JPH08317663A - Control device for clamped-neutral type power converter - Google Patents

Control device for clamped-neutral type power converter

Info

Publication number
JPH08317663A
JPH08317663A JP7115442A JP11544295A JPH08317663A JP H08317663 A JPH08317663 A JP H08317663A JP 7115442 A JP7115442 A JP 7115442A JP 11544295 A JP11544295 A JP 11544295A JP H08317663 A JPH08317663 A JP H08317663A
Authority
JP
Japan
Prior art keywords
phase
voltage
correction amount
neutral point
power converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7115442A
Other languages
Japanese (ja)
Inventor
Toshiaki Kudo
俊明 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7115442A priority Critical patent/JPH08317663A/en
Publication of JPH08317663A publication Critical patent/JPH08317663A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4833Capacitor voltage balancing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE: To obtain a control device which can suppress a change in a neutral potential by a method wherein a voltage correction amount which suppresses an alternating change in the neutral potential is found by a computing operation. CONSTITUTION: A phase selection means 18 compares the magnitude relationship between three-phase voltage instructions Vu*, Vv*, Vw*. A phase at a maximum value out of the three-phase voltage instructions is designated as an x-phase, a phase at an intermediate value is designated as a y-phase, and a phase at a minimum value is designated as a z-phase so as to select the respective phases. A correction computing means 19 outputs, as a correction amount Vc, either of two correction amounts Vc1, Vc2 computed by expressions by using voltage instructions Vx*, Vy*, Vz* at the x-, y- and z-phases decided by the phase selection means 18 and by using detection currents Ix, Iy, Iz. The correction amount Vc is added to the three-phase voltage instructions Vu*, Vv*, Vw* by using respective adders 15u, 15v, 15w, corrected voltage instructions Vuc*, Vvc*, Vwc* are pulse-width-modulated by a PWM circuit 16, and the switching element of an NPC converter 1 is controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、中性点クランプ式電力
変換器の制御装置に係り、特に中性点電位変動を抑制で
きる中性点クランプ式電力変換器の制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for a neutral point clamp type power converter, and more particularly to a control device for a neutral point clamp type power converter capable of suppressing a neutral point potential fluctuation.

【0002】[0002]

【従来の技術】図6に周知の中性点クランプ式電力変換
器(以後、単にNPC変換器と記す)の主回路構成を示
す。図6において、PとNは直流電力の授受を行うため
の直流端子、Cp とCn は直流電圧を正側直流電圧Vcp
と負側直流電圧Vcnに分割するための平滑コンデンサ、
1はゲ―トタ―ンオフサイリスタ等のスイッチング素子
とダイオ―ドで構成されるNPC変換器、U、V、Wは
交流電力の授受を行うための3相交流端子である。
2. Description of the Related Art FIG. 6 shows a main circuit configuration of a known neutral point clamp type power converter (hereinafter simply referred to as an NPC converter). In FIG. 6, P and N are DC terminals for exchanging DC power, and Cp and Cn are DC voltages for positive DC voltage Vcp.
And a smoothing capacitor for dividing into the negative side DC voltage Vcn,
Reference numeral 1 is an NPC converter composed of a switching element such as a gate turn-off thyristor and a diode, and U, V and W are three-phase AC terminals for exchanging AC power.

【0003】図6のNPC変換器1の構成と動作は良く
知られているので詳細説明は省略する。NPC変換器に
は、端子P及び端子Nを直流電源に接続し、端子U、
V、Wから負荷に交流電力を供給するNPCインバ―タ
と、交流端子U、V、Wを商用電源等の交流電源に接続
し、端子P及び端子Nから負荷に直流電力を供給するN
PCコンバ―タがある。両者は呼び方が異るだけで動作
や抱える技術課題は共通しているのが多い。本発明が解
決しようとする課題も共通しているので、両者を区別せ
ずにNPC変換器として扱う。
Since the configuration and operation of the NPC converter 1 shown in FIG. 6 are well known, detailed description thereof will be omitted. In the NPC converter, the terminals P and N are connected to a DC power source, and terminals U,
An NPC inverter that supplies AC power to the load from V and W, and AC terminals U, V, and W are connected to an AC power supply such as a commercial power supply, and DC power is supplied to the load from terminals P and N.
There is a PC converter. Both of them have different operations and technical problems in common. Since the problems to be solved by the present invention are also common, they are treated as NPC converters without distinguishing them.

【0004】又、図6の2組の平滑コンデンサの接続点
である中性点Oも端子として2分割された直流電源ある
いは直流負荷に接続された構成もあるが、本発明はその
ような構成のものも対象として含む。
The neutral point O, which is the connection point of the two sets of smoothing capacitors in FIG. 6, may also be connected as a terminal to a DC power supply or a DC load divided into two, but the present invention has such a structure. Including those included.

【0005】さて、NPC変換器の制御面での課題の1
つに、中性点電位変動の抑制技術がある。NPC変換器
は定常運転しているときでも、図6における中性点電流
Ioが交流側周波数の3倍の周波数でで正負に変動する
という基本的な性質を持っている。その中性点電流Io
は両コンデンサCp とCn に分流し、例えば図6の極性
の中性点電流の場合は、正側コンデンサCp の電圧Vcp
を増加させ、負側コンデンサCn の電圧Vcnを減少させ
る。即ち、両コンデンサの電圧をアンバランスにする電
流が流れ、中性点の電位は交流側周波数の3倍の周波数
で変動する。この電位変動は交流側の電流に対する外乱
要素とまり、交流電流の波形歪みの原因となる。
Now, one of the problems in the control aspect of the NPC converter is
One is a technique for suppressing the fluctuation of the neutral point potential. The NPC converter has the basic property that the neutral point current Io in FIG. 6 fluctuates positively and negatively at a frequency that is three times the frequency on the AC side even during steady operation. The neutral point current Io
Is shunted to both capacitors Cp and Cn. For example, in the case of the neutral point current of the polarity shown in FIG. 6, the voltage Vcp of the positive side capacitor Cp is
Is increased, and the voltage Vcn of the negative side capacitor Cn is decreased. That is, a current that makes the voltages of both capacitors unbalanced flows, and the potential at the neutral point fluctuates at a frequency three times the frequency on the AC side. This potential fluctuation becomes a disturbance factor for the current on the alternating current side and causes waveform distortion of the alternating current.

【0006】高性能の制御を実現するためには、中性点
電位の変動、即ち、正負コンデンサの電圧差(Vcp−V
cn)を抑制することが必要であり、そのために電圧差を
検出してフィ―ドバック補正し、電位変動を抑制するた
めの制御を行うことが多い。
In order to realize high-performance control, the fluctuation of the neutral point potential, that is, the voltage difference (Vcp-V) between the positive and negative capacitors.
cn) is required to be suppressed, and for this reason, a voltage difference is often detected to perform feedback correction, and control for suppressing potential fluctuation is often performed.

【0007】図7は、中性点電位変動を抑制するため
に、フィ―ドバック補正をする場合の構成例である。
(例えば、嶋村他「NPCインバ―タの直流入力コンデ
ンサ電圧の平衡化制御」電気学会半導体電力変換研究会
資料SPC-91-37 ,平成3) 図7は、1のNPC変換器他、主回路部は図6と同じで
あり、中性点電位を抑制するための制御回路部を追加し
た構成である。10p 及び10n は正側直流電圧Vcp及
び負側直流電圧Vcnをそれぞれ検出する電圧検出器、1
1は減算器、12は増幅器、13はNPC変換器1の電
力の極性などを判断して正或いは負の単位信号Sp を出
力する極性選択器、14は乗算器、15u 、15v 、1
5w は加算器、16は3相の電圧指令をパルス幅変調
(PWM)してNPC変換器1のスイッチング素子をオ
ンオフ制御するPWM回路、17u 、17v 、17w は
交流3相の電流Iu 、Iv 、Iw を検出する電流検出器
である。
FIG. 7 shows a configuration example in which feedback correction is performed in order to suppress the neutral point potential fluctuation.
(For example, Shimamura et al., "Balance control of DC input capacitor voltage of NPC inverter", Institute of Electrical Engineers of Japan, Semiconductor Power Conversion Study Material, SPC-91-37, Heisei 3). The part is the same as that of FIG. 6, and has a configuration in which a control circuit part for suppressing the neutral point potential is added. 10p and 10n are voltage detectors for detecting the positive side DC voltage Vcp and the negative side DC voltage Vcn, respectively.
1 is a subtractor, 12 is an amplifier, 13 is a polarity selector that determines the polarity of the power of the NPC converter 1 and outputs a positive or negative unit signal Sp, 14 is a multiplier, 15u, 15v, 1
5w is an adder, 16 is a PWM circuit for pulse-width modulating (PWM) a three-phase voltage command to control ON / OFF of the switching element of the NPC converter 1, 17u, 17v, 17w are AC three-phase currents Iu, Iv, It is a current detector for detecting Iw.

