meter 3.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記従来
の構成では、騒音の物理的な量を計測することによっ
て、人体が受ける刺激量に対応づけしようとしている
が、間接的であり必ずしもよく対応しているとはいえな
かった。すなわち、騒音レベルの測定は、実験的に多く
のデータから一般的な評価指標を求めるものであり、測
定する時の人や環境の条件によって、評価に差が生じる
という課題があった。また、近年の家庭電化機器のよう
に、静音化技術の進歩によって、40dB(A)以下の低騒
音レベルになってくると、騒音レベルだけでは評価でき
ず、音質面からの評価が必要となってきていた。しか
し、音質評価は、「うるさい」、「やかましい」、「つ
かれる」などの項目に対する評価を、アンケート方式で
調査して統計的に傾向をつかむ方法で行われており、間
接的であり、試験を行う側の誘導尋問的な影響を受ける
ことが多く、中立的な評価を行うことが難しかった。
However, in the above-mentioned conventional configuration, the physical quantity of noise is measured to correspond to the stimulation amount received by the human body, but it is indirect and does not always correspond well. I couldn't say it was. That is, the measurement of the noise level involves experimentally obtaining a general evaluation index from a large amount of data, and there is a problem in that the evaluation varies depending on the condition of the person or the environment at the time of measurement. In addition, when the noise level has become lower than 40 dB (A) due to the progress of noise reduction technology, such as home electric appliances in recent years, it is not possible to evaluate the noise level alone, and it is necessary to evaluate the sound quality. Was coming. However, the sound quality evaluation is indirect because it is a method of statistically grasping the tendency of the evaluation of items such as "noisy", "noisy", and "useful" by a questionnaire method. It was difficult to make a neutral evaluation because it was often influenced by the interrogation of the conducting party.

【0006】本発明は上記課題を解決するもので、音や
振動が発生したかどうかを検知して、その時の生体信号
の変化から音や振動の評価を行うことを第1の目的とし
ている。そして、生体信号の変化を1/f特性と比較す
ることによってその音や振動を評価することを第2の目
的としている。また、生体信号のゆらぎの大きさを比較
することによって、その音や振動を評価するを行うこと
を第3の目的としている。さらに、音や振動と生体信号
の相関解析による分析結果と、生体信号の変動分析の2
つの結果から音や振動の評価を行うことを第4の目的と
している。
The present invention is intended to solve the above problems, and it is a first object of the present invention to detect whether or not sound or vibration has occurred, and to evaluate the sound or vibration from the change in the biological signal at that time. The second purpose is to evaluate the sound and vibration by comparing the change of the biological signal with the 1 / f characteristic. A third object is to evaluate the sound and vibration by comparing the magnitudes of fluctuations of biological signals. In addition, the analysis result by correlation analysis of the sound and vibration and the biological signal and the variation analysis of the biological signal
The fourth purpose is to evaluate sound and vibration from the two results.

【0007】[0007]

【課題を解決するための手段】本発明は上記第1の目的
を達成するための第1の手段は、所定の音または振動が
発生したことを検知する音振動検知装置と、心電、筋
電、脈波、心拍などの生体信号を検出する生体信号検出
装置と、前記生体信号の変動を分析する変動分析装置を
備え、前記音振動検知装置により検知された生体信号を
変動分析装置により分析し、その分析結果から発生した
音または振動を評価する構成とした。そして、第2の目
的を達成するために、音を聞くまたは振動を受ける前後
の人体の生体信号をパワースペクトル解析する変動分析
装置と、前記パワースペクトルの傾きが1/f特性に接
近する度合で音または振動の評価を行う構成とした。さ
らに、第3の目的を達成するために、音を聞くまたは振
動を受ける前後の人体の生体信号のゆらぎの大きさを分
析する変動分析装置と、前記ゆらぎの大きさの度合で音
または振動の評価する構成とした。また、第4の目的を
達成するために、所定の音または振動が発生したことを
検知する音振動検知装置と、心電、筋電、脈波、心拍な
どの生体信号を検出する生体信号検出装置と、前記生体
信号の変動を分析する変動分析装置と、前記音または振
動と前記生体信号の相互相関を分析する相関分析装置を
備え、前記変動分析装置らよって生体信号を分析した第
1の分析結果と、相関分析装置によって得られた第2の
分析結果から発生した音または振動を評価する構成とし
た。
The first means for achieving the above-mentioned first object of the present invention is to provide a sound vibration detection device for detecting the occurrence of a predetermined sound or vibration, an electrocardiogram and a muscle. A biological signal detection device for detecting biological signals such as electric current, pulse wave, heartbeat, and a fluctuation analysis device for analyzing fluctuations of the biological signal, and the biological signal detected by the sound vibration detection device is analyzed by the fluctuation analysis device. Then, the sound or vibration generated from the analysis result is evaluated. In order to achieve the second object, a variation analysis device for analyzing a power spectrum of a biological signal of a human body before and after hearing a sound or receiving a vibration, and a degree of inclination of the power spectrum approaching a 1 / f characteristic. The configuration is such that sound or vibration is evaluated. Further, in order to achieve the third object, a fluctuation analysis device that analyzes the magnitude of fluctuation of a biological signal of a human body before and after hearing or vibrating a sound, and a fluctuation analyzer that detects the sound or the vibration depending on the degree of the fluctuation. The evaluation was made. Further, in order to achieve the fourth object, a sound vibration detection device that detects the occurrence of a predetermined sound or vibration, and biosignal detection that detects biosignals such as electrocardiogram, myoelectric potential, pulse wave, and heartbeat. An apparatus, a fluctuation analysis apparatus that analyzes fluctuations in the biological signal, and a correlation analysis apparatus that analyzes cross-correlation between the sound or vibration and the biological signal, and a first method that analyzes the biological signal by the fluctuation analysis apparatus. The sound or vibration generated from the analysis result and the second analysis result obtained by the correlation analyzer is evaluated.

【0008】[0008]

【作用】本発明は上記構成によって、第1の手段によれ
ば、音振動検知装置によって、音や振動が発生した時の
生体信号と音や振動が発生していないときの生体信号の
変化を区別して測定することができ、音や振動によって
生体信号がどのように変化したかを評価することで音や
振動の体感評価を定量的に行うことができるのである。
そして、第2の手段によれば、生体信号のパワースペク
トル解析した結果を、1/f特性と比較して変化した度
合から評価することで音や振動の体感評価を定量的に行
うことができるのである。また、第3の手段によれば、
生体信号のゆらぎの大きさを分析した結果を比較して評
価することで、音や振動の体感評価を定量的に行うこと
ができるのである。さらに、第4の手段によれば、音や
振動と生体信号の相関解析による分析結果と、生体信号
の変動分析結果から音や振動の評価を行うことができる
のである。
According to the first aspect of the present invention, according to the first aspect, the sound and vibration detecting device detects the change of the biomedical signal when the sound or the vibration is generated and the biomedical signal when the sound or the vibration is not generated. It is possible to separately measure, and it is possible to quantitatively evaluate the feeling of sound or vibration by evaluating how the biological signal is changed by sound or vibration.
Then, according to the second means, the result of power spectrum analysis of the biomedical signal is compared with the 1 / f characteristic and evaluated from the degree of change, so that the sensation of sound and vibration can be quantitatively evaluated. Of. According to the third means,
By comparing and evaluating the results of the analysis of the magnitude of the fluctuation of the biological signal, it is possible to quantitatively evaluate the sensation of sound and vibration. Further, according to the fourth means, it is possible to evaluate the sound and vibration from the analysis result by the correlation analysis of the sound and vibration and the biological signal and the analysis result of the variation of the biological signal.

【0009】[0009]

【実施例】以下、本発明の第1の実施例の音振動評価装
置を、図1から図3を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A sound vibration evaluation apparatus according to a first embodiment of the present invention will be described below with reference to FIGS.