【0008】電圧検出器10p 及び10n で検出した正
負の直流電圧Vcp及びVcnの差を減算器11で求め、そ
の差Vcp−Vcnを増幅器12で増幅して中性点電位変動
を抑制するための電圧補正量を得る。電圧差Vcp−Vcn
を抑制するための補正量の極性は、NPC変換器1の運
転状態によって変化するため、図7では3相の電圧指令
Vu * 、Vv * 、Vw * と交流出力電流Iu 、Iv 、I
w とから極性を判断し、1あるいは−1の極性信号Sp
を出力する極性選択器13を設けている。この極性信号
Sp と増幅器12の出力信号を乗算器14で乗算して電
圧補正量Vc を得る。この補正量Vc を3相の電圧指令
Vu * 、Vv * 、Vw * に加算し、補正された電圧指令
Vuc* 、Vvc* 、Vwc* を求める。この補正された電圧
指令Vuc* 、Vvc* 、Vwc* に比例するようにNPC変
換器1を構成するスイッチング素子を制御する。
A subtracter 11 calculates the difference between the positive and negative DC voltages Vcp and Vcn detected by the voltage detectors 10p and 10n, and the difference Vcp-Vcn is amplified by an amplifier 12 to suppress the neutral point potential fluctuation. Obtain the voltage correction amount. Voltage difference Vcp-Vcn
Since the polarity of the correction amount for suppressing the voltage changes depending on the operating state of the NPC converter 1, the three-phase voltage commands Vu * , Vv * , Vw * and the AC output currents Iu, Iv, I in FIG.
The polarity is judged from w and the polarity signal Sp of 1 or -1
A polarity selector 13 for outputting is provided. The polarity signal Sp and the output signal of the amplifier 12 are multiplied by the multiplier 14 to obtain the voltage correction amount Vc. The correction amount voltage command Vc to three-phase Vu *, Vv *, and added to Vw *, the corrected voltage command Vuc *, Vvc *, seek Vwc *. The switching element forming the NPC converter 1 is controlled so as to be proportional to the corrected voltage commands Vuc * , Vvc * , Vwc * .

【0009】電圧補正量Vc が0であると電圧指令Vu
* 、Vv * 、Vw * をPWM回路16に直接入力したと
きと同じであり、前述のようにNPC変換器の基本的な
性質のため、中性点電流Io が流れ、中性点電位変動即
ち、正負直流電圧の電圧差を生じる。その電圧差Vcp−
Vcnを検出して、電圧差を抑制するための電圧補正量V
c を決め、補正された電圧指令Vuc* 、Vvc* 、Vwc*
でNPC変換器1を制御することで中性点電位変動を抑
制するように動作するものである。
If the voltage correction amount Vc is 0, the voltage command Vu
This is the same as when * , Vv * , and Vw * are directly input to the PWM circuit 16. As described above, due to the basic property of the NPC converter, the neutral point current Io flows and the neutral point potential fluctuation, that is, , A positive / negative DC voltage difference occurs. The voltage difference Vcp-
Voltage correction amount V for detecting Vcn and suppressing the voltage difference
Corrected voltage command Vuc * , Vvc * , Vwc * after determining c
By controlling the NPC converter 1, the operation is performed to suppress the neutral point potential fluctuation.

【0010】[0010]

【発明が解決しようとする課題】図7の構成によって中
性点電位の変動を小さくすることができるが、運転周波
数の3倍の周波数で交流変動する中性点電位変動を0に
するためには、増幅器12のゲインが無限大であること
が必要である。しかし、電圧検出器10p ,10n の遅
れなどがあり、安定に動作させるには、増幅器12のゲ
インを所定値以下にせざるを得ない。結果として、中性
点電位変動を0にできないという問題があった。
The fluctuation of the neutral point potential can be reduced by the configuration of FIG. 7, but in order to eliminate the fluctuation of the neutral point potential, which fluctuates with an alternating current at a frequency three times the operating frequency, to zero. Requires that the gain of the amplifier 12 be infinite. However, there is a delay in the voltage detectors 10p and 10n, and the gain of the amplifier 12 must be set to a predetermined value or less in order to operate stably. As a result, there is a problem that the neutral point potential fluctuation cannot be reduced to zero.

【0011】このことは、中性点電流Io 等を検出或い
は演算してフィ―ドバック補正する方式でも同じであ
り、フィ―ドバック量を増幅して電圧補正量を決める方
式の共通した問題である。
This is the same in the method of feedback compensation by detecting or calculating the neutral point current Io and the like, and is a common problem in the method of amplifying the feedback amount and determining the voltage correction amount. .

【0012】本発明は、中性点電位の交流変動を抑制す
るための電圧補正量を、演算によって求めることにより
高ゲインのフィ―ドバック増幅器を不要とし、中性点電
位変動の抑制効果の高い中性点クランプ式電力変換器の
制御装置を提供することを目的とする。
The present invention eliminates the need for a high gain feedback amplifier by calculating the voltage correction amount for suppressing the AC fluctuation of the neutral point potential, and has a high effect of suppressing the neutral point potential fluctuation. An object of the present invention is to provide a control device for a neutral point clamp type power converter.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に記載の発明は、3相電圧指令Vu * 、V
v * 、Vw * の大小関係を比較して、3相電圧指令のう
ち最大値の相をx相、中間値の相をy相、最小値の相を
z相として各相を選択する相選択手段と、前記相選択手
段で決められたxyz相の電圧指令Vx * 、Vy * 、V
z * と電流Iu 、Iv 、Iw を用いて、次式で演算した
2つの補正量Vc1とVc2のうちいずれかを補正量Vc と
して出力する補正量演算手段とを有し、 Vc1=(Vx * Ix +Vy * Iy −Vz * Iz )/(2Iz ) Vc2=(−Vx * Ix +Vy * Iy +Vz * Iz )/(2Ix ) 補正量演算手段の出力を、中性点電位変動を抑制するた
めの電圧補正量Vc として用いる。
In order to achieve the above object, the invention according to claim 1 provides three-phase voltage commands Vu * , Vu .
A phase selection that compares the magnitude relationships of v * and Vw * and selects each phase with the phase of the maximum value among the three-phase voltage commands as the x phase, the phase of the intermediate value as the y phase, and the phase of the minimum value as the z phase Means and the xyz-phase voltage commands Vx * , Vy * , V determined by the phase selecting means.
Using z * and the currents Iu, Iv, and Iw, a correction amount calculation means for outputting one of the two correction amounts Vc1 and Vc2 calculated by the following equation as a correction amount Vc is provided, and Vc1 = (Vx * Ix + Vy * Iy-Vz * Iz) / (2Iz) Vc2 = (-Vx * Ix + Vy * Iy + Vz * Iz) / (2Ix) The voltage for suppressing the neutral point potential fluctuations from the output of the correction amount calculation means. It is used as the correction amount Vc.

【0014】又、請求項2に記載の発明は、請求項1に
記載の発明と同様に、3相電圧指令Vu * 、Vv * 、V
w * の大小関係を比較して、3相電圧指令のうち最大値
の相をx相、中間値の相をy相、最小値の相をz相とし
て各相を選択する相選択手段と、xyz相の電圧指令V
x * 、Vy * 、Vz * と電流Iu 、Iv 、Iw とから演
算した2つの補正量Vc1とVc2のうちいずれかを補正量
Vcoとして出力する補正演算手段に加え、更に、2組の
平滑コンデンサのそれぞれの両端電圧である正側直流電
圧と負側直流電圧との差電圧を検出する差電圧検出手段
と、その差電圧を増幅及び必要に応じて極性反転した信
号Vcdを出力する増幅手段を設け、補正量演算手段の出
力Vcoに増幅手段の出力Vcdを加算した量を、中性点電
位変動を抑制するための前記電圧補正量Vc として用い
る。
The invention described in claim 2 is, like the invention described in claim 1, three-phase voltage commands Vu * , Vv * , V.
Comparing the magnitude relationships of w * , phase selecting means for selecting each phase with the phase of the maximum value among the three-phase voltage commands as the x phase, the phase of the intermediate value as the y phase, and the phase of the minimum value as the z phase xyz phase voltage command V
In addition to the correction calculation means for outputting one of the two correction amounts Vc1 and Vc2 calculated from x * , Vy * , Vz * and the currents Iu, Iv, Iw as the correction amount Vco, two sets of smoothing capacitors are further provided. A difference voltage detecting means for detecting a difference voltage between the positive side DC voltage and the negative side DC voltage, which are voltages across the respective terminals, and an amplifying means for amplifying the difference voltage and outputting a signal Vcd whose polarity is inverted if necessary. An amount obtained by adding the output Vco of the amplification unit to the output Vco of the correction amount calculation unit is used as the voltage correction amount Vc for suppressing the neutral point potential fluctuation.

【0015】更に、請求項3に記載の発明は、請求項1
に記載の発明における検出電流の代りに、3相の電流指
令Iu * 、Iv * 、Iw * を用い、3相電圧指令Vu
* 、Vv * 、Vw * の大小関係を比較してxyをz相を
決定する相選択手段と、xyz相の電圧指令Vx * 、V
y * 、Vz * と電流指令値Iu * 、Iv * 、Iw * とか
ら演算した2つの補正量Vc1とVc2のうちいずれかを補
正量Vc として出力する補正量演算手段とを有し、補正
量演算手段の出力を、中性点電位変動を抑制するための
電圧補正量Vc として用いる。
Further, the invention described in claim 3 is the same as claim 1.
In place of the detected current in the invention described in paragraph 3, the three-phase current commands Iu * , Iv * , Iw * are used, and the three-phase voltage command Vu is used.
Phase selection means for determining the xy z phase by comparing the magnitude relationships of * , Vv * , Vw * , and xyz phase voltage commands Vx * , V
A correction amount calculation means for outputting one of the two correction amounts Vc1 and Vc2 calculated from y * , Vz * and the current command values Iu * , Iv * , Iw * as the correction amount Vc, and the correction amount. The output of the calculation means is used as the voltage correction amount Vc for suppressing the neutral point potential fluctuation.