【0010】図1に示すように、機械の音を受音するマ
イクロホン4と、マイクロホン4からの信号が所定レベ
ル以上になったことを検知する音振動検知装置5と、人
体の心拍を測定する生体信号検出装置としての圧電セン
サーを用いた心拍計6と、前記心拍計6の信号をパワー
スペクトル解析する変動分析装置7を備えた構成とし
た。ここで、8、9は、それぞれマイクロホンと心拍計
の信号増幅器である。また、図2に変動分析装置で行わ
れる信号処理のフローチャートを示す。
As shown in FIG. 1, a microphone 4 for receiving a mechanical sound, a sound vibration detecting device 5 for detecting that a signal from the microphone 4 has exceeded a predetermined level, and a heartbeat of a human body are measured. A heartbeat meter 6 using a piezoelectric sensor as a biological signal detecting device and a fluctuation analyzer 7 for analyzing the power spectrum of the signal of the heartbeat meter 6 are provided. Here, 8 and 9 are the signal amplifiers of the microphone and the heart rate monitor, respectively. Further, FIG. 2 shows a flowchart of the signal processing performed by the fluctuation analyzer.

【0011】上記構成によれば、音振動検知装置によっ
て、音が発生した時の生体信号と音が発生していないと
きの生体信号の変化を区別して測定することができ、音
によって生体信号がどのように変化したかを評価するこ
とで音の評価を行うことができるのである。図2に示す
フローチャートを用いてその信号処理方法を示す。
According to the above structure, the sound vibration detecting device can distinguish and measure the change of the biological signal when the sound is generated and the biological signal when the sound is not generated. The sound can be evaluated by evaluating how it has changed. The signal processing method will be described with reference to the flowchart shown in FIG.

【0012】まず、音が発生したかどうかを示す「フラ
グ」に初期値「0」を、変動分析として行うパワースペ
クトルの傾きの係数「a」と「b」に初期値「1」をそ
れぞれ代入する。そして、生体信号を心拍計から逐次入
力する。「a」、「b」は1/faまたは1/fbとな
る式の係数である。次に、音の信号が所定値以上になっ
たかどうかを判定する音振動検知装置からの信号を逐次
入力する。そして、音振動検知装置からの信号があれ
ば、「フラグ」に「1」を代入する。そして、所定の測
定時間だけ生体信号を測定して、変動分析を行う。ここ
では、生体信号のパワースペクトル解析を行い、その結
果の1Hz成分以下のパワー成分から回帰解析によって
その周波数特性の傾きを求める。この傾きは、「フラグ
=0」の場合は、音が所定値以上に大きくならなかった
場合であり、「a」に代入される。もし、「フラグ=
1」の場合は、音が所定値以上になった場合であり、
「b」に代入される。ここで、「a」と「b」を次式に
より比較することで、1/f特性にどれだけ近いかを判
定する。
First, an initial value "0" is assigned to a "flag" indicating whether or not a sound is generated, and an initial value "1" is assigned to the coefficients "a" and "b" of the slope of the power spectrum which is used as the variation analysis. To do. Then, biological signals are sequentially input from the heart rate monitor. “A” and “b” are coefficients of an equation that becomes 1 / fa or 1 / fb. Next, the signals from the sound vibration detection device for determining whether or not the sound signal has exceeded a predetermined value are sequentially input. Then, if there is a signal from the sound vibration detection device, "1" is substituted into the "flag". Then, the biological signal is measured for a predetermined measurement time and the variation analysis is performed. Here, the power spectrum analysis of the biological signal is performed, and the slope of the frequency characteristic is obtained by regression analysis from the resulting power component of 1 Hz component or less. In the case of "flag = 0", this inclination is a case where the sound has not become louder than a predetermined value, and is substituted for "a". If "flag =
In the case of "1", it means that the sound is above a certain level,
Substituted in "b". Here, by comparing “a” and “b” by the following equation, it is determined how close the 1 / f characteristic is.

【0013】例えば、図3に示すような特性が得られた
とすると、 |1−a|<|1−b| の場合は、生体信号の変動が1/fから遠ざかっている
と考えられるので、発生している音は不快音であると判
定する。また、 |1−a|>|1−b| の場合は、生体信号の変動が1/fに近づいているの
で、発生している音は心地好い音であると判定する。
For example, if the characteristics shown in FIG. 3 are obtained, it is considered that the variation of the biological signal is far from 1 / f when | 1-a | <| 1-b | It is determined that the generated sound is an unpleasant sound. Further, in the case of | 1-a |> | 1-b |, since the fluctuation of the biological signal is approaching 1 / f, it is determined that the generated sound is a pleasant sound.

【0014】このような計測を繰り返すことで音の評価
がその時々の条件に対応して評価することができる。生
体信号としては、自分で容易にコントロールできない心
拍や心電、筋電、脈波などを用いることで、評価データ
を人為的に作ることは困難であり、正しい音の評価を定
量的に行うことができる。
By repeating such measurement, the sound can be evaluated in accordance with the condition at that time. It is difficult to artificially create evaluation data by using heartbeats, electrocardiograms, myoelectrics, pulse waves, etc. that cannot be easily controlled by oneself as biological signals, and it is necessary to quantitatively evaluate correct sounds. You can

【0015】次に、第2の実施例について図4から図7
を用いて説明する。上記第1の実施例と同一構造で、か
つ同一作用をする部分には同一符号を付して詳細な説明
は略し、異なる部分を中心に説明する。
Next, the second embodiment will be described with reference to FIGS.
Will be explained. Portions having the same structure as those of the first embodiment and having the same function are denoted by the same reference numerals, and detailed description thereof will be omitted, and different portions will be mainly described.

【0016】変動分析装置7において、生体信号を計測
したデータから図4に示す信号の各周期を測定する。こ
の信号の周期をそれぞれの時刻毎にTi、Ti+1とし
て測定し、図5に示すような特性図を描く。すなわち、
TiをX軸に、Ti+1をY軸に描き、つぎの周期の時
には、前のTi+1がTiとなり、新しい周期がTi+
1となるように、順次XY座標軸上にプロットしてい
く。そして、その軌跡が描く軌道の最小面積Sを、X軸
の最小幅とYの最小幅を乗算することによって求める。
このSが音を聞くことによって変化する度合を評価値と
する。
The fluctuation analyzer 7 measures each cycle of the signal shown in FIG. 4 from the data obtained by measuring the biological signal. The period of this signal is measured as Ti and Ti + 1 at each time, and a characteristic diagram as shown in FIG. 5 is drawn. That is,
Draw Ti on the X-axis and Ti + 1 on the Y-axis. At the next cycle, the previous Ti + 1 becomes Ti and the new cycle becomes Ti +
The values are sequentially plotted on the XY coordinate axes so that the value becomes 1. Then, the minimum area S of the trajectory drawn by the locus is obtained by multiplying the minimum width of the X axis and the minimum width of Y.
The evaluation value is the degree to which this S changes due to the sound being heard.

【0017】生体信号のゆらぎの大きさは、ストレスな
どがたまってくると小さくなり、健康状態ほど大きなゆ
らぎとなると考えられているので、この評価値は、大き
くなるほどストレスのない快適な状態に体が近づいてい
ることを示すものである。ここで、TがTの変動分ΔT
に比べ、非常に大きい時はΔTの変動がわかりにくくな
るので、Tの平均値Taveを求め、T−Taveを
T’として、T’iとT’i+1とで分析する方法をと
ることする。この評価値Sの時間変化を図6のように測
定することで、その時刻に発生している音が快適な音
か、不快な音かを判定するものである。そのフローチャ
ートを図7に示す。
It is considered that the magnitude of the fluctuation of the biological signal becomes smaller as stress accumulates, and the larger the fluctuation becomes in the health condition, the larger the evaluation value becomes. Is approaching. Here, T is the variation ΔT of T
Compared with the above, when it is very large, the variation of ΔT becomes difficult to understand, so an average value Tave of T is obtained, T-Tave is T ′, and the method of analyzing T′i and T′i + 1 is adopted. By measuring the time change of the evaluation value S as shown in FIG. 6, it is determined whether the sound generated at that time is a comfortable sound or an uncomfortable sound. The flowchart is shown in FIG.