【0016】更に又、請求項4に記載の発明は、請求項
3に記載の発明と同様に、3相電圧指令Vu * 、Vv
* 、Vw * と3相の電流指令Iu * 、Iv * 、Iw *
から、相選択手段と補正量演算手段とによって補正量V
coを演算し、更に、2組の平滑コンデンサのそれぞれの
両端電圧である正側直流電圧と負側直流電圧との差電圧
を検出する差電圧検出手段と、その差電圧を増幅及び必
要に応じて極性反転した信号Vcdを出力する増幅手段を
設け、補正量演算手段の出力Vcoに増幅手段の出力Vcd
を加算した量を、中性点電位変動を抑制するための電圧
補正量Vc として用いる。
Furthermore, the invention described in claim 4 is, similarly to the invention described in claim 3, three-phase voltage commands Vu * , Vv.
Based on * , Vw * and the three-phase current commands Iu * , Iv * , Iw * , the correction amount V is calculated by the phase selection means and the correction amount calculation means.
A differential voltage detecting means for calculating co and further detecting a differential voltage between the positive side DC voltage and the negative side DC voltage, which are the voltages across each of the two sets of smoothing capacitors, and amplifying the differential voltage and, if necessary, Amplifying means for outputting a signal Vcd whose polarity is inverted is provided, and the output Vco of the amplifying means is added to the output Vco of the correction amount calculating means.
Is used as the voltage correction amount Vc for suppressing the neutral point potential fluctuation.

【0017】[0017]

【作用】本発明の作用を説明する前に、作用を理解する
ために必要な原理を説明する。ただし、電圧指令Vu
* 、Vv * 、Vw * の3相の和、及び電流Iu Iv 、I
wの3相の和は0であるものとする。
Before explaining the operation of the present invention, the principle necessary for understanding the operation will be described. However, voltage command Vu
* , Vv * , Vw * sum of three phases, and currents Iu Iv, I
The sum of the three phases of w is 0.

【0018】図6に示したNPC変換器1の任意の相の
電圧指令をV* (最大振幅を1とする)、相電流をIと
したときに流れる中性点電流Io は次式となることが知
られている。
The neutral point current Io flowing when the voltage command of any phase of the NPC converter 1 shown in FIG. 6 is V * (the maximum amplitude is 1) and the phase current is I is given by the following equation. It is known.

【0019】[0019]

【数1】 Io =(1−|V* |)I ……(1) 実際は3相分の合計電流となるので3相運転時の中性点
電流Io は次式となる。 Io =(1−|Vu * |)Iu +(1−|Vv * |)Iv +(1-|Vw * |)Iw ……(2) 3相の電流の和は0であるので、次式が得られる。
## EQU1 ## Io = (1- | V * |) I (1) Actually, the total current for three phases is obtained, so the neutral point current Io during three-phase operation is given by the following equation. Io = (1- | Vu * |) Iu + (1- | Vv * |) Iv + (1- | Vw * |) Iw (2) Since the sum of the three-phase currents is 0, Is obtained.

【0020】 Io =−|Vu * |Iu −|Vv * |Iv −|Vw * |Iw ……(3) 各相の電圧指令Vu * 、Vv * 、Vw * に補正量Vc を
加算した後の、次の電圧指令Vuc* 、Vvc* 、Vwc*
(3)式に代入して、補正後の中性点電流Ioが(5)
式で計算できる。
Io = − | Vu * | Iu− | Vv * | Iv− | Vw * | Iw (3) After adding the correction amount Vc to the voltage commands Vu * , Vv * , Vw * for each phase Substituting the following voltage commands Vuc * , Vvc * , Vwc * into the equation (3), the corrected neutral point current Io is (5).
It can be calculated by the formula.

【0021】[0021]

【数2】 Vuc* =Vu * +Vc ……(4a) Vvc* =Vv * +Vc ……(4a) Vwc* =Vw * +Vc ……(4a) Io =−|Vuc* |Iu −|Vvc* |Iv −|Vwc* |Iw ……(5) (5)式のIo が0になる補正量Vc を求めることが、
ここでの目的である。即ち、次式を満足するVc を求め
ればよい。
(2) Vuc * = Vu * + Vc (4a) Vvc * = Vv * + Vc (4a) Vwc * = Vw * + Vc (4a) Io =-| Vuc * | Iu- | Vvc * | Iv- | Vwc * | Iw (5) The correction amount Vc at which Io in the equation (5) becomes zero can be obtained by
Here is the purpose. That is, Vc satisfying the following equation may be obtained.

【0022】[0022]

【数3】 −Io =|Vu * +Vc |Iu +|Vv * +Vc |Iv +|Vw * +Vc |Iw ……(6) しかし、電圧指令の絶対値を用いるので、(6)式を満
足するVc を単純に求めることはできない。電圧指令に
補正量Vc を加算したことによって、極性が変化する場
合としない場合とに分けて考える必要がある。
## EQU3 ## −Io = | Vu * + Vc | Iu + | Vv * + Vc | Iv + | Vw * + Vc | Iw (6) However, since the absolute value of the voltage command is used, the formula (6) is satisfied. Vc cannot be simply calculated. By adding the correction amount Vc to the voltage command, it is necessary to consider whether the polarity changes or not.

【0023】ただし、補正量を加算したことで極性が変
る可能性があるのは、3相の内の1相の電圧指令だけで
ある。なぜなら、同じ補正量を3相の電圧指令に加算す
ることによって2相が極性変化する可能性があるのは、
3相の内の同極性の2相とも極性変化する場合だけであ
る。この場合は補正後の電圧指令が3相とも正または負
の同じ極性になることを意味する。3相とも同極性で
(6)式を満足するためには、電圧指令が3相とも等し
い(3相とも0)か、電流が3相とも0でなければなら
ない。このときは、補正しなくても中性点電流は0であ
る。即ち、補正後の電圧指令が3相とも同極性になるこ
とはないことを意味している。ただし、1相が0で、他
の2相が同極性になることはある。
However, it is only the voltage command of one of the three phases that the polarity may change due to the addition of the correction amount. This is because the polarities of the two phases may change when the same correction amount is added to the voltage commands of the three phases.
It is only when the two polarities of the same polarity among the three phases change. In this case, it means that the corrected voltage command has the same positive or negative polarity for all three phases. In order to satisfy the formula (6) with the same polarity in all three phases, the voltage command must be the same in all three phases (0 in all three phases) or the current in all three phases must be zero. At this time, the neutral point current is 0 without correction. That is, it means that the corrected voltage command does not have the same polarity in all three phases. However, one phase may be 0 and the other two phases may have the same polarity.

【0024】以上のことから、(6)式を解くときに、
補正量Vc を加算しても電圧指令の極性が変化しない場
合と、絶対値が最小である相の電圧指令の極性だけが変
化する場合の2つのケ―スを考えればよい。
From the above, when solving equation (6),
Two cases may be considered: one in which the polarity of the voltage command does not change even if the correction amount Vc is added, and the other in which only the polarity of the voltage command in the phase having the smallest absolute value changes.

【0025】最初に、Vu * >0、Vv * >0、Vw *
<0で、|Vu * |>|Vv * |の場合について考え
る。このときに補正したことによって極性が変る可能性
があるのはv相である。まず、補正によって極性が変化
しない場合(Vuc* >0、Vvc* >0、Vwc*<0)を
考えると、(6)式から次の関係が得られる。
First, Vu * > 0, Vv * > 0, Vw *
Consider the case of <0 and | Vu * |> | Vv * |. It is the v phase that the polarity may change due to the correction at this time. First, considering the case where the polarity does not change due to correction (Vuc * > 0, Vvc * > 0, Vwc * <0), the following relationship is obtained from the equation (6).

【0026】[0026]

【数4】 (Vu * +Vc )Iu +(Vv * +Vc )Iv −(Vw * +Vc )Iw =Vu * Iu +Vv * Iv −Vw * Iw +Vc(Iu +Iv −Iw)=0 ……(7) したがって、次式の補正量Vc が求められる。(Vu * + Vc) Iu + (Vv * + Vc) Iv− (Vw * + Vc) Iw = Vu * Iu + Vv * Iv−Vw * Iw + Vc (Iu + Iv−Iw) = 0 (7) Therefore , The correction amount Vc of the following equation is obtained.

【0027】 Vc =−(Vu * Iu +Vv * Iv −Vw * Iw )/(Iu+Iv-Iw) = (Vu * Iu +Vv * Iv −Vw * Iw )/(2Iw) ……(8) 次に補正したことによってv相の極性が変化、即ち、V
vc* <0となるときを考える。(6)式から次の関係を
得る。
Vc =-(Vu * Iu + Vv * Iv-Vw * Iw) / (Iu + Iv-Iw) = (Vu * Iu + Vv * Iv-Vw * Iw) / (2Iw) (8) Next The polarity of the v phase changes due to the correction, that is, V
Consider when vc * <0. The following relation is obtained from the equation (6).