【0018】このように、生体信号のゆらぎの大きさで
音や振動の評価を行うことで、定量的に、かつ検査員な
どの誘導に左右されず高精度に評価を行うことができ
る。
As described above, the sound and vibration are evaluated by the magnitude of the fluctuation of the biological signal, so that the evaluation can be performed quantitatively and with high accuracy without being influenced by the guidance of the inspector.

【0019】次に、第3の実施例について図8から図1
0を用いて説明する。上記第1の実施例と同一構造で、
かつ同一作用をする部分には同一符号を付して詳細な説
明は略し、異なる部分を中心に説明する。
Next, the third embodiment will be described with reference to FIGS.
It will be described using 0. With the same structure as the first embodiment,
The parts having the same function are denoted by the same reference numerals, detailed description thereof will be omitted, and different parts will be mainly described.

【0020】図8に示すように、機械の音を受音するマ
イクロホン4と、人体の心拍を測定する生体信号検出装
置としての圧電センサーを用いた心拍計6と、前記マイ
クロホン4の信号と前記心拍計6の信号を相互相関解析
する相関分析装置9と、前記生体信号の変動を分析する
変動分析装置10と、前記相関分析装置9の結果と前記
変動分析装置10の結果から、音の評価を行う音振動評
価装置11を備えた構成とした。ここで、8、9は、そ
れぞれマイクロホンと心拍計の信号増幅器である。ま
た、図9に信号処理のフローチャートを示す。
As shown in FIG. 8, a microphone 4 for receiving a mechanical sound, a heart rate meter 6 using a piezoelectric sensor as a biological signal detecting device for measuring a heartbeat of a human body, a signal of the microphone 4 and the Correlation analysis device 9 for performing cross-correlation analysis of the signal of the heart rate monitor 6, variation analysis device 10 for analyzing the variation of the biological signal, and sound evaluation based on the results of the correlation analysis device 9 and the variation analysis device 10. The sound and vibration evaluation device 11 for performing the above is provided. Here, 8 and 9 are the signal amplifiers of the microphone and the heart rate monitor, respectively. Further, FIG. 9 shows a flowchart of signal processing.

【0021】上記構成によれば、騒音の周期が生体信号
の変動に近い場合において、その影響を考慮して音を評
価することができるものである。すなわち、図10に示
すような信号の場合、心拍と騒音の周期が非常に近似し
ており、生体信号としての心拍は、バイオフィードバッ
クとして騒音の周期に影響を受け、騒音の周期に合わせ
るように変動する場合がある。この場合、生体信号のパ
ワースペクトルは周期性が強い特長となり、右下がりの
強い勾配となり1/fから遠ざかるようになる。よっ
て、心拍の信号と、音の信号を同時に測定し、その相関
解析を行う。その結果、相関係数が0.8未満の低い値
となったときは、パワースペクトル解析を行って、前記
実施例のように評価するが、0.8以上の高い相関値と
なった場合は、不快音として評価することとした。
According to the above configuration, when the cycle of noise is close to the fluctuation of the biological signal, the sound can be evaluated in consideration of its influence. That is, in the case of the signal as shown in FIG. 10, the heartbeat and the noise cycle are very close to each other, and the heartbeat as the biological signal is influenced by the noise cycle as biofeedback, and is adjusted to match the noise cycle. It may fluctuate. In this case, the power spectrum of the biomedical signal is characterized by having a strong periodicity, and has a strong downward sloping gradient and moves away from 1 / f. Therefore, the heartbeat signal and the sound signal are measured at the same time, and the correlation analysis is performed. As a result, when the correlation coefficient becomes a low value of less than 0.8, a power spectrum analysis is performed and evaluation is performed as in the above-described example, but when a high correlation value of 0.8 or more is obtained, , And decided to evaluate it as an unpleasant sound.

【0022】このように、パワースペクトルによる勾配
の評価だけでは、音の評価が困難な場合でも、騒音信号
と生体信号の相互相関をとることで、生体信号が騒音に
影響されている度合を分析することによって、音の評価
を的確にかつ定量的に行うことができるのである。
As described above, even when it is difficult to evaluate the sound only by evaluating the gradient based on the power spectrum, the degree of the influence of the biological signal on the noise is analyzed by taking the cross-correlation between the noise signal and the biological signal. By doing so, the sound can be evaluated accurately and quantitatively.

【0023】[0023]

【発明の効果】以上説明したように本発明の第1と第2
の手段によれば、生体信号の変動分析から発生している
音の評価が可能となるものである。そして、音が発生し
ているときといないときで生体信号のパワースペクトル
の勾配を比較することによって、音の評価を正確に行う
ことができる効果がある。そして、第3の手段によれ
ば、生体信号のゆらぎの大きさを比較することによっ
て、音の評価を正確にかつ定量的に行うことができる効
果がある。また、第4の手段によれば、騒音信号と生体
信号の相互相関をとることで、生体信号が騒音に影響さ
れている度合を分析して、その影響度を考慮して評価す
ることができるのである。
As described above, the first and second aspects of the present invention
According to the means, it is possible to evaluate the sound generated from the variation analysis of the biological signal. Then, by comparing the gradients of the power spectra of the biomedical signals when the sound is generated and when the sound is not generated, there is an effect that the sound can be accurately evaluated. Then, according to the third means, there is an effect that the sound can be evaluated accurately and quantitatively by comparing the magnitudes of the fluctuations of the biological signals. Further, according to the fourth means, by taking the cross-correlation between the noise signal and the biological signal, it is possible to analyze the degree to which the biological signal is affected by noise, and to evaluate the degree of influence in consideration. Of.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例を示す音振動評価装置の
ブロック図
FIG. 1 is a block diagram of a sound and vibration evaluation apparatus showing a first embodiment of the present invention.

【図2】同装置の信号処理を示すフローチャートFIG. 2 is a flowchart showing signal processing of the same device.

【図3】生体信号のパワースペクトル図FIG. 3 is a power spectrum diagram of a biological signal.

【図4】本発明の第2の実施例を示す生体信号波形図FIG. 4 is a biological signal waveform diagram showing a second embodiment of the present invention.

【図5】同装置で分析した特性図[Figure 5] Characteristic diagram analyzed by the same device

【図6】同装置で分析した特性図FIG. 6 is a characteristic diagram analyzed by the same device.

【図7】同装置のフローチャートFIG. 7 is a flowchart of the device.

【図8】本発明の第3の実施例を示す音振動評価装置の
ブロック図
FIG. 8 is a block diagram of a sound and vibration evaluation apparatus showing a third embodiment of the present invention.

【図9】同装置のフローチャートFIG. 9 is a flowchart of the device.

【図10】生体信号と騒音信号波形を示す特性図FIG. 10 is a characteristic diagram showing biological signal and noise signal waveforms.

【図11】従来の睡眠時呼吸情報測定装置のブロック図FIG. 11 is a block diagram of a conventional sleep respiratory information measuring device.