【0028】 (Vu * +Vc )Iu −(Vv * +Vc )Iv −(Vw * +Vc )Iw =Vu * Iu −Vv * Iv −Vw * Iw +Vc (Iu −Iv −Iw ) =0 ……(9) したがって、次式の補正量Vc が得られる。(Vu * + Vc) Iu− (Vv * + Vc) Iv− (Vw * + Vc) Iw = Vu * Iu−Vv * Iv−Vw * Iw + Vc (Iu−Iv−Iw) = 0 (9) Therefore, the correction amount Vc of the following equation is obtained.

【0029】 Vc =−(Vu * Iu −Vv * Iv −Vw * Iw )/(Iu-Iv-Iw) =(−Vu * Iu +Vv * Iv +Vw * Iw )/(2Iu ) ……(10) 以上は電圧指令のうちの2相が正である場合であるが次
に2相が負の場合について考える。例としてVu *
0、Vv * <0、Vw * <0で、|Vv * |<|Vw *
|の場合について考える。このときも補正したことによ
って極性が変る可能性があるのはv相である。
Vc =-(Vu * Iu-Vv * Iv-Vw * Iw) / (Iu-Iv-Iw) = (-Vu * Iu + Vv * Iv + Vw * Iw) / (2Iu) (10) or more Is a case where two phases of the voltage command are positive, and next considers a case where the two phases are negative. As an example, Vu * >
0, Vv * <0, Vw * <0, | Vv * | <| Vw *
Consider the case of |. Also in this case, it is the v phase that the polarity may change due to the correction.

【0030】[0030]

【数5】 (Vu * +Vc )Iu −(Vv * +Vc )Iv −(Vw * +Vc )Iw =Vu * Iu −Vv * Iv −Vw * Iw +Vc(Iu −Iv −Iw)=0 ……(11) 上式は(9)式と同である。従って、補正量Vc は(1
0)式で求められる。次に補正したことによってv相の
極性が変化、即ち、Vvc* >0となるときを考える。
(6)式から次の関係式を得る。
(Vu * + Vc) Iu− (Vv * + Vc) Iv− (Vw * + Vc) Iw = Vu * Iu−Vv * Iv−Vw * Iw + Vc (Iu−Iv−Iw) = 0 (11) ) The above equation is the same as the equation (9). Therefore, the correction amount Vc is (1
It is calculated by the equation (0). Next, consider a case where the polarity of the v-phase changes due to the correction, that is, Vvc * > 0.
The following relational expression is obtained from the expression (6).

【0031】[0031]

【数6】 (Vu * +Vc )Iu +(Vv * +Vc )Iv −(Vw * +Vc )Iw =Vu * Iu +Vv * Iv −Vw * Iw +Vc(Iu +Iv −Iw)=0 ……(12) 上式は(7)式と同じである。従って、補正量Vc は
(8)式で求められる。即ち、電圧指令のうち2相が負
であるときと、2相が正であるときの補正量の計算式は
同じであることが分る。
(Vu * + Vc) Iu + (Vv * + Vc) Iv− (Vw * + Vc) Iw = Vu * Iu + Vv * Iv−Vw * Iw + Vc (Iu + Iv−Iw) = 0 (12) Above The formula is the same as the formula (7). Therefore, the correction amount Vc is obtained by the equation (8). That is, it can be seen that the calculation formulas of the correction amounts when the two phases of the voltage command are negative and when the two phases are positive are the same.

【0032】以上の説明は分り易くするために、電圧指
令の各相の大きさ関係を固定したが、他の関係のときも
同様であることは明らかである。より一般化して、最大
値の電圧指令の相をx相、中間値の電圧指令の相をy
相、最小値の電圧指令の相をz相、即ち、Vx * >Vy
* >Vz * とすると、次の2つの補正量Vc1とVc2が求
められる。
For ease of understanding the above description, the magnitude relationship of each phase of the voltage command is fixed, but it is clear that the same applies to other relationships. More generalized, the phase of the maximum voltage command is x phase, and the phase of the intermediate voltage command is y.
Phase, the phase of the minimum value voltage command is the z phase, that is, Vx * > Vy
When * > Vz * , the following two correction amounts Vc1 and Vc2 are obtained.

【0033】[0033]

【数7】 Vc1=(Vx * Ix +Vy * Iy −Vz * Iz )/(2Iz) ……(13) Vc2=(−Vx * Ix +Vy * Iy +Vz * Iz )/(2Ix) ……(14) 2つの補正量Vc1とVc2が求められるが、正しい補正量
は1つである。従って、正しくない方の補正量には矛盾
を生じることになる。この矛盾を判断することで正しい
方の補正量を選択することができる。
[Equation 7] Vc1 = (Vx * Ix + Vy * Iy -Vz * Iz) / (2Iz) ...... (13) Vc2 = (- Vx * Ix + Vy * Iy + Vz * Iz) / (2Ix) ...... (14) Two correction amounts Vc1 and Vc2 are obtained, but the correct correction amount is one. Therefore, a contradiction occurs in the incorrect correction amount. By determining this contradiction, the correct correction amount can be selected.

【0034】例えば、上式で求めた2つの補正量Vc1と
Vc2を(6)式のVc に代入することで、矛盾の判断が
可能である。(6)式を満足するか、或いは計算誤差を
考慮して(6)式の計算したIo の絶対値の小さい方の
補正量を採用すればよい。
For example, the contradiction can be determined by substituting the two correction amounts Vc1 and Vc2 obtained by the above equation into Vc in the equation (6). It suffices to satisfy the formula (6) or to adopt the correction amount having the smaller absolute value of Io calculated by the formula (6) in consideration of the calculation error.

【0035】又、補正後のy相の電圧指令の極性が変化
しないと仮定した式を用いて計算した補正量が、結果的
には極性を変化させる場合は正しくない補正量である。
その他にも矛盾を判断する種々の方法がある。
Further, the correction amount calculated by using the equation on the assumption that the polarity of the y-phase voltage command after correction does not change is an incorrect correction amount when the polarity is changed.
There are various other methods for judging contradiction.

【0036】請求項1に記載の発明は以上の原理に基づ
いてなされたものであり、3相の電圧指令Vu * 、Vv
* 、Vw * と、検出電流Iu 、Iv 、Iw を用いて、
(13)及び(14)式で2つの補正量Vc1とVc2を計
算し、矛盾を生じない正しい補正量を選択する。選択し
た補正量を用いて、電圧指令を補正することによって中
性点電流を0にし、中性点電位の変動を抑制するもので
ある。
The invention according to claim 1 is based on the above-mentioned principle, and the three-phase voltage commands Vu * , Vv.
Using * , Vw * and the detection currents Iu, Iv, Iw,
Two correction amounts Vc1 and Vc2 are calculated by the equations (13) and (14), and a correct correction amount that does not cause a contradiction is selected. The neutral point current is set to 0 by correcting the voltage command using the selected correction amount, and the fluctuation of the neutral point potential is suppressed.

【0037】又、請求項2に記載の発明は、上記の計算
で求めた補正量に、正側直流電圧と負側直流電圧との差
電圧を検出し、その差電圧を増幅及び必要に応じて極性
反転した信号を重畳する。このようにフィ―ドバック補
正と併用することによって、中性点電位変動の速い変化
は計算で求めた補正量で抑制し、NPC変換器の素子特
性の差等によって生じる直流的な変動をフィ―ドバック
補正で抑制することが可能となる。この場合、フィ―ド
バック部の増幅器のゲインは小さくても、充分効果を発
揮する。
According to the second aspect of the present invention, a difference voltage between the positive side DC voltage and the negative side DC voltage is detected in the correction amount obtained by the above calculation, the difference voltage is amplified, and if necessary, is detected. And the signals whose polarities are inverted are superimposed. By using this together with the feedback correction, the rapid change of the neutral point potential fluctuation is suppressed by the correction amount calculated, and the direct current fluctuation caused by the difference of the element characteristics of the NPC converter is suppressed. It becomes possible to suppress it by the feedback correction. In this case, even if the gain of the amplifier in the feedback section is small, the effect is sufficiently exhibited.

【0038】更に、請求項3に記載の発明は、3相の電
圧指令Vu * 、Vv * 、Vw * と、検出電流Iu 、Iv
、Iw の代りに電流指令Iu * 、Iv * 、Iw * を用
いて、(13)及び(14)式で2つの補正量Vc1とV
c2を計算し、矛盾を生じない正しい補正量を選択する。
選択した補正量を用いて電圧指令を補正することによっ
て中性点電流を0にし、中性点電位の変動を抑制でき
る。
Further, in the invention according to claim 3, the three-phase voltage commands Vu * , Vv * , Vw *, and the detection currents Iu, Iv.
, Iw in place of the current commands Iu * , Iv * , Iw * , the two correction amounts Vc1 and Vc in the equations (13) and (14) are used.
Calculate c2 and select the correct correction amount that does not cause contradiction.
By correcting the voltage command using the selected correction amount, the neutral point current can be set to 0 and the fluctuation of the neutral point potential can be suppressed.

【0039】更に又、請求項4に記載の発明によれば、
上記のように計算で求めた補正量に正側直流電圧と負側
直流電圧との差電圧を検出し、その差電圧を増幅及び必
要に応じて極性反転した信号を重畳する。請求項2に記
載の発明と同様に中性点電位変動の速い変化は計算で求
めた補正量で抑制し、NPC変換器の阻止特性の差等に
よって生じる直流的な変動をフィ―ドバック補正で抑制
することが可能となる。
Further, according to the invention described in claim 4,
The difference voltage between the positive side DC voltage and the negative side DC voltage is detected in the correction amount calculated as described above, and the signal obtained by amplifying the difference voltage and reversing the polarity as necessary is superimposed. Similarly to the invention described in claim 2, the rapid change of the neutral point potential fluctuation is suppressed by the correction amount calculated, and the direct current fluctuation caused by the difference of the blocking characteristics of the NPC converter is compensated by the feedback correction. It becomes possible to suppress.

【0040】[0040]

【実施例】以下図面を参照しながら本発明の実施例を説
明する。図1は請求項1に記載の発明の一実施例を示す
構成図であり、主回路部と加算器15u 、15v 、15
w、PWM回路16及び電流検出器17u 、17v 、1
7w は図7と同じものであるから説明は省略する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of the invention described in claim 1, in which the main circuit section and the adders 15u, 15v, 15
w, PWM circuit 16 and current detectors 17u, 17v, 1
Since 7w is the same as that in FIG. 7, the description thereof is omitted.

【0041】図1において、18は3相電圧指令Vu
* 、Vv * 、Vw * の大小関係を比較して、3相電圧指
令のうち最大値の相をx相、中間値の相をy相、最小値
の相をz相として各相を選択する相選択手段、19は相
選択手段18で決められたxyz相の電圧指令Vx *
Vy * 、Vz * と検出電流Ix 、Iy 、Iz を用いて、
(13)及び(14)式で演算した2つの補正量Vc1と
Vc2のうちいずれかを補正量Vc として出力する補正量
演算手段である。
In FIG. 1, 18 is a three-phase voltage command Vu.
Comparing the magnitude relationships of * , Vv * , and Vw * , each phase is selected with the phase of the maximum value among the three-phase voltage commands as the x phase, the phase of the intermediate value as the y phase, and the phase of the minimum value as the z phase. Phase selection means, 19 is a voltage command Vx * of the xyz phase determined by the phase selection means 18,
Using Vy * , Vz * and detection currents Ix, Iy, Iz,
The correction amount calculation means outputs one of the two correction amounts Vc1 and Vc2 calculated by the equations (13) and (14) as the correction amount Vc.

【0042】相選択手段18や補正量演算手段19はハ
―ドウェアでも実現できるが、近年はマイクロコンピュ
―タなどのソフトウェアで実現されることが多い。図2
に相選択手段18と補正量演算手段19をソフトウェア
で実現する場合のフロ―チャ―ト例を示す。
The phase selecting means 18 and the correction amount calculating means 19 can be realized by hardware, but in recent years, they are often realized by software such as a microcomputer. Figure 2
An example of the flow chart when the phase selecting means 18 and the correction amount calculating means 19 are realized by software is shown in FIG.

【0043】図2で処理101が相選択手段18を実現
し、処理102〜106が補正量演算手段19を実現し
ている。処理101は(13)及び(14)式で計算す
るためのxyz相を電圧指令Vu * 、Vv * 、Vw *
比較して決定する。即ち、3相の内の最大電圧指令の相
をx相、最小電圧指令の相をz相、残りの中間電圧指令
の相をv相とする。
In FIG. 2, the process 101 implements the phase selecting means 18, and the processes 102 to 106 implement the correction amount calculating means 19. The process 101 determines the xyz phase for calculation by the equations (13) and (14) by comparing the voltage commands Vu * , Vv * , Vw * . That is, among the three phases, the maximum voltage command phase is the x phase, the minimum voltage command phase is the z phase, and the remaining intermediate voltage command phases are the v phases.

【0044】処理102は処理101できめられた相の
電圧指令と電流を用いて、(13)及び(14)式で2
つの補正量Vc1とVc2を計算する。処理103は処理1
02で計算された2つの補正量Vc1とVc2を(6)式に
代入し、2つの中性点電流Io1とIo2を計算する。比較
処理104で2つの中性点電流の絶対値|Io1|と|I
o2|を大小比較し、|Io1|>|Io2|の場合は、Vc2
をVc とし、逆の場合は、Vc1をVc として出力する。
The process 102 uses the phase voltage command and the current obtained in the process 101 to obtain 2 in the equations (13) and (14).
Two correction amounts Vc1 and Vc2 are calculated. Process 103 is process 1
The two correction amounts Vc1 and Vc2 calculated in 02 are substituted into the equation (6) to calculate the two neutral point currents Io1 and Io2. In the comparison process 104, the absolute values of the two neutral point currents | Io1 | and | I
o2 | is compared in magnitude, and if | Io1 |> | Io2 |, Vc2
Is output as Vc, and in the opposite case, Vc1 is output as Vc.

【0045】処理102で補正後の電圧指令の極性が変
化しない場合と、1相(y相)だけ変化する場合の2つ
の補正量Vc1とVc2を計算するが、どちらかの補正量は
矛盾した量となる。処理103〜106は矛盾を判断し
て、正しい補正量を選択するための処理例である。即
ち、中性点電流Io を0にできる方を選択し、補正量V
c として出力する。
In the process 102, two correction amounts Vc1 and Vc2 are calculated when the polarity of the corrected voltage command does not change and when the polarity changes by only one phase (y phase), but either correction amount is inconsistent. It becomes the amount. Processing 103 to 106 is an example of processing for determining a contradiction and selecting the correct correction amount. That is, the one that can set the neutral point current Io to 0 is selected, and the correction amount V
Output as c.

【0046】この補正量Vc を図1のように、3相の電
圧指令Vu * 、Vv * 、Vw * に加算器15u 、15v
、15w で加算し、補正された電圧指令Vuc* 、Vvc*
、Vwc* を得る。この電圧指令Vuc* 、Vvc* 、Vwc*
をPWM回路16でパルス幅変調し、NPC変換器1
のスイッチング素子を制御することで、中性点電流は0
になる。中性点電流が0であれば、中性点電位も変動せ
ずに、正負の直流電圧VcpとVcnは平衡を保つ。
This correction amount Vc is added to the three-phase voltage commands Vu * , Vv * , Vw * by the adders 15u, 15v as shown in FIG.
, 15w added and corrected voltage commands Vuc * , Vvc *
, Vwc * is obtained. This voltage command Vuc * , Vvc * , Vwc *
Pulse width modulation by the PWM circuit 16, and the NPC converter 1
By controlling the switching element of, the neutral point current is 0
become. If the neutral point current is 0, the neutral point potential does not change, and the positive and negative DC voltages Vcp and Vcn maintain balance.

【0047】図1の実施例では、補正量Vc は指令値か
ら簡単な演算で求められる。図7のように高ゲインの増
幅器等を使用せずに、原理的に中性点電位変動を抑制で
きるので、従来の構成に比べて、中性点電流の抑制効果
は格段に高く、高品質の制御装置を提供することが可能
である。
In the embodiment shown in FIG. 1, the correction amount Vc is obtained by a simple calculation from the command value. Since the neutral point potential fluctuation can be suppressed in principle without using a high gain amplifier as shown in FIG. 7, the effect of suppressing the neutral point current is significantly higher than that of the conventional configuration, and high quality is achieved. It is possible to provide the control device of.

【0048】図1では、3個の電流検出器17u 、17
v 、17w を用いて3相電流Iu 、Iv 、Iw を検出す
るようにしたが、2個の電流検出器で2相の電流を検出
し、残り1相は計算で求めてもよい。
In FIG. 1, three current detectors 17u and 17u are provided.
Although the three-phase currents Iu, Iv, and Iw are detected using v and 17w, two-phase currents may be detected by two current detectors and the remaining one phase may be calculated.

【0049】又、図1に示した補正量演算手段19で
は、演算した2つの補正量Vc1とVc2から正しい補正量
を選択するために、それぞれの補正量Vc1とVc2による
中性点電流を比較する方式を用いた。この正しい補正量
を選択する方法は、先にも述べたように種々方法があ
り、どのような方法であってもよいことは言うまでもな
い。
Further, in the correction amount calculation means 19 shown in FIG. 1, in order to select the correct correction amount from the calculated two correction amounts Vc1 and Vc2, the neutral point currents by the respective correction amounts Vc1 and Vc2 are compared. Was used. It goes without saying that there are various methods for selecting the correct correction amount, as described above, and any method may be used.

【0050】又、1つの補正量を計算して、その矛盾を
判断し、矛盾があるときだけもう1つの補正量を計算す
ることもできる。更には、電圧と電流から条件判断を先
に行い、どちらが正しい計算式かを判断し、その式で補
正量を計算することも可能である。
It is also possible to calculate one correction amount, judge the contradiction, and calculate the other correction amount only when there is a contradiction. Further, it is also possible to judge the condition first from the voltage and the current, judge which is the correct calculation formula, and calculate the correction amount using this formula.

【0051】図1の実施例は、正端子Pと中性点0の間
に1つ中性点0と負端子N間に1つの、計2つの直流電
源に接続される場合は問題ないが、1つの直流電源が正
負端子PNだけに接続される構成の場合は不十分であ
る。NPC変換器1を構成する素子のスイッチング速度
やオン電圧の差などのために、正側直流電圧Vcpと負側
直流電圧Vcnが徐々に不平衡になる、直流的な中性点電
位変動を起す可能性がある。図1の実施例では交流周波
数の3倍の周波数で変動する交流的な中性点電位変動の
抑制はできるが、この直流的な変動は抑制きない。
In the embodiment of FIG. 1, there is no problem when two DC power supplies are connected, one between the positive terminal P and the neutral point 0 and one between the neutral point 0 and the negative terminal N. This is not sufficient in the case of a configuration in which one DC power source is connected only to the positive and negative terminals PN. Due to the switching speed of the elements constituting the NPC converter 1 and the difference in on-voltage, the positive side DC voltage Vcp and the negative side DC voltage Vcn gradually become unbalanced, which causes a DC neutral point potential fluctuation. there is a possibility. In the embodiment of FIG. 1, it is possible to suppress the AC neutral point potential fluctuation that fluctuates at a frequency three times the AC frequency, but this DC fluctuation cannot be suppressed.

【0052】図3は、直流的な中性点電位変動も抑制可
能な請求項2に記載の発明の一実施例を示す構成図であ
る。図3の実施例は図1の実施例の補正量に、図7に示
した正負の直流電圧の差電圧(Vcp−Vcn)をフィ―ド
バックする補正量を重畳する構成である。この構成によ
り、速い変化の交流的な中性点電位変動は選択手段18
と補正量演算手段19で演算した補正量Vcoで抑制し、
遅い変化の直流的な中性点電位変動はフィ―ドバック補
正量Vcdで抑制する。遅い変化だけをフィ―ドバック補
正で抑制すればよいので、増幅器12のゲインは小さく
ても十分に効果を発揮する。
FIG. 3 is a block diagram showing an embodiment of the invention described in claim 2 which is capable of suppressing the neutral point potential fluctuation in a direct current manner. The embodiment of FIG. 3 has a configuration in which a correction amount for feeding back the difference voltage (Vcp-Vcn) of the positive and negative DC voltages shown in FIG. 7 is superimposed on the correction amount of the embodiment of FIG. With this configuration, the AC neutral point potential fluctuation that changes rapidly is selected by the selecting means 18.
And the correction amount Vco calculated by the correction amount calculation means 19,
Slowly changing DC neutral potential fluctuations are suppressed by the feedback correction amount Vcd. Since only the slow change needs to be suppressed by the feedback correction, even if the gain of the amplifier 12 is small, the effect is sufficiently exerted.

【0053】以上の実施例では、電流の検出値Iu 、I
v 、Iw を使用するように構成されている。しかし、多
くの場合NPC変換器1の交流側電流はフィ―ドバック
制御される。その場合、3相の電流指令Iu * 、Iv
* 、Iw * に電流Iu 、Iv 、Iw が追従するように制
御される。又、3相電流を座標変換し、dq軸座標系な
どで電流制御することも多い。このときは、電流指令も
dq軸の量になるが、dq軸の電流指令を座標変換して
3相の電流指令を得ることは容易である。
In the above embodiment, the detected current values Iu, Iu
It is configured to use v, Iw. However, in many cases, the AC side current of the NPC converter 1 is feedback controlled. In that case, three-phase current commands Iu * , Iv
The currents Iu, Iv, and Iw are controlled so as to follow * and Iw * . Further, it is often the case that the three-phase current is coordinate-converted and the current is controlled by a dq axis coordinate system or the like. At this time, the current command also becomes the amount of the dq axes, but it is easy to obtain the three-phase current command by coordinate conversion of the dq axis current command.

【0054】電流制御を行う装置において、本発明の補
正量を演算するために検出電流IuIv 、Iw の代りに
3相の電流指令Iu * 、Iv * 、Iw * を用いることが
できることは明らかである。
It is obvious that in the device for controlling the current, three-phase current commands Iu * , Iv * , Iw * can be used in place of the detected currents IuIv, Iw for calculating the correction amount of the present invention. .

【0055】図4と図5は検出電流Iu 、Iv 、Iw の
代りに電流指令Iu * 、Iv * 、Iw * を使用した請求
項1に記載の発明の他の実施例及び請求項2に記載の発
明の他の実施例の構成図である。
FIGS. 4 and 5 show another embodiment of the invention according to claim 1 and claim 2 in which the current commands Iu * , Iv * , Iw * are used instead of the detection currents Iu, Iv, Iw. FIG. 6 is a configuration diagram of another embodiment of the invention of FIG.

【0056】図4は図1に示した実施例、又、図5は図
3に示した実施例の検出電流Iu 、Iv 、Iw の代りに
電流指令Iu * 、Iv * 、Iw * を用いた構成である。
これらの構成でも、本発明の目的は十分に達成されるこ
とは、本発明の原理説明から明らかである。
FIG. 4 uses the current commands Iu * , Iv * , Iw * instead of the detection currents Iu, Iv, Iw in the embodiment shown in FIG. 1 and FIG. 5 in the embodiment shown in FIG. It is a composition.
It is apparent from the explanation of the principle of the present invention that the objects of the present invention can be sufficiently achieved even with these configurations.

【0057】[0057]

【発明の効果】以上説明したように本発明では、交流周
波数の3倍の周波数で変動する、変化の激しい交流的な
中性点電位変動を抑制するための補正量を演算で求める
ので、補正量の変化率の制約を受けることなく、効果的
に中性点電位を変動を抑制することを可能とする。
As described above, in the present invention, the correction amount for suppressing the AC-like neutral point potential fluctuation, which fluctuates at a frequency three times the AC frequency and which changes drastically, is calculated. It is possible to effectively suppress the fluctuation of the neutral point potential without being restricted by the rate of change of the amount.

【0058】又、正負の直流電圧の差電圧(Vcp−Vc
n)をフィ―ドバック補正量する方式と併用することに
より、速い変化の交流的な中性点電位変動は演算した補
正量で抑制し、遅い変化の直流的な中性点電位変動はフ
ィ―ドバック補正量で抑制することがでる。これらの効
果により、高性能の制御を実現できる中性点クランプ式
電力変換器の制御装置を提供することが可能となる。
Further, a difference voltage (Vcp-Vc) between positive and negative DC voltages
n) is used in combination with the feedback correction amount method, the AC change of the neutral point potential that changes rapidly is suppressed by the calculated correction amount, and the DC change of the neutral point potential that changes slowly is suppressed. It can be suppressed by the duck correction amount. Due to these effects, it is possible to provide a control device for a neutral point clamp type power converter that can realize high-performance control.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1に記載の発明による中性点クランプ式
電力変換器の制御装置の一実施例を示す構成図。
FIG. 1 is a configuration diagram showing an embodiment of a control device for a neutral point clamp type power converter according to the invention described in claim 1.

【図2】図1における相選択手段と補正量演算手段のソ
フトウェア処理例を示すフロ―チャ―ト。
2 is a flow chart showing an example of software processing of a phase selection means and a correction amount calculation means in FIG.

【図3】請求項2に記載の発明による中性点クランプ式
電力変換器の制御装置の一実施例を示す構成図。
FIG. 3 is a configuration diagram showing an embodiment of a control device for a neutral point clamp type power converter according to the invention described in claim 2.

【図4】請求項1に記載の発明による中性点クランプ式
電力変換器の制御装置の他の実施例を示す構成図。
FIG. 4 is a configuration diagram showing another embodiment of the control device for the neutral point clamp type power converter according to the invention described in claim 1.

【図5】請求項2に記載の発明による中性点クランプ式
電力変換器の制御装置の他の実施例を示す構成図。
FIG. 5 is a configuration diagram showing another embodiment of the control device for the neutral point clamp type power converter according to the invention described in claim 2.

【図6】本発明が対象とする中性点クランプ式電力変換
器の主回路構成図。
FIG. 6 is a main circuit configuration diagram of a neutral point clamp type power converter targeted by the present invention.

【図7】従来の中性点クランプ式電力変換器の制御装置
の構成図。
FIG. 7 is a configuration diagram of a conventional neutral point clamp type power converter control device.

【符号の説明】[Explanation of symbols]

1 …中性点クランプ式電力変換器 10p ,10n
…電圧検出器 11 …減算器 12
…増幅器 13 …極性選択器 14
…乗算器 15u 〜15w …加算器 16
…PWM回路 17u 〜17w …電流検出器 18
…相選択手段 19 …補正量演算手段 20
…加算器
1. Neutral point clamp type power converter 10p, 10n
… Voltage detector 11… Subtractor 12
… Amplifier 13… Polarity selector 14
… Multipliers 15u to 15w… Adder 16
... PWM circuit 17u to 17w ... current detector 18
... Phase selection means 19 ... Correction amount calculation means 20
… Adder

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 直流電源から供給される直流電圧を
正側直流電圧と負側直流電圧に分割する2組の平滑コン
デンサと、この平滑コンデンサから正側直流電圧と負側
直流電圧を供給され、これら直流電圧を3相交流電圧に
変換して負荷に3相交流電圧を供給する中性点クランプ
式電力変換器とを有し、前記中性点クランプ式電力変換
器を与えられた3相電圧指令Vu * 、Vv * 、Vw *
に、電圧補正量Vc を加算して得られる補正された3相
電圧指令Vuc* 、Vvc* Vwc* を用いてパルス幅変調す
る中性点クランプ式電力変換器の制御装置において、 前記中性点クランプ式電力変換器の交流側3相の電流I
u 、Iv 、Iw を検出する電流検出手段と、 前記3相電圧指令Vu * 、Vv * 、Vw * の大小関係を
比較して、3相電圧指令のうち最大値の相をx相、中間
値の相をy相、最小値の相をz相として各相を選択する
相選択手段と、 前記相選択手段で決められたxyz相の電圧指令Vx
* 、Vy * 、Vz * と電流Iu 、Iv 、Iw を用いて、
次式で演算した2つの補正量Vc1とVc2のうちいずれか
を補正量Vc として出力する補正量演算手段とを有し、 Vc1=(Vx * Ix +Vy * Iy −Vz * Iz )/(2Iz ) Vc2=(−Vx * Ix +Vy * Iy +Vz * Iz )/(2Ix ) 前記補正量演算手段の出力を前記電圧補正量Vc として
用いることを特徴とする中性点クランプ式電力変換器の
制御装置。
1. A pair of smoothing capacitors for dividing a DC voltage supplied from a DC power supply into a positive DC voltage and a negative DC voltage, and a positive DC voltage and a negative DC voltage supplied from the smoothing capacitors, A neutral point clamp type power converter for converting these DC voltages into a three phase AC voltage and supplying a three phase AC voltage to a load, and the neutral point clamp type power converter provided with the three phase voltage Commands Vu * , Vv * , Vw *
In the controller for the neutral point clamp type power converter for pulse width modulation using the corrected three-phase voltage commands Vuc * , Vvc * Vwc * obtained by adding the voltage correction amount Vc to the neutral point. AC side three-phase current I of the clamp type power converter
The current detecting means for detecting u, Iv, and Iw and the three-phase voltage commands Vu * , Vv * , and Vw * are compared in magnitude, and the phase having the maximum value among the three-phase voltage commands is x-phase and intermediate value. Phase selection means for selecting each phase with the y phase as the y phase and the minimum phase as the z phase, and the xyz phase voltage command Vx determined by the phase selection means.
Using * , Vy * , Vz * and currents Iu, Iv, Iw,
A correction amount calculation means for outputting one of the two correction amounts Vc1 and Vc2 calculated by the following equation as a correction amount Vc is provided, and Vc1 = (Vx * Ix + Vy * Iy-Vz * Iz) / (2Iz) Vc2 = (-Vx * Ix + Vy * Iy + Vz * Iz) / (2Ix) The controller for the neutral point clamp type power converter, wherein the output of the correction amount calculation means is used as the voltage correction amount Vc.
【請求項2】 直流電源から供給される直流電圧を
正側直流電圧と負側直流電圧に分割する2組の平滑コン
デンサと、この平滑コンデンサから正側直流電圧と負側
直流電圧を供給され、これら直流電圧を3相交流電圧に
変換して負荷に3相交流電圧を供給する中性点クランプ
式電力変換器とを有し、前記中性点クランプ式電力変換
器を与えられた3相電圧指令Vu * 、Vv * 、Vw *
に、電圧補正量Vc を加算して得られる補正された3相
電圧指令Vuc* 、Vvc* Vwc* を用いてパルス幅変調す
る中性点クランプ式電力変換器の制御装置において、 前記中性点クランプ式電力変換器の交流側3相の電流I
u 、Iv 、Iw を検出する電流検出手段と、 前記3相電圧指令Vu * 、Vv * 、Vw * の大小関係を
比較して、3相電圧指令のうち最大値の相をx相、中間
値の相をy相、最小値の相をz相として各相を選択する
相選択手段と、 前記相選択手段で決められたxyz相の電圧指令Vx
* 、Vy * 、Vz * と電流Iu 、Iv 、Iw を用いて、
次式で演算した2つの補正量Vc1とVc2のうちいずれか
を補正量Vcoとして出力する補正量演算手段とを有し、 Vc1=(Vx * Ix +Vy * Iy −Vz * Iz )/(2Iz ) Vc2=(−Vx * Ix +Vy * Iy +Vz * Iz )/(2Ix ) 前記2組の平滑コンデンサそれぞれの両端電圧である正
側直流電圧と負側直流電圧との差電圧を検出する差電圧
検出手段と、 前記差電圧検出手段で検出された差電圧を増幅及び必要
に応じて極性反転した信号Vcdを出力する増幅手段を有
し、 前記補正量演算手段の出力Vcoに前記増幅手段の出力V
cdを加算した量を前記電圧補正量Vc として用いること
を特徴とする中性点クランプ式電力変換器の制御装置。
2. A pair of smoothing capacitors for dividing a DC voltage supplied from a DC power supply into a positive DC voltage and a negative DC voltage, and a positive DC voltage and a negative DC voltage supplied from the smoothing capacitors, A neutral point clamp type power converter for converting these DC voltages into a three phase AC voltage and supplying a three phase AC voltage to a load, and the neutral point clamp type power converter provided with the three phase voltage Commands Vu * , Vv * , Vw *
In the controller for the neutral point clamp type power converter for pulse width modulation using the corrected three-phase voltage commands Vuc * , Vvc * Vwc * obtained by adding the voltage correction amount Vc to the neutral point. AC side three-phase current I of the clamp type power converter
The current detecting means for detecting u, Iv, and Iw and the three-phase voltage commands Vu * , Vv * , and Vw * are compared in magnitude, and the phase having the maximum value among the three-phase voltage commands is x-phase and intermediate value. Phase selection means for selecting each phase with the y phase as the y phase and the minimum phase as the z phase, and the xyz phase voltage command Vx determined by the phase selection means.
Using * , Vy * , Vz * and currents Iu, Iv, Iw,
A correction amount calculating means for outputting one of the two correction amounts Vc1 and Vc2 calculated by the following equation as a correction amount Vco, and Vc1 = (Vx * Ix + Vy * Iy-Vz * Iz) / (2Iz) Vc2 = (-Vx * Ix + Vy * Iy + Vz * Iz) / (2Ix) Differential voltage detecting means for detecting the difference voltage between the positive side DC voltage and the negative side DC voltage, which are the voltage across each of the two sets of smoothing capacitors. And an amplifying means for amplifying the differential voltage detected by the differential voltage detecting means and outputting a signal Vcd whose polarity is inverted if necessary. The output Vco of the correction amount computing means is added to the output Vco of the amplifying means.
A control device for a neutral point clamp type power converter, wherein an amount obtained by adding cd is used as the voltage correction amount Vc.
【請求項3】 直流電源から供給される直流
電圧を正側直流電圧と負側直流電圧に分割する2組の平
滑コンデンサと、この平滑コンデンサから正側直流電圧
と負側直流電圧を供給され、これら直流電圧を3相交流
電圧に変換して負荷に3相交流電圧を供給する中性点ク
ランプ式電力変換器とを有し、前記中性点クランプ式電
力変換器を与えられた3相電圧指令Vu * 、Vv * 、V
w * に、電圧補正量Vc を加算して得られる補正された
3相電圧指令Vuc* 、Vvc* 、Vwc* 及び3相の電流指
令Iu * 、Iv * 、Iw * を用いてパルス幅変調する中
性点クランプ式電力変換器の制御装置において、 前記3相電圧指令Vu * 、Vv * 、Vw * の大小関係を
比較して、3相電圧指令のうち最大値の相をx相、中間
値の相をy相、最小値の相をz相として各相を選択する
相選択手段と、 前記相選択手段で決められたxyz相の電圧指令Vx
* 、Vy * 、Vz * と前記電流指令Iu * 、Iv * 、I
w * を用いて、次式で演算した2つの補正量Vc1とVc2
のうちいずれかを補正量Vc として出力する補正量演算
手段とを有し、 Vc1=(Vx * Ix * +Vy * Iy * −Vz * Iz * )/(2Iz * ) Vc2=(−Vx * Ix * +Vy * Iy * +Vz * Iz * )/(2Ix * ) 前記補正量演算手段の出力を前記電圧補正量Vc として
用いることを特徴とする中性点クランプ式電力変換器の
制御装置。
3. A pair of smoothing capacitors for dividing a DC voltage supplied from a DC power supply into a positive DC voltage and a negative DC voltage, and a positive DC voltage and a negative DC voltage supplied from the smoothing capacitors, A neutral point clamp type power converter for converting these DC voltages into a three phase AC voltage and supplying a three phase AC voltage to a load, and the neutral point clamp type power converter provided with the three phase voltage Command Vu * , Vv * , V
Pulse width modulation is performed using corrected three-phase voltage commands Vuc * , Vvc * , Vwc * and three-phase current commands Iu * , Iv * , Iw * obtained by adding the voltage correction amount Vc to w *. In a control device of a neutral point clamp type power converter, the magnitude relationship among the three-phase voltage commands Vu * , Vv * , Vw * is compared, and the phase having the maximum value among the three-phase voltage commands is x-phase and an intermediate value. Phase selection means for selecting each phase with the y phase as the y phase and the minimum phase as the z phase, and the xyz phase voltage command Vx determined by the phase selection means.
* , Vy * , Vz * and the current commands Iu * , Iv * , I
Two correction amounts Vc1 and Vc2 calculated by the following equation using w *
And a correction amount calculating means for outputting any one of them as a correction amount Vc, Vc1 = (Vx * Ix * + Vy * Iy * -Vz * Iz * ) / (2Iz * ) Vc2 = (-Vx * Ix *) + Vy * Iy * + Vz * Iz * ) / (2Ix * ) The control device for the neutral point clamp type power converter, wherein the output of the correction amount calculation means is used as the voltage correction amount Vc.
【請求項4】 直流電源から供給される直流
電圧を正側直流電圧と負側直流電圧に分割する2組の平
滑コンデンサと、この平滑コンデンサから正側直流電圧
と負側直流電圧を供給され、これら直流電圧を3相交流
電圧に変換して負荷に3相交流電圧を供給する中性点ク
ランプ式電力変換器とを有し、前記中性点クランプ式電
力変換器を与えられた3相電圧指令Vu * 、Vv * 、V
w * に、電圧補正量Vc を加算して得られる補正された
3相電圧指令Vuc* 、Vvc* 、Vwc* 及び3相の電流指
令Iu * 、Iv * 、Iw * を用いてパルス幅変調する中
性点クランプ式電力変換器の制御装置において、 前記3相電圧指令Vu * 、Vv * 、Vw * の大小関係を
比較して、3相電圧指令のうち最大値の相をx相、中間
値の相をy相、最小値の相をz相として各相を選択する
相選択手段と、 前記相選択手段で決められたxyz相の電圧指令Vx
* 、Vy * 、Vz * と前記電流指令Iu * 、Iv * 、I
w * を用いて、次式で演算した2つの補正量Vc1とVc2
のうちいずれかを補正量Vcoとして出力する補正量演算
手段と、 Vc1=(Vx * Ix * +Vy * Iy * −Vz * Iz * )/(2Iz * ) Vc2=(−Vx * Ix * +Vy * Iy * +Vz * Iz * )/(2Ix * ) Io =−|Vu * +Vo |Iu * −|Vv * +Vo |Iv * −|Vw * +Vo |Iw * 前記2組の平滑コンデンサそれぞれの両端電圧である正
側直流電圧と負側直流電圧との差電圧を検出する差電圧
検出手段と、 前記差電圧検出手段で検出された差電圧を増幅及び必要
に応じて極性反転した信号Vcdを出力する増幅手段を有
し、 前記補正量演算手段の出力Vcoに前記増幅手段の出力V
cdを加算した量を前記電圧補正量Vc として用いること
を特徴とする中性点クランプ式電力変換器の制御装置。
4. A pair of smoothing capacitors for dividing a DC voltage supplied from a DC power supply into a positive DC voltage and a negative DC voltage, and a positive DC voltage and a negative DC voltage supplied from the smoothing capacitors. A neutral point clamp type power converter for converting these DC voltages into a three phase AC voltage and supplying a three phase AC voltage to a load, and the neutral point clamp type power converter provided with the three phase voltage Command Vu * , Vv * , V
Pulse width modulation is performed using corrected three-phase voltage commands Vuc * , Vvc * , Vwc * and three-phase current commands Iu * , Iv * , Iw * obtained by adding the voltage correction amount Vc to w *. In a control device of a neutral point clamp type power converter, the magnitude relationship among the three-phase voltage commands Vu * , Vv * , Vw * is compared, and the phase having the maximum value among the three-phase voltage commands is x-phase and an intermediate value. Phase selection means for selecting each phase with the y phase as the y phase and the minimum phase as the z phase, and the xyz phase voltage command Vx determined by the phase selection means.
* , Vy * , Vz * and the current commands Iu * , Iv * , I
Two correction amounts Vc1 and Vc2 calculated by the following equation using w *
A correction amount calculating means for outputting any one of them as a correction amount Vco, and Vc1 = (Vx * Ix * + Vy * Iy * -Vz * Iz * ) / (2Iz * ) Vc2 = (-Vx * Ix * + Vy * Iy * + Vz * Iz * ) / (2Ix * ) Io =-| Vu * + Vo | Iu * -| Vv * + Vo | Iv * -| Vw * + Vo | Iw * Positive voltage which is the voltage across each of the two sets of smoothing capacitors. A difference voltage detecting means for detecting a difference voltage between the side DC voltage and the negative side DC voltage; and an amplifying means for amplifying the difference voltage detected by the difference voltage detecting means and outputting a signal Vcd whose polarity is inverted if necessary. The output Vco of the correction amount calculation means has an output Vco of the amplification means.
A control device for a neutral point clamp type power converter, wherein an amount obtained by adding cd is used as the voltage correction amount Vc.
JP7115442A 1995-05-15 1995-05-15 Control device for clamped-neutral type power converter Pending JPH08317663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7115442A JPH08317663A (en) 1995-05-15 1995-05-15 Control device for clamped-neutral type power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7115442A JPH08317663A (en) 1995-05-15 1995-05-15 Control device for clamped-neutral type power converter

Publications (1)

Publication Number Publication Date
JPH08317663A true JPH08317663A (en) 1996-11-29

Family

ID=14662667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7115442A Pending JPH08317663A (en) 1995-05-15 1995-05-15 Control device for clamped-neutral type power converter

Country Status (1)

Country Link
JP (1) JPH08317663A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100329342B1 (en) * 1999-04-20 2002-03-22 Poscon Corp Method for controlling instantaneous current at neutral point in 3 level converter/inverter system
EP1347565A1 (en) * 2000-12-07 2003-09-24 Kabushiki Kaisha Yaskawa Denki Three-level neutral point clamping pwm inverter and neutral point voltage controller
JP2006238694A (en) * 2005-02-24 2006-09-07 Schneider Electric Industries Sas Device and method for controlling converter, and electric converter having such a device
JP2013240262A (en) * 2012-04-19 2013-11-28 Meidensha Corp Device for controlling three-level inverter
JP2013247725A (en) * 2012-05-24 2013-12-09 Hitachi Ltd Electric power conversion system
JP2015015778A (en) * 2013-07-03 2015-01-22 富士電機株式会社 Power conversion system for system interconnection
JP2016082786A (en) * 2014-10-20 2016-05-16 株式会社東芝 Neutral point clamp type power conversion device and control method therefor
EP3082246A1 (en) * 2015-04-03 2016-10-19 Hamilton Sundstrand Corporation Systems and methods for controlling inverters
US10069438B2 (en) 2016-07-13 2018-09-04 Omron Corporation Power converter with capacitor voltage balancing
JP2019187121A (en) * 2018-04-11 2019-10-24 株式会社東芝 Power conversion device and control method thereof
JP2019187135A (en) * 2018-04-12 2019-10-24 株式会社東芝 Power conversion device and control method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100329342B1 (en) * 1999-04-20 2002-03-22 Poscon Corp Method for controlling instantaneous current at neutral point in 3 level converter/inverter system
EP1347565A1 (en) * 2000-12-07 2003-09-24 Kabushiki Kaisha Yaskawa Denki Three-level neutral point clamping pwm inverter and neutral point voltage controller
EP1347565A4 (en) * 2000-12-07 2007-03-14 Yaskawa Denki Seisakusho Kk Three-level neutral point clamping pwm inverter and neutral point voltage controller
JP2006238694A (en) * 2005-02-24 2006-09-07 Schneider Electric Industries Sas Device and method for controlling converter, and electric converter having such a device
JP2013240262A (en) * 2012-04-19 2013-11-28 Meidensha Corp Device for controlling three-level inverter
JP2013247725A (en) * 2012-05-24 2013-12-09 Hitachi Ltd Electric power conversion system
JP2015015778A (en) * 2013-07-03 2015-01-22 富士電機株式会社 Power conversion system for system interconnection
JP2016082786A (en) * 2014-10-20 2016-05-16 株式会社東芝 Neutral point clamp type power conversion device and control method therefor
EP3082246A1 (en) * 2015-04-03 2016-10-19 Hamilton Sundstrand Corporation Systems and methods for controlling inverters
US9634579B2 (en) 2015-04-03 2017-04-25 Hamilton Sundstrand Corporation Systems and methods for controlling inverters
US10069438B2 (en) 2016-07-13 2018-09-04 Omron Corporation Power converter with capacitor voltage balancing
JP2019187121A (en) * 2018-04-11 2019-10-24 株式会社東芝 Power conversion device and control method thereof
JP2019187135A (en) * 2018-04-12 2019-10-24 株式会社東芝 Power conversion device and control method thereof

Similar Documents

Publication Publication Date Title
KR100240905B1 (en) Npc inverter control system
KR20020079966A (en) PWM Pulse Control Method
JP6522140B2 (en) Power converter
US6507505B2 (en) Power conversion device
JPH04217822A (en) Parallel operation controller for ac output converter
JPH08317663A (en) Control device for clamped-neutral type power converter
JP6178433B2 (en) Power converter
JP5192258B2 (en) Clamp type power converter
JP2009100505A (en) 3-level power converter
EP3001555A2 (en) Matrix convertor, power generation system, and method for converting power
JP3856689B2 (en) Neutral point clamp type power converter controller
Güler Multi-objective cost function based finite control set-sliding mode control strategy for single-phase split source inverters
JP2016046962A (en) Multilevel power conversion device
JP2015096019A (en) Matrix converter and method for compensating output voltage error
JP2017184309A (en) Electric power conversion system
JP7298260B2 (en) POWER CONVERSION DEVICE AND CONTROL METHOD OF POWER CONVERSION DEVICE
US10819249B2 (en) Control of phase currents of inverters that are connected in parallel
EP4195490A1 (en) Optimized pulse patterns for controlling a neutral point voltage
JP4661197B2 (en) Control method of voltage source inverter
JP4498891B2 (en) Semiconductor power converter
JP3506881B2 (en) DC power transmission method and DC power transmission system
JP2004173349A (en) Neutral point clamp type pwm inverter device
JPS61199470A (en) Current controller of power converter
JP2019201493A (en) Multilevel power conversion device and control method therefor
JP4389415B2 (en) Control method of direct frequency conversion circuit