【符号の説明】[Explanation of symbols]

4 マイクロホン 5 音振動検知装置 6 心拍計(生体信号検知装置) 8 変動分析装置 9 相互相関分析装置 10 変動分析装置 11 音振動評価装置 4 Microphone 5 Sound Vibration Detection Device 6 Heart Rate Monitor (Biological Signal Detection Device) 8 Fluctuation Analysis Device 9 Cross Correlation Analysis Device 10 Fluctuation Analysis Device 11 Sound Vibration Evaluation Device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】所定の音または振動が発生したことを検知
する音振動検知装置と、心電、筋電、脈波、心拍などの
生体信号を検出する生体信号検出装置と、前記生体信号
の変動を分析する変動分析装置を備え、前記音振動検知
装置により検知された生体信号を変動分析装置により分
析し、その分析結果から発生した音または振動を評価す
る音振動評価装置。
1. A sound and vibration detecting device for detecting the occurrence of a predetermined sound or vibration, a biological signal detecting device for detecting a biological signal such as an electrocardiogram, myoelectric potential, pulse wave, heartbeat, and the like. A sound and vibration evaluation apparatus comprising a fluctuation analysis device for analyzing fluctuations, analyzing a biological signal detected by the sound and vibration detection device by the fluctuation analysis device, and evaluating sound or vibration generated from the analysis result.
【請求項2】音を聞くまたは振動を受ける前後の人体の
生体信号をパワースペクトル解析する変動分析装置と、
前記パワースペクトルの傾きが1/f特性に接近する度
合で音または振動の評価を行う請求項1記載の音振動評
価装置。
2. A fluctuation analyzer for analyzing a power spectrum of a biological signal of a human body before and after hearing a sound or receiving a vibration,
The sound and vibration evaluation device according to claim 1, wherein sound or vibration is evaluated according to the degree to which the slope of the power spectrum approaches the 1 / f characteristic.
【請求項3】音を聞くまたは振動を受ける前後の人体の
生体信号のゆらぎの大きさを分析する変動分析装置と、
前記ゆらぎの大きさの度合で音または振動の評価を行う
請求項1記載の音振動評価装置。
3. A fluctuation analysis device for analyzing the magnitude of fluctuation of a biological signal of a human body before and after listening to sound or receiving vibration.
The sound and vibration evaluation device according to claim 1, wherein the sound or vibration is evaluated based on the degree of the fluctuation.
【請求項4】所定の音または振動が発生したことを検知
する音振動検知装置と、心電、筋電、脈波、心拍などの
生体信号を検出する生体信号検出装置と、前記生体信号
の変動を分析する変動分析装置と、前記音または振動と
前記生体信号の相互相関を分析する相関分析装置を備
え、前記変動分析装置によって生体信号を分析した第1
の分析結果と、相関分析装置によって得られた第2の分
析結果から発生した音または振動を評価する音振動評価
装置。
4. A sound and vibration detecting device for detecting the occurrence of a predetermined sound or vibration, a biological signal detecting device for detecting a biological signal such as electrocardiogram, myoelectric potential, pulse wave, heartbeat, and the like. A variation analysis device for analyzing variation, and a correlation analysis device for analyzing cross-correlation between the sound or vibration and the biological signal, wherein the variation analysis device analyzes the biological signal.
And a sound and vibration evaluation device that evaluates the sound or vibration generated from the second analysis result obtained by the correlation analysis device.
JP13008495A 1995-05-29 1995-05-29 Sound vibration evaluation device Expired - Fee Related JP3687135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13008495A JP3687135B2 (en) 1995-05-29 1995-05-29 Sound vibration evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13008495A JP3687135B2 (en) 1995-05-29 1995-05-29 Sound vibration evaluation device

Publications (2)

Publication Number Publication Date
JPH08317919A true JPH08317919A (en) 1996-12-03
JP3687135B2 JP3687135B2 (en) 2005-08-24

Family

ID=15025601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13008495A Expired - Fee Related JP3687135B2 (en) 1995-05-29 1995-05-29 Sound vibration evaluation device

Country Status (1)

Country Link
JP (1) JP3687135B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006149470A (en) * 2004-11-25 2006-06-15 Delta Tooling Co Ltd Method and device for evaluating comfort level
JP2008517263A (en) * 2004-10-15 2008-05-22 エックスエイエックス ケイエフティ Apparatus and method for measuring and examining signals of a system that emits measurable signals in operation or in response to external excitation
JP2011015788A (en) * 2009-07-08 2011-01-27 Keio Gijuku Visual evoked potential signal detection system
CN102478423A (en) * 2010-11-24 2012-05-30 比亚迪股份有限公司 Environmental sound monitoring system
CN102928071A (en) * 2012-10-25 2013-02-13 北京市市政工程研究院 Road traffic noise detecting system and method based on electrocardiographic index
KR101347492B1 (en) * 2012-05-14 2014-01-06 인하대학교 산학협력단 Method for sound quality analysis of vehicle based on brain signal and apparatus for thereof
JP2018093996A (en) * 2016-12-09 2018-06-21 デルタ工業株式会社 Biological state estimation device, biological state estimation method, computer program, and recording medium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008517263A (en) * 2004-10-15 2008-05-22 エックスエイエックス ケイエフティ Apparatus and method for measuring and examining signals of a system that emits measurable signals in operation or in response to external excitation
JP2006149470A (en) * 2004-11-25 2006-06-15 Delta Tooling Co Ltd Method and device for evaluating comfort level
JP4636861B2 (en) * 2004-11-25 2011-02-23 株式会社デルタツーリング Comfort evaluation device
JP2011015788A (en) * 2009-07-08 2011-01-27 Keio Gijuku Visual evoked potential signal detection system
CN102478423A (en) * 2010-11-24 2012-05-30 比亚迪股份有限公司 Environmental sound monitoring system
KR101347492B1 (en) * 2012-05-14 2014-01-06 인하대학교 산학협력단 Method for sound quality analysis of vehicle based on brain signal and apparatus for thereof
CN102928071A (en) * 2012-10-25 2013-02-13 北京市市政工程研究院 Road traffic noise detecting system and method based on electrocardiographic index
JP2018093996A (en) * 2016-12-09 2018-06-21 デルタ工業株式会社 Biological state estimation device, biological state estimation method, computer program, and recording medium

Also Published As

Publication number Publication date
JP3687135B2 (en) 2005-08-24

Similar Documents

Publication Publication Date Title
KR100281650B1 (en) EEG analysis method for discrimination of positive / negative emotional state
US7150718B2 (en) Sleep state estimation device and program product for providing a computer with a sleep state estimation function
JP6190466B2 (en) Biological signal measuring instrument and contact state estimation method
JP2002520111A (en) Systems and methods for sensing thoughts and generating control instructions in response to sensing
JPH07204168A (en) Device for automatically identifying information on living body
US8382679B2 (en) Autonomic nerve activity measuring apparatus and autonomic nerve activity measuring method
KR20060037235A (en) Electrophysiological intuition indicator
CN104027109A (en) Atrial fibrillation analyzer and program
EP3678553B1 (en) Diagnosis of pathologies using infrasonic signatures
McClean Patterns of orofacial movement velocity across variations in speech rate
AU699941B2 (en) A device and process for generating and measuring the shape of an acoustic reflectance curve of an ear
JP2772413B2 (en) Correlation survey system
JPH07313494A (en) Stress measuring system
JPH08317919A (en) Sound oscillation evaluating device
JP2000166877A (en) Biorhythm inspecting apparatus and biorhythm inspecting method
JP4882052B2 (en) Pulse wave diagnosis system using self-organizing map, self-organizing map generating program and generating method
KR20020015547A (en) recording medium for sensitivity treatment
Chen et al. Respiratory modulation of oscillometric cuff pressure pulses and Korotkoff sounds during clinical blood pressure measurement in healthy adults
Inbar et al. Psychological stress evaluators: EMG correlation with voice tremor
RU2166280C2 (en) Method for evaluating vegetative nervous system state
JP3314521B2 (en) Heart rate variability waveform analysis method and apparatus
Anas et al. On-line monitoring and analysis of bioelectrical signals
Augousti et al. Evaluation of cardiac monitoring using fiber optic plethysmography
KR19990066565A (en) Optimum Muscle Momentum Alarm System and Its Method
JP2002165799A (en) Health condition diagnosing method and health condition diagnosing device using its method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050530

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees