JPH0831665B2 - Insulation covering member and method of manufacturing the same - Google Patents

Insulation covering member and method of manufacturing the same

Info

Publication number
JPH0831665B2
JPH0831665B2 JP62137120A JP13712087A JPH0831665B2 JP H0831665 B2 JPH0831665 B2 JP H0831665B2 JP 62137120 A JP62137120 A JP 62137120A JP 13712087 A JP13712087 A JP 13712087A JP H0831665 B2 JPH0831665 B2 JP H0831665B2
Authority
JP
Japan
Prior art keywords
insulating
base material
insulating coating
coating
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62137120A
Other languages
Japanese (ja)
Other versions
JPS63301429A (en
Inventor
廉 五十嵐
正策 山中
寛彦 井原
貴雄 前田
貴稔 瀧川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62137120A priority Critical patent/JPH0831665B2/en
Publication of JPS63301429A publication Critical patent/JPS63301429A/en
Publication of JPH0831665B2 publication Critical patent/JPH0831665B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Physical Vapour Deposition (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Insulating Bodies (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、絶縁被覆部材とその製造方法に関し、より
詳細には、集積回路、受動素子、表示素子、センサなど
の電気電子部品を構成または搭載する上で有用な絶縁被
覆部材とその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulating coating member and a method for manufacturing the same, and more specifically, to an electric / electronic component such as an integrated circuit, a passive element, a display element, or a sensor. The present invention relates to an insulating coating member useful for mounting and a manufacturing method thereof.

<従来の技術> 従来、絶縁基板としてセラミックス基板が広く用いら
れている。しかしながら、セラミックス基板では薄層化
することが困難であるだけでなく、集積回路の高機能化
に伴なう大型化および高密度化による発熱量の増大に対
処しえないため、上記セラミックス基板に代えて、特定
の熱膨脹係数を有する金属製基材がPVD法等による酸化
アルミニウム、窒化珪素などの電気絶縁性無機物質で被
覆された絶縁基板を用いることが提案されている(特開
昭58−15241号公報)。
<Prior Art> Conventionally, a ceramic substrate has been widely used as an insulating substrate. However, it is difficult to reduce the thickness of the ceramic substrate, and it is not possible to deal with the increase in heat generation due to the increase in size and the increase in density of the integrated circuit. Instead, it has been proposed to use an insulating substrate in which a metal base material having a specific coefficient of thermal expansion is coated with an electrically insulating inorganic substance such as aluminum oxide or silicon nitride by the PVD method or the like (JP-A-58-58). 15241 publication).

また、該絶縁基板上にアルミニウム薄膜などで配線を
施すと共に、電気絶縁性無機物質で被覆して集積回路、
受動素子などを搭載した多層配線基板が提案されてい
る。
In addition, wiring is performed on the insulating substrate with an aluminum thin film or the like, and the integrated circuit is covered with an electrically insulating inorganic substance,
A multilayer wiring board on which passive elements and the like are mounted has been proposed.

<発明が解決しようとする問題点> しかしながら、上記絶縁基板によれば、PVD法等によ
り絶縁被膜を形成しているので、得られた被膜は、可撓
性に欠け、被膜の剥離や亀裂が生じ易くなると共に、被
膜の膜厚が制限されるだけでなく、使用可能な基材が制
限される。すなわち、上記の問題に対処するには、基材
として被膜の熱膨脹係数に近いもの、例えば、線膨脹係
数3×10-6〜9×10-6/K程度の基材が適当とされている
ものの、上記のような線膨脹係数を有する基材は、熱伝
導度が小さいものが多いため、例えば、Al、Cuなどの熱
伝導度の高い金属や合金を単独で用いることが困難であ
り、前記集積回路の大型化、高密度化等に伴い生じる多
量の熱を円滑に放散させることができず、絶縁基板の用
途が著しく制限されるという問題がある。
<Problems to be Solved by the Invention> However, according to the above insulating substrate, since the insulating coating is formed by the PVD method or the like, the obtained coating lacks flexibility, and peeling or cracking of the coating occurs. In addition to being prone to occur, not only the film thickness of the coating film is limited, but also the usable substrate is limited. That is, in order to deal with the above problem, a material having a coefficient of thermal expansion close to that of the coating, for example, a material having a linear expansion coefficient of 3 × 10 −6 to 9 × 10 −6 / K is suitable as the substrate. However, since the base material having the linear expansion coefficient as described above often has a small thermal conductivity, for example, Al, it is difficult to use a high thermal conductivity metal or alloy such as Cu alone, There is a problem that a large amount of heat generated due to the increase in size and density of the integrated circuit cannot be smoothly dissipated, and the use of the insulating substrate is significantly limited.

一方、熱放散性を高めるため、基材として熱伝導度の
大きな材料を使用とすると、基材と被膜との熱膨脹係数
の差が大きくなり易いため、両者の線膨脹係数の差に起
因して発生する応力により、被膜に剥離や亀裂が発生
し、信頼性の高い絶縁性を確保できない。より詳細に
は、従来の絶縁基板にあっては、電気絶縁性無機物質か
らなる被膜と基材との熱膨脹係数の差が大きくなり易い
だけでなく、被膜の硬度が、ビッカース硬度約2000以上
と硬く、柔軟性、可撓性に欠けるため、(a)基材と被
膜との熱膨脹係数の差に起因して発生する応力を緩和し
にくく、基材と被膜との間で剥離が生じたり、被膜に亀
裂が生じ易くなる。また、(b)絶縁被膜上に配線や素
子を搭載する場合や、該配線や素子を更に該絶縁被膜で
被覆して多層配線基板を構成する場合にも、前記と同
様、基材と被膜との間で剥離等が生じるだけでなく、該
配線および素子と被膜との間でも被膜の剥離や亀裂が生
じ易くなり、絶縁性を確保することがより一層困難とな
る。特に、上記被膜は硬度が大きく脆いため、(c)柔
軟性、可撓性を有し、厚みの小さな基材を前記絶縁被膜
で被覆した場合、基材の撓み等に被膜が追従できず、上
記熱膨脹係数の差異に基づく応力の発生と相まって、よ
り一層被膜の剥離や亀裂が生じ易くなり、電気絶縁性を
確保することが困難であり、可撓性を必要とされる絶縁
部材に適用することが困難である。
On the other hand, if a material having a large thermal conductivity is used as the base material in order to enhance heat dissipation, the difference in the coefficient of thermal expansion between the base material and the coating tends to be large, and therefore the difference in the linear expansion coefficient between the two causes Due to the generated stress, peeling or cracking occurs in the coating film, and reliable insulation cannot be ensured. More specifically, in the conventional insulating substrate, not only the difference in the coefficient of thermal expansion between the coating made of an electrically insulating inorganic material and the base material tends to be large, but also the hardness of the coating is about 2000 Vickers hardness or more. Since it is hard, soft, and lacking in flexibility, it is difficult to alleviate the stress generated due to the difference in thermal expansion coefficient between (a) the base material and the coating, and peeling may occur between the base material and the coating. The coating is likely to crack. Further, in the same manner as described above, (b) when wiring or an element is mounted on an insulating coating, or when the wiring or the element is further coated with the insulating coating to form a multilayer wiring board, a base material and a coating are provided. Not only peeling and the like occur between the wirings and the elements, but also peeling and cracking of the coating easily occur between the wiring and the element and the coating, so that it becomes more difficult to secure the insulating property. In particular, since the above coating has a large hardness and is fragile, (c) when the substrate having flexibility and flexibility and having a small thickness is coated with the insulating coating, the coating cannot follow the bending of the substrate, Combined with the generation of stress based on the difference in the coefficient of thermal expansion, the film is more likely to be peeled off or cracked, and it is difficult to ensure electrical insulation, and the invention is applied to an insulating member that requires flexibility. Is difficult.

従って、上記従来の絶縁基板にあっては、基材の種類
が制限され、熱放散性を高めることが困難であるだけで
なく、絶縁被膜の剥離や亀裂等が生じ易く高い電気絶縁
性を確保するのが困難である。
Therefore, in the above conventional insulating substrate, the type of the base material is limited, it is difficult to enhance the heat dissipation, and peeling or cracking of the insulating coating easily occurs, and high electrical insulation is secured. Difficult to do.

また、上記の問題を解決するため、配線等を搭載する
場合、熱膨脹係数の差に起因する応力を緩和するため、
基材と絶縁被膜との間に中間層を形成したものや、配線
形状に特別の工夫を施すことなどが提案されていいるも
のの、構造が複雑化し、構造を簡素化するのが困難であ
る。
Further, in order to solve the above problems, when wiring or the like is mounted, in order to relieve the stress caused by the difference in thermal expansion coefficient,
Although it has been proposed that an intermediate layer is formed between the base material and the insulating coating and that the wiring shape is specially devised, the structure becomes complicated and it is difficult to simplify the structure.

<発明の目的> 本発明は上記問題点に鑑みてなされたものであり、基
材として熱放散性等に優れた広い範囲のものが使用し得
るとともに、構造が簡単で、しかも被膜の剥離や亀裂等
が生じることなく、高い電気絶縁性を確保し、可撓性等
が必要とされる用途にも使用できる絶縁被覆部材とその
製造方法を提供することを目的とする。
<Objects of the Invention> The present invention has been made in view of the above problems, and a wide range of materials having excellent heat dissipation and the like can be used as the base material, and the structure is simple, and the film peeling and It is an object of the present invention to provide an insulating coating member that ensures high electrical insulation without cracks and the like and can be used for applications requiring flexibility and the like, and a method for producing the same.

<問題点を解決するための手段および作用> 上記目的を達成するため、第1の発明の絶縁被覆部材
は、金属製基材の少なくとも一部が電気絶縁性酸化物ま
たは窒化物からなる絶縁被膜で被覆されている絶縁部材
において、上記金属製基材が、3×10-6〜25×10-6/Kの
線膨脹係数を有すると共に、上記絶縁被膜が、マイクロ
ビッカース硬度1000以下のものであることを特徴とする
ものである。
<Means and Actions for Solving Problems> In order to achieve the above object, the insulating coating member of the first invention is an insulating coating film in which at least a part of the metal base material is an electrically insulating oxide or nitride. In the insulating member coated with, the metal base material has a linear expansion coefficient of 3 × 10 −6 to 25 × 10 −6 / K, and the insulating coating has a micro Vickers hardness of 1000 or less. It is characterized by being.

上記の構成の絶縁被覆部材によれば、基材を被覆する
絶縁被膜が、マイクロビッカース硬度1000以下のもので
あり柔軟で可撓性に富むため、機械的応力等が絶縁被覆
部材に作用しても、発生する内部応力を緩和することが
できる。また、絶縁被膜が酸化物または窒化物からなる
ため、電気絶縁性が大きい。また、基材が金属製である
ため、加工性等に優れていると共に、熱伝導度および熱
放散性が大きい。しかも基材として広い範囲の熱膨脹係
数を有する材料が使用でき、材料の選択幅が大きいの
で、熱伝導度の大きな材料を使用することにより、熱放
散性をより一層高めることができる。
According to the insulating coating member having the above-described configuration, the insulating coating that coats the base material is micro Vickers hardness of 1000 or less and is flexible and rich, so that mechanical stress acts on the insulating coating member. Also, the internal stress generated can be relaxed. In addition, since the insulating coating is made of oxide or nitride, it has high electric insulation. Further, since the base material is made of metal, it has excellent workability and the like, and also has high thermal conductivity and heat dissipation. In addition, since a material having a wide range of thermal expansion coefficient can be used as the base material and the selection range of the material is large, the heat dissipation property can be further enhanced by using the material having large thermal conductivity.

また、第2の発明の絶縁被覆部材の製造方法は、金属
製基材を電気絶縁性酸化物または窒化物からなる絶縁被
膜で被覆する絶縁部材の製造方法であって、基材に、ア
ースとの電位差1V以下の負のバイアス電圧を印加し、イ
オンプレーティング法によりマイクロビッカース硬度10
00以下の絶縁被膜を形成することを特徴とするものであ
る。
A method for manufacturing an insulating coated member according to a second aspect of the present invention is a method for manufacturing an insulating member in which a metal base material is covered with an insulating coating film made of an electrically insulating oxide or a nitride, and the base material is grounded. A negative bias voltage with a potential difference of 1 V or less is applied, and the micro-Vickers hardness of 10 is obtained by the ion plating method.
It is characterized in that an insulating coating of 00 or less is formed.

上記の構成からなる絶縁被覆部材の製造方法によれ
ば、基材に、アースとの電位差1V以下の負のバイアス電
圧を印加してイオンプレーティング法により、電気絶縁
性酸化物または窒化物からなる被膜を形成するので、被
膜構成物質として硬度の大きな無機物質、例えば、マイ
クロピッカース硬度2000以上のものを使用しても、マイ
クロビッカース硬度を1000以下にすることができ、柔軟
で可撓性に優れると共に、酸化物または窒化物からなる
電気絶縁性に優れた被膜で基材を被覆することができ
る。
According to the method for producing an insulating coating member having the above-described configuration, the base material is made of an electrically insulating oxide or nitride by an ion plating method by applying a negative bias voltage having a potential difference of 1 V or less with ground. Since a film is formed, even if an inorganic substance having a high hardness is used as a film-constituting substance, for example, a micro-Pickers hardness of 2000 or more can be used, the micro-Vickers hardness can be 1000 or less, and it is soft and flexible It is possible to coat the base material with a coating film which is excellent and has excellent electrical insulation properties made of oxide or nitride.

以下に、添好図面に基づき本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図は、集積回路素子を搭載した本発明の絶縁被覆
部材の一例を示す概略断面図であり、Cuからなる基材
(1)表面の一部が、酸化アルミニウム薄膜からなる絶
縁被膜(2)で被覆されて絶縁被覆部材が形成されてお
り、該絶縁被膜(2)の所定部には、Alからなる配線部
(3)が形成されていると共に、上記配線部(3)には
集積回路(4)が搭載されている。また、上記集積回路
(4)の導電部と配線部(3)とは、ボンディングワイ
ヤ(5)により接続されている。
FIG. 1 is a schematic cross-sectional view showing an example of an insulating coating member of the present invention on which an integrated circuit element is mounted. A part of the surface of a base material (1) made of Cu has an insulating coating film (2) made of an aluminum oxide thin film. ), An insulating coating member is formed, a wiring portion (3) made of Al is formed at a predetermined portion of the insulating coating film (2), and the wiring portion (3) is integrated. The circuit (4) is mounted. The conductive portion of the integrated circuit (4) and the wiring portion (3) are connected by a bonding wire (5).

また、第2図は集積回路を搭載したリードフレームを
示す概略断面図であり、この例では、Fe−42%Ni合金か
らなる基材(11)の表面の所定部が、酸化アルミニウム
薄膜からなる絶縁被膜(12)で被覆されて絶縁被覆部材
が形成されており、該絶縁被膜(12)の所定部には、上
記第1図に示すと同様、Alからなる配線部(13)と、こ
の配線部(13)に搭載された集積回路(14)の導電部と
がボンディングワイヤ(15)により接続されている。
FIG. 2 is a schematic cross-sectional view showing a lead frame on which an integrated circuit is mounted. In this example, a predetermined portion of the surface of the base material (11) made of Fe-42% Ni alloy is made of an aluminum oxide thin film. An insulating coating member is formed by being coated with an insulating coating (12), and at a predetermined portion of the insulating coating (12), a wiring portion (13) made of Al, as in the case shown in FIG. The conductive portion of the integrated circuit (14) mounted on the wiring portion (13) is connected by a bonding wire (15).

上記の例では、金属製基材(1)(11)として、線膨
脹係数17×10-6/Kを有するCuと、線膨脹係数6.8×10-6/
Kを有するFe−42%Ni合金が用いられているが、線膨脹
係数3×10-6〜25×10-6/Kの範囲のものであればいずれ
も使用できる。線膨脹係数が上記範囲を外れると、基材
(1)(11)と絶縁被膜(2)(12)との熱膨脹率の差
が大きくなりすぎ、被膜の剥離や亀裂が生じ易くなる。
In the above example, as the metal base materials (1) and (11), Cu having a linear expansion coefficient of 17 × 10 −6 / K and a linear expansion coefficient of 6.8 × 10 −6 / K
Although Fe-42% Ni alloy having K is used, any alloy having a coefficient of linear expansion of 3 × 10 −6 to 25 × 10 −6 / K can be used. If the linear expansion coefficient is out of the above range, the difference in the coefficient of thermal expansion between the base material (1) (11) and the insulating coating (2) (12) becomes too large, and the coating tends to peel or crack.

上記のような線膨脹係数を有する材料を構成する金属
としては、例えば、Ag、Al、Au、Be、Bi、Cr、Cu、Fe、
Ge、Mn、Mo、Mb、Pd、Pt、Sb、Si、Ta、Ti、V、W、Zr
等が例示される。上記金属は、単独で使用してもよく、
合金、金属系複合材料、複合金属板や複合金属線材とし
ても使用できる。
Examples of the metal constituting the material having the linear expansion coefficient as described above include Ag, Al, Au, Be, Bi, Cr, Cu, Fe,
Ge, Mn, Mo, Mb, Pd, Pt, Sb, Si, Ta, Ti, V, W, Zr
Etc. are illustrated. The above metal may be used alone,
It can also be used as an alloy, a metal-based composite material, a composite metal plate or a composite metal wire.

上記の合金、金属系複合材料としては、種々のものが
使用でき、例えば、Cu−Cr系合金、Cu−Be系合金、Cu−
Fe系合金、Cu−Ag系合金等のCu合金、Al−Mg系合金、Al
−Mg−Si系合金、Al−Zr系合金、Al−Fe系合金等のAl合
金、42%Ni−Feからなる42アロイ等のFe−Ni系合金、Fe
−Ni−Cr合金、ステンレス鋼等の種々の合金等の他、ア
ルミナ等の酸化物微粒子を複合した分散強化型合金、Al
−Si2相合金、Cu−W2相合金などの金属系複合材料が例
示される。また、複合金属板や複合金属線材としては、
Cuクラッドステンレス鋼テープ、CuとAlとの複合板、Cu
クラッドMoクラッドCu、Cuクラッド42アロイクラッドC
u、42アロイクラッドCuクラッド42アロイ、Fe−Ni合金
またはCu合金とAlとの複合板やステンレス鋼被覆Cu線
材、Al被覆鋼線、Cu被覆Al線など、前記金属、合金、金
属系複合材料を組合せて構成した複合金属板、線材が例
示される。
As the above alloys and metal-based composite materials, various materials can be used, for example, Cu-Cr alloys, Cu-Be alloys, Cu-
Fe alloys, Cu alloys such as Cu-Ag alloys, Al-Mg alloys, Al
-Mg-Si alloy, Al-Zr alloy, Al alloy such as Al-Fe alloy, Fe-Ni alloy such as 42 alloy consisting of 42% Ni-Fe, Fe
-Ni-Cr alloys, various alloys such as stainless steel, etc., as well as dispersion-strengthened alloys composed of oxide fine particles such as alumina, Al
Examples include metal-based composite materials such as -Si2 phase alloy and Cu-W2 phase alloy. Moreover, as a composite metal plate or a composite metal wire,
Cu clad stainless steel tape, composite plate of Cu and Al, Cu
Clad Mo Clad Cu, Cu Clad 42 Alloy Clad C
u, 42 alloy clad Cu clad 42 alloy, composite plate of Fe-Ni alloy or Cu alloy and Al, stainless steel-coated Cu wire, Al-coated steel wire, Cu-coated Al wire, the metal, alloy, metal-based composite material Examples are a composite metal plate and a wire rod configured by combining.

上記金属のうち、集積回路の高密度化等により生じる
熱を効率的に放散すると共に、電気絶縁性無機物質から
なる被膜との密着性に優れるV、Nb、Ta等のVa族元素、
Cr、Mo、W等のVI a族元素、Zr、Al、Cu、Fe、Ni等の金
属や該金属を主成分とする金属;Fe−Ni合金、Cu合金、A
l合金等の上記金属を主成分とする合金;上記金属また
は合金等を主成分とする金属系複合材料;上記金属や該
金属を主成分とする金属、合金、金属系複合材料を組合
せた複合金属板、複合線材が好ましい。なお、上記複合
金属板、複合線材は、上記金属、合金や金属複合材料
等、適宜の材料を一種または二種以上組合せることによ
り用途等に適用した所望する線膨脹係数、熱伝導度や構
造等に設計することができるという利点がある。
Of the above-mentioned metals, Va group elements such as V, Nb, and Ta which efficiently dissipate heat generated due to high density of integrated circuits and which have excellent adhesion to a coating made of an electrically insulating inorganic substance,
Group VIa elements such as Cr, Mo and W, metals such as Zr, Al, Cu, Fe and Ni and metals containing the metals as main components; Fe-Ni alloys, Cu alloys, A
An alloy containing the above metal as a main component such as an alloy; a metal-based composite material containing the above metal or an alloy as a main component; a composite of the above metal or a metal containing the above metal, an alloy, or a metal-based composite material A metal plate and a composite wire are preferable. The above-mentioned composite metal plate and composite wire are the desired coefficient of linear expansion, thermal conductivity and structure applied to the application by combining one or more appropriate materials such as the above-mentioned metals, alloys and metal composite materials. And so on.

また、前記絶縁被膜(2)(12)は、電気絶縁性を有
する酸化物または窒化物、例えば、窒化硼素、酸化アル
ミニウム、窒化アルミニウム、酸化珪素、窒化珪素、酸
化マグネシウム、酸化チタン、酸化イットリウム、また
はこれらを主成分とする複合化合物等で構成されてい
る。
The insulating coatings (2) and (12) are oxides or nitrides having electrical insulation properties, such as boron nitride, aluminum oxide, aluminum nitride, silicon oxide, silicon nitride, magnesium oxide, titanium oxide, yttrium oxide, Alternatively, it is composed of a composite compound containing these as main components.

そして、上記の材料で構成される絶縁被膜(2)(1
2)は、種々の応力が作用しても被膜が剥離したり、被
膜に亀裂が生じたりするのを防止するため、硬度1000以
下のもので構成される。硬度が、1000を越えると、被膜
形成時や前記集積回路(3)(13)などを搭載する組立
実装工程等において、被膜の剥離や亀裂が生じ易くな
り、高い絶縁性を維持することが困難である。
The insulating coating (2) (1
2) is composed of a material having a hardness of 1000 or less in order to prevent the coating from peeling or cracking even when various stresses are applied. If the hardness exceeds 1000, peeling or cracking of the coating is likely to occur during the formation of the coating or the assembly and mounting process of mounting the integrated circuit (3) (13), etc., and it is difficult to maintain high insulation properties. Is.

なお、上記絶縁被膜(2)(12)は、基材の種類、絶
縁被覆部材の用途等に応じて、種々の膜厚に形成するこ
とができるが、膜厚0.1〜20μmのものが好ましい。膜
厚が0.1μm未満であると所定の電気絶縁性を確保する
ことが困難であり、20μmを越えると被膜形成に長時間
を要し、コスト高となり経済的でない。また、上記基材
(1)(11)は、用途等に応じて適宜の形状、大きさを
有していてもよく、電気絶縁性が必要とされる基材
(1)(11)の少なくとも一部が前記絶縁被膜(2)
(12)により被覆されていればよい。また、上記基材
(1)(11)と絶縁被膜(2)(12)とからなる絶縁被
覆部材には、メタライジング層や種々の金属等からなる
メッキ層等が形成されていてもよい。
The insulating coatings (2) and (12) can be formed in various thicknesses depending on the type of base material, the use of the insulating coating member, etc., but the thickness of 0.1 to 20 μm is preferable. When the film thickness is less than 0.1 μm, it is difficult to ensure the predetermined electric insulation, and when it exceeds 20 μm, it takes a long time to form the film, which is costly and uneconomical. In addition, the base materials (1) and (11) may have an appropriate shape and size according to the application, etc., and at least the base materials (1) and (11) that are required to have electrical insulation properties. Part of the insulation film (2)
It may be covered by (12). In addition, a metallizing layer, a plating layer made of various metals or the like may be formed on the insulating coating member made of the base materials (1) and (11) and the insulating coating films (2) and (12).

上記のような基材が絶縁被膜で被覆された絶縁被覆部
材によると、硬度が1000以下の軟質で可撓性を有する絶
縁被膜で基材が被覆されているため、被膜と基材との熱
膨脹係数の差に起因する応力や、成膜時等に生じる圧縮
応力、引張り応力等が緩和され、被膜の剥離や亀裂が生
じることがないだけでなく、被膜の膜厚を大きくするこ
とができ、優れた電気絶縁性を確保することができる。
また、従来、被膜の密着性等を確保するには、基材の線
膨脹係数は、9×10-6/Kが上限とされていたが、前記の
ように絶縁被膜の硬度が小さく柔軟で可撓性に優れてい
るため、上記の線膨脹係数を越える材料を基材として用
いても、被膜の剥離、亀裂等が生じることがなく、広範
囲の材料が使用できる。このように、基材の選択幅が著
しく大きいので、従来、高い熱放散性が必要とされてい
た絶縁部材用基板として、Cu、Al等、熱伝導度の大きな
材料を主成分とする材料を用いることができる。従っ
て、絶縁被覆部材を、集積回路や受動素子などを搭載す
る基板やリードフレーム等として用いることにより、必
要な電気絶縁性を確保できるだけでなく、集積回路の高
機能化、高密度化によって増大する発熱を効率的に放散
することができ、高機能集積回路を多数搭載することが
できる。
According to the insulation coating member in which the base material is coated with the insulation coating as described above, since the base material is coated with the soft and flexible insulation coating having a hardness of 1000 or less, the thermal expansion between the coating and the base material The stress caused by the difference in the coefficient, the compressive stress generated at the time of film formation, the tensile stress, etc. are alleviated, not only peeling or cracking of the film does not occur, but the film thickness of the film can be increased, Excellent electrical insulation can be secured.
Further, conventionally, in order to secure adhesion of the coating, the linear expansion coefficient of the base material was set to 9 × 10 −6 / K as an upper limit, but as described above, the hardness of the insulating coating is small and flexible. Due to its excellent flexibility, a wide range of materials can be used without peeling or cracking of the coating even when a material having a coefficient of linear expansion exceeding the above is used as a substrate. As described above, since the selection range of the base material is remarkably large, as a substrate for an insulating member, which has conventionally been required to have a high heat dissipation property, a material containing a material having a large thermal conductivity such as Cu or Al as a main component is used. Can be used. Therefore, by using the insulating coating member as a substrate or a lead frame on which an integrated circuit, a passive element, etc. are mounted, it is possible not only to secure the necessary electric insulation but also to increase the function and density of the integrated circuit. The heat generation can be dissipated efficiently, and a large number of high-performance integrated circuits can be mounted.

また、基材が金属製であるため、複雑な形状に加工で
きるだけでなく、基材として厚みの薄いものを使用し、
絶縁被覆を部分的に施すことにより、基材からなる導体
と無機物質からなる絶縁体との複合体を容易に形成する
ことができ、従来多用されていたセラミック基板に代え
て本発明の絶縁被覆部材を用いることにより、部品の薄
型化を図ることができると共に、従来、セラミック基板
と端子とを接続していた半田付工程が不要となり、樹脂
封止の信頼性も著しく向上する。
Also, since the base material is made of metal, it can not only be processed into a complicated shape, but also use a thin base material,
By partially applying the insulating coating, a composite of a conductor made of a base material and an insulating material made of an inorganic substance can be easily formed, and the insulating coating of the present invention can be used in place of the ceramic substrate which has been widely used conventionally. By using the member, it is possible to reduce the thickness of the component, and the soldering process that conventionally connects the ceramic substrate and the terminal is not required, and the reliability of resin sealing is significantly improved.

また、絶縁被膜は軟質で可撓性が大きいため、基板や
リードフレームとして厚みの薄いものを使用しても、各
種工程で生じる撓みなどに対応でき、被膜の亀裂や剥離
による絶縁性の低下が生じない。従って、絶縁被覆部材
に集積回路を搭載する組立実装工程で特別の配慮をする
必要がなく、容易に集積回路等を搭載することができ
る。さらには、前記のように、基材の選択幅が大きく、
基材として各種高強度材料等が使用できるため、これら
の基材を前記絶縁被膜で被覆することにより、例えば、
集積回路や受動素子のみならず、圧力センサなど基材の
撓みを利用するセンサの感応部としても利用でき、広範
囲の電子部品に適用することが出来る。例えば、第3図
に示すように、絶縁被覆部材として、雌ネジ付きのステ
ンレス鋼(18%Cr−8%Ni−Fe)からなる基材(21)の
平坦面が、窒化珪素からなる絶縁被膜(22)により被覆
されているものを用い、該絶縁被膜部材の絶縁被膜(2
2)上に、薄膜の圧力歪みセンサ(23)を搭載すると共
に、該圧力歪みセンサ(23)の両側部に電極(24)を配
設したり、第4図に示すように、絶縁被覆部材として、
Mo薄板(31a)の両面にCu薄板(31b)がクラッドされた
CuクラッドMoクラッドCuからなる基材(31)の所定部が
窒化珪素薄膜からなる絶縁被膜(32)で被覆されたもの
を用い、上記絶縁被膜(32)上に、薄膜の圧力歪みセン
サ(33)を搭載すると共に、該圧力歪みセンサ(33)の
両側部に電極(34)を配設したりすることにより、圧力
センサ用の絶縁被覆部材を構成することができる。上記
のように絶縁被膜(22)(32)上に、薄膜の圧力歪みセ
ンサ(23)(33)を搭載したものにあっては、基材(2
1)(31)が金属製であるため、圧力歪みセンサ(23)
(33)を所望の部位に半田付け等の手段により固定保持
することができるだけでなく、硬度が小さく柔軟で可撓
性を有する絶縁被膜(22)(32)が、基材(21)(31の
撓み等に対応して変形しても基材(21)(31)から剥離
したり亀裂が生じることがなく、圧力歪みセンサ(23)
(33)による検出感度を高めることができる。
Also, since the insulating coating is soft and highly flexible, even if a thin substrate or lead frame is used, it is possible to deal with the bending that occurs in various processes, and the insulation will be reduced due to cracking or peeling of the coating. Does not happen. Therefore, it is possible to easily mount the integrated circuit or the like without requiring special consideration in the assembly and mounting process of mounting the integrated circuit on the insulating coating member. Furthermore, as described above, the selection range of the base material is large,
Since various high-strength materials and the like can be used as the base material, by coating these base materials with the insulating coating, for example,
It can be used not only as an integrated circuit or a passive element but also as a sensitive part of a sensor such as a pressure sensor that utilizes the bending of a substrate, and can be applied to a wide range of electronic parts. For example, as shown in FIG. 3, as the insulating coating member, a flat surface of a base material (21) made of stainless steel (18% Cr-8% Ni-Fe) with internal thread is an insulating coating made of silicon nitride. (22) is used, and the insulation film (2
2) A thin film pressure strain sensor (23) is mounted on top of this, and electrodes (24) are arranged on both sides of the pressure strain sensor (23), or as shown in FIG. As
Cu thin plate (31b) was clad on both sides of Mo thin plate (31a)
Cu clad Mo clad A base material (31) made of Cu having a predetermined portion covered with an insulating coating (32) made of a silicon nitride thin film is used, and a thin film pressure strain sensor (33) is provided on the insulating coating (32). ) Is mounted and electrodes (34) are arranged on both sides of the pressure strain sensor (33), an insulating coating member for the pressure sensor can be formed. In the case where the thin film pressure strain sensor (23) (33) is mounted on the insulating coating (22) (32) as described above, the base material (2
1) (31) is made of metal, so pressure strain sensor (23)
The insulating film (22) (32), which has a small hardness and is soft and flexible, can not only fix and hold the (33) at a desired portion by means such as soldering, but also the base material (21) (31). The pressure strain sensor (23) does not peel or crack from the base material (21) (31) even if it is deformed in response to the bending of the base material.
The detection sensitivity of (33) can be increased.

なお、上記の特性を有する無機物質からなる被膜は、
種々の方法により形成することができるが、高い硬度を
有する無機物質であっても硬度を制御しつつ、柔軟で可
撓性を有する被膜を形成するため、基材に、アースとの
電位差1V以下の負のバイアス電圧を印加し、無機物質を
イオンプレーティングすることにより形成できる。すな
わち、前記酸化物や窒化物等の無機物質は、通常、2000
程度以上のマイクロビッカース硬度を有しているが、上
記のイオンプレーティング法により上記無機物質の被膜
を形成すると、化学組成が実質的に同一でありながら、
硬度が小さく軟質で可撓性に優れた被膜を形成すること
ができる。例えば、通常、マイクロビッカース硬度が約
2000程度である酸化アルミニウムを例にとって説明する
と、無機物質からなる絶縁被膜を上記の条件でイオンプ
レーティング法により形成すると、酸化アルミニウムの
組成を有しながら、マイクロビッカース硬度1000以下に
制御された絶縁被膜を形成することができる。なお、基
材に印加される負のバイアス電圧の、アースとの電位差
が1Vを越えると、高エネルギー粒子の被膜への衝突を抑
制することができず、被膜が損傷するだけでなく、柔軟
で可撓性に優れた硬度の小さな被膜を形成することが困
難である。
Incidentally, the coating film made of an inorganic substance having the above characteristics,
It can be formed by various methods, but even if it is an inorganic substance having a high hardness, while controlling the hardness, a flexible and flexible coating film is formed. It can be formed by applying a negative bias voltage of 1 and ion plating an inorganic substance. That is, the inorganic substance such as the oxide or nitride is usually 2000
Although it has a micro Vickers hardness of about a degree or more, when a film of the inorganic substance is formed by the ion plating method, the chemical composition is substantially the same,
It is possible to form a coating film having low hardness, softness, and excellent flexibility. For example, the micro Vickers hardness is usually about
To explain using aluminum oxide of about 2000 as an example, when an insulating coating made of an inorganic substance is formed by the ion plating method under the above-mentioned conditions, it has an aluminum oxide composition and is controlled to have a micro Vickers hardness of 1000 or less. A coating can be formed. If the potential difference between the negative bias voltage applied to the base material and the ground exceeds 1 V, collision of high-energy particles with the coating cannot be suppressed, and the coating is not only damaged but also flexible. It is difficult to form a film having excellent flexibility and low hardness.

上記のインプレーティング法は、種々の条件で行なう
ことができるが、反応容器を適宜の真空度、例えば、10
-3〜10-5Torr程度にした後、Arガス等の不活性ガスや反
応性ガス等を導入すると共に、所定の真空度に減圧し、
無機物質で構成される蒸発源を、加熱手段により蒸発さ
せ、直流電源または高周波放電によりグロー放電プラズ
マを発生させ、蒸発物質の少なくとも一部をイオン化す
ることにより行なわれる。
The above-mentioned plating method can be carried out under various conditions, but the reaction vessel is appropriately vacuumed, for example, 10
After adjusting the pressure to about -3 to 10 -5 Torr, an inert gas such as Ar gas or a reactive gas is introduced, and the pressure is reduced to a predetermined degree of vacuum.
This is performed by evaporating an evaporation source made of an inorganic substance by a heating means, generating glow discharge plasma by a direct current power source or high frequency discharge, and ionizing at least a part of the evaporated substance.

上記の方法において反応容器内の雰囲気ガスとして反
応性ガスを用いる場合、反応性ガスは、使用される無機
物質の種類および所望する絶縁被膜の種類等に応じて種
々のものが使用し得る。例えば、酸化物からなる絶縁被
膜を得る場合には酸素、窒化物からなる絶縁被膜を得る
場合には窒素等、適宜選択することができる。なお、上
記反応性ガスは前記不活性ガスと共に使用してもよい。
When a reactive gas is used as the atmospheric gas in the reaction vessel in the above method, various reactive gases can be used depending on the type of inorganic substance used and the desired type of insulating coating. For example, oxygen can be appropriately selected when obtaining an insulating coating film made of an oxide, and nitrogen or the like when obtaining an insulating coating film made of a nitride. The reactive gas may be used together with the inert gas.

また、上記不活性ガスや反応性ガスを導入した後の反
応容器の真空度は、使用される無機物質等に応じて適宜
設定することができるが、通常、10-1〜10-5Torr、好ま
しくは、1×10-3〜1×10-5Torr、より好ましくは、10
-4Torrのオーダーに設定される。
The degree of vacuum of the reaction vessel after introducing the inert gas or the reactive gas can be appropriately set according to the inorganic substance used, etc., but is usually 10 -1 to 10 -5 Torr, Preferably, 1 × 10 −3 to 1 × 10 −5 Torr, more preferably 10
-Set to the order of -4 Torr.

蒸発源としての無機物質を蒸発させる加熱手段として
は、フィラメント加熱等、種々の手段が採用し得るが、
無機物質を効率的に蒸発させるため、電子ビーム加熱が
好ましい。
As a heating means for evaporating an inorganic substance as an evaporation source, various means such as filament heating can be adopted,
Electron beam heating is preferred because it efficiently evaporates the inorganic material.

また、上記蒸発物質のイオン化は、直流電源により行
なってもよいが、高周波放電によるのが好ましく、高周
波放電の周波数としては、例えば、13.56MHz等の周波数
のものが使用される。この高周波放電により、励起され
た無機物質を効率的にイオン化することができ、被膜と
基材との密着性をよくすると共に蒸発粒子の反応性を高
めることができる。なお、放電出力としては100〜300W
程度のものが使用される。また、基材の温度は、適宜選
択することができ、通常、50〜400℃程度に設定され
る。
The ionization of the vaporized substance may be carried out by a DC power supply, but it is preferably carried out by high frequency discharge, and the frequency of the high frequency discharge is, for example, 13.56 MHz. By this high frequency discharge, the excited inorganic substance can be efficiently ionized, the adhesion between the coating film and the substrate can be improved, and the reactivity of the vaporized particles can be increased. The discharge output is 100-300W
Something is used. The temperature of the base material can be appropriately selected and is usually set to about 50 to 400 ° C.

なお、前記基材を絶縁被膜により部分的に被覆するに
は、基材のうち被覆されない所定部を適宜の手段により
マスクし、イオンプレーティングすればよい。
In order to partially cover the base material with the insulating coating, a predetermined portion of the base material that is not covered may be masked by an appropriate means and ion-plated.

上記の条件でイオンプレーテイングすると、基材に印
加される負のバイアス電圧の、アースとの電位差が1V以
下であるため、蒸発源から基材へ到達する蒸発粒子の運
動エネルギーを1eV以下に制御でき、成長過程にある被
膜へ高エネルギー粒子が衝突するのを抑制できると共
に、被膜の損傷を防止することができ、電気絶縁性を高
めることができる。また、使用する無機物質やイオンプ
レーティング条件等を調整することにより、絶縁被膜の
硬度等を所望の値に制御することができる。
When ion plating is performed under the above conditions, the potential difference between the negative bias voltage applied to the substrate and ground is 1 V or less, so the kinetic energy of the vaporized particles that reach the substrate from the evaporation source is controlled to 1 eV or less. Therefore, it is possible to prevent the high-energy particles from colliding with the coating film in the growth process, prevent the coating film from being damaged, and enhance the electrical insulating property. In addition, the hardness of the insulating coating can be controlled to a desired value by adjusting the inorganic substance used, ion plating conditions, and the like.

なお、蒸着法、プラズマCVD法等により前記無機物質
からなる被膜を形成することも可能であるが、このよう
な方法により得られた被膜は、基材と剥離し易く、亀裂
が生じ易い。
Although it is possible to form a coating film made of the above-mentioned inorganic substance by a vapor deposition method, a plasma CVD method, or the like, the coating film obtained by such a method easily peels off from the base material and easily cracks.

しかしながら、本発明によると、基材に印加される負
のバイアス電圧の、アースとの電位差が1V以下の条件で
イオンプレーティングすることにより絶縁被膜を形成す
るので、被膜成長過程で発生する応力等を緩和すること
ができるだけでなく、得られた被膜は、硬度が小さく柔
軟で可撓性に優れているため、絶縁被膜の膜厚を大きく
しても、被膜の剥離や亀裂が生じることがなく、高い電
気絶縁性を確保することができる。また、基材のバイア
ス電圧が小さいにも拘らず、基材との密着性も良好であ
る。従って、上記製造方法に係る発明は、電気絶縁性の
みならず、放熱性、可撓性、薄型化、組立実装性を求め
られる電気電子部品や電子機械部品の分野で利用される
各種基板、特に、高機能化、高密度化された集積回路、
受動素子等を搭載する多層配線基板や、基材の撓みによ
る抵抗変化を利用する薄膜歪みセンサ等、種々のセンサ
などを搭載する基板等を製造する上で有用である。
However, according to the present invention, the negative bias voltage applied to the base material forms the insulating coating by ion plating under the condition that the potential difference from the ground is 1 V or less. The resulting coating has low hardness, softness, and flexibility, so that even if the thickness of the insulating coating is increased, peeling or cracking of the coating does not occur. It is possible to secure high electric insulation. In addition, the adhesion to the substrate is good even though the bias voltage of the substrate is small. Therefore, the invention according to the above-mentioned manufacturing method is not only the electrical insulating property, but also various substrates used in the field of electric / electronic components and electromechanical components that require heat dissipation, flexibility, thinning, and assembly / mountability, in particular. , High-performance, high-density integrated circuit,
It is useful for manufacturing a multilayer wiring board on which passive elements and the like are mounted, a board on which various sensors are mounted such as a thin film strain sensor that utilizes resistance change due to bending of a base material, and the like.

<実施例> 以下に、実施例に基づき、この発明をより詳細に説明
する。
<Examples> Hereinafter, the present invention will be described in more detail with reference to Examples.

実施例1 集積回路素子を搭載するため、Cuからなる基材が、絶
縁被膜としての酸化アルミニウム薄膜で被覆された絶縁
被覆基板を以下のようにして作製した。すなわち、第1
図に示すよように、基材として厚さ0.5mmのCu基板(線
膨脹係数17×10-6/K)(1)を用い、以下の条件でイオ
ンプレーティングすることにより、基板(1)の所定部
(面積10mm×30mm)を、膜厚7μmの酸化アルミニウム
薄膜からなる絶縁被膜(2)で被覆した。
Example 1 In order to mount an integrated circuit element, an insulating coated substrate in which a base material made of Cu was coated with an aluminum oxide thin film as an insulating coating was prepared as follows. That is, the first
As shown in the figure, a 0.5 mm thick Cu substrate (coefficient of linear expansion 17 × 10 −6 / K) (1) was used as the base material, and ion plating was performed under the following conditions to obtain the substrate (1) A predetermined portion (area of 10 mm × 30 mm) was covered with an insulating film (2) made of an aluminum oxide thin film having a thickness of 7 μm.

イオンプレーティング条件: 無機物質;酸化アルミニウム圧粉体、 無機物質の加熱;電子ビーム加熱、 ガス;酸素ガス、 ガス圧;1.5×10-4Torr イオン化;高周波(13.56MHz)放電出力200W 基材の温度;300℃ 基材のバイアス電圧;−1V 成膜速度;1.5nm/sec. なお、上記バイアス電圧は、基材をアースより浮かせ
ることにより調整した。
Ion plating conditions: Inorganic substance; Aluminum oxide powder compact, Heating of inorganic substance; Electron beam heating, Gas; Oxygen gas, Gas pressure; 1.5 × 10 -4 Torr ionization; High frequency (13.56MHz) discharge output 200W of base material Temperature: 300 ° C. Base material bias voltage: −1 V Film formation rate: 1.5 nm / sec. The bias voltage was adjusted by floating the base material from the ground.

上記のようにして基板(1)を絶縁被膜(2)で被覆
したところ、酸化アルミニウムからなる絶縁被膜(2)
は、亀裂や剥離がなく500V以上の絶縁耐圧を示した。
When the substrate (1) was coated with the insulating coating (2) as described above, the insulating coating (2) made of aluminum oxide was obtained.
Shows a withstand voltage of 500 V or more without cracking or peeling.

比較例1 AlCl3を絶縁被膜形成物質として用い、上記実施例1
の基材上に、化学蒸着法により酸化アルミニウム薄膜を
形成したところ、被膜には多数の亀裂や脱落があるだけ
でなく、Cu基材も著しく軟化変形していることが判明し
た。
Comparative Example 1 AlCl 3 was used as an insulating film forming substance, and the above Example 1 was used.
When an aluminum oxide thin film was formed on the base material by chemical vapor deposition, it was found that not only a large number of cracks and omissions were found in the coating, but also the Cu base material was significantly softened and deformed.

実施例2 集積回路およびAl配線を搭載するため、第2図に示す
ように、厚み0.25mmのFe−42%Ni合金(線膨脹係数6.8
×10-6/K)リードフレームからなる基材(11)の所定部
を、上記実施例1と同様の条件でイオンプレーティング
することにより、膜厚15μm以下の酸化アルミニウム薄
膜からなる絶縁被膜(12)で被覆し、絶縁被覆部材を作
製したところ、酸化アルミニウムからなる絶縁被膜は亀
裂や剥離がなく、膜厚15μmの場合、1KV以上の絶縁耐
圧を示した。
Example 2 In order to mount an integrated circuit and Al wiring, as shown in FIG. 2, a Fe-42% Ni alloy having a thickness of 0.25 mm (coefficient of linear expansion of 6.8) was used.
( X10 -6 / K) By ion-plating a predetermined portion of the base material (11) made of a lead frame under the same conditions as in Example 1 above, an insulating coating film made of an aluminum oxide thin film having a thickness of 15 μm or less ( When an insulating coating member was produced by coating with 12), the insulating coating made of aluminum oxide did not crack or peel off, and when the film thickness was 15 μm, it showed a withstand voltage of 1 KV or more.

比較例2 被膜形成原料としてAlCl3、CO2、H2を用いると共に、
プラズマCVD法にて形成した酸化アルミニウムからなる
絶縁被膜で、上記実施例2の基材を被覆したところ、膜
厚6μmでもすでに多数の亀裂や剥離があり、絶縁被覆
することが困難であることが判明した。
Comparative Example 2 AlCl 3 , CO 2 , and H 2 were used as film forming raw materials,
When the base material of Example 2 was covered with an insulating coating made of aluminum oxide formed by the plasma CVD method, a large number of cracks and peeling were already present even at a film thickness of 6 μm, and it was difficult to perform insulating coating. found.

実施例3 圧力センサを搭載するため、ステンレス鋼(18%Cr−
8%Ni−Fe)からなる基材を、窒化珪素薄膜で被覆した
絶縁被覆部品を以下のようにして作製した。すなわち、
第3図に示すように、絶縁被覆部分が5mmの厚みを有す
る雌ネジ付きの上記ステンレス鋼(熱膨張係数17×10-6
/K)からなる基材(21)の平坦部に窒化珪素からなる絶
縁被膜(22)を以下の条件でイオンプレーティングする
ことにより形成した。
Example 3 A stainless steel (18% Cr-
A base material made of 8% Ni-Fe) was coated with a silicon nitride thin film to produce an insulating coated component as follows. That is,
As shown in FIG. 3, the above-mentioned stainless steel with an internal thread having an insulating coating portion having a thickness of 5 mm (coefficient of thermal expansion 17 × 10 −6
The insulating coating (22) made of silicon nitride was formed on the flat part of the base material (21) made of / K) by ion plating under the following conditions.

イオンプレーティングの条件: 無機物質;窒化珪素圧粉体 無機物質の加熱;電子ビーム加熱 ガス;窒素 ガス圧;2×10-4Torr イオン化;高周波(13.56MHz) 基材の温度;300℃ 基材のバイアス電圧;−1V 成膜速度;1.5nm/sec. 上記の条件で作製した絶縁皮膜の表面を走査型電子顕
微鏡で観察した結果、表面が平滑で亀裂や剥離のない被
膜が形成されていることが判明した。
Ion plating conditions: Inorganic material; Silicon nitride powder compact Heating of inorganic material; Electron beam heating gas; Nitrogen gas pressure; 2 × 10 -4 Torr ionization; High frequency (13.56MHz) Base material temperature; 300 ℃ Base material Bias voltage: -1V Deposition rate: 1.5 nm / sec. As a result of observing the surface of the insulating film produced under the above conditions with a scanning electron microscope, a film with a smooth surface without cracks or peeling is formed. It has been found.

比較例3 上記実施例3の無機物質に代えて、SiH4およびNH3
絶縁被膜形成物質として用い、前記実施例3の基材の所
定部を、プラズマCVD法により窒化珪素からなる薄膜で
被覆したところ、被膜には多数の亀裂や脱落があること
が判明した。
Comparative Example 3 Instead of the inorganic substance of Example 3 above, SiH 4 and NH 3 were used as insulating film forming substances, and a predetermined portion of the substrate of Example 3 was covered with a thin film made of silicon nitride by the plasma CVD method. As a result, it was found that the coating had many cracks and omissions.

実施例4 測定物にハンダ付け可能な薄膜歪みセンサを作製する
ため、第4図に示すように、Mo薄板(31a)の両面にCu
薄板(31b)がクラッドされた厚み0.5mmのCuクラッドMo
クラッドCu板(線膨脹係数8.6×10-6/K)からなる基材
(31)の所定部を、上記実施例3と同様の条件でイオン
プレーティングすることにより、膜厚15μmの窒化珪素
薄膜からなる絶縁被膜(32)で被覆し、センサを搭載し
た絶縁被膜部材を作製した。なお、上記窒化珪素を薄膜
歪みセンサを窒化珪素でパッシベーションするために用
いた。
Example 4 In order to manufacture a thin film strain sensor that can be soldered to a measured object, as shown in FIG. 4, Cu was formed on both sides of a Mo thin plate (31a).
0.5 mm thick Cu clad Mo clad with thin plate (31b)
A silicon nitride thin film having a film thickness of 15 μm was obtained by ion-plating a predetermined portion of a base material (31) made of a clad Cu plate (coefficient of linear expansion of 8.6 × 10 −6 / K) under the same conditions as in Example 3 above. Was coated with an insulating coating (32) to prepare an insulating coating member having a sensor mounted thereon. The above silicon nitride was used for passivating the thin film strain sensor with silicon nitride.

上記の条件で形成した絶縁被膜の表面を走査型電子顕
微鏡で観察したところ、被膜表面は平滑で亀裂や剥離の
ないことが確認された。
When the surface of the insulating coating formed under the above conditions was observed with a scanning electron microscope, it was confirmed that the coating surface was smooth and free from cracks and peeling.

比較例4 SiH4およびNH3を縁被膜形成物質として用い、前記実
施例4の基材の所定部を、プラズマCVD法により窒化珪
素からなる薄膜で被覆したところ、被膜には多数の亀裂
や脱落があることが判明した。
Comparative Example 4 When SiH 4 and NH 3 were used as edge film forming substances, a predetermined portion of the base material of Example 4 was coated with a thin film made of silicon nitride by the plasma CVD method. Turned out to be.

また、上記実施例1〜4および比較例1〜4で得られ
た絶縁皮膜の硬度を、押し込み荷重0.5g重のマイクロビ
ッカース硬度計で測定したところ、表に示す結果を得
た。なお、参考までに、押し込み荷重1g重のダイナミッ
ク超微小硬度計で測定した値も併せて示す。
Further, the hardness of the insulating coatings obtained in Examples 1 to 4 and Comparative Examples 1 to 4 was measured with a micro Vickers hardness meter having a pressing load of 0.5 g, and the results shown in the table were obtained. For reference, the value measured by a dynamic ultra-micro hardness meter with a pushing load of 1 g is also shown.

表1より明らかなように、比較例のものは、いずれも
マイクロビッカース硬度が約2000以上であるのに対し
て、実施例のものは、組成が実質的に同一でありなが
ら、いずれも1000以下のマイクロビッカース硬度を示
し、軟質でかつ可撓性を有することが判明した。
As is clear from Table 1, the comparative examples all have a micro Vickers hardness of about 2000 or more, while the examples have substantially the same composition, but all 1000 or less. It was found to be soft and flexible.

比較例5 基材として線膨脹係数の大きい亜鉛板(25mm×25mm、
線膨脹係数31×10-6/K)を用い、実施例1と同様の条件
でイオンプレーティングすることにより、酸化アルミニ
ウム薄膜からなる絶縁被膜を形成したところ、被膜には
多数の亀裂が生じ高い電気絶縁性を確保するのが困難で
あった。
Comparative Example 5 As a base material, a zinc plate having a large linear expansion coefficient (25 mm x 25 mm,
When an insulating coating composed of an aluminum oxide thin film was formed by ion plating under the same conditions as in Example 1 using a linear expansion coefficient of 31 × 10 −6 / K), many cracks were generated in the coating. It was difficult to ensure electrical insulation.

<発明の効果> 以上のように、第1の発明の絶縁被覆部材によれば、
金属製基材を被覆する絶縁被膜が、マイクロビッカース
硬度1000以下のものであり、軟質で可撓性を有するた
め、被膜成長過程で発生する応力や被膜と基材の熱膨脹
係数の差等に起因する応力を緩和することができ、膜厚
を大きくしても被膜の剥離や亀裂等が生じることがない
だけでなく、絶縁被膜が酸化物または窒化物で構成され
るので、高い電気絶縁性を確保することができる。
<Effects of the Invention> As described above, according to the insulating coating member of the first invention,
The insulating coating that covers the metal base material has a micro Vickers hardness of 1000 or less and is soft and flexible, so it is caused by the stress generated during the film growth process and the difference in the coefficient of thermal expansion between the coating and the base material. Stress can be relieved, and even if the film thickness is increased, peeling or cracking of the film does not occur, and since the insulating film is composed of oxide or nitride, high electrical insulation is achieved. Can be secured.

また、基材が金属製であるだけでなく、基材として熱
伝導度の高い材料を使用できるので、高機能化、高密度
化された集積回路や受動素子などを多数搭載しても、上
記集積回路等から発生する熱を効率的に放散させること
ができる。また、可撓性を有する基板やリードフレーム
等を基材として使用しても、基材の撓み等に前記絶縁被
膜が対応できるので、組立実装工程において容易に集積
回路を搭載することができる。
Further, not only is the base material made of metal, but a material with high thermal conductivity can be used as the base material, so even if a large number of highly functionalized and highly integrated circuits and passive elements are mounted, The heat generated from the integrated circuit or the like can be efficiently dissipated. Further, even when a flexible substrate, lead frame or the like is used as the base material, the insulating coating can cope with the flexure of the base material and the like, so that the integrated circuit can be easily mounted in the assembly and mounting process.

また、基材が金属製であるため、複雑な形状に加工で
きるだけでなく、基材として膜厚の薄いものを使用し、
絶縁被膜を部分的に施すことにより絶縁体と導体との複
合体を形成することができ、部品の薄型化を図ることが
できると共に、従来行なわれていたセラミック基板への
端子の半田付工程が不要になるほか、樹脂封止の信頼性
も著しく向上するという特有の効果を奏する。
In addition, since the base material is made of metal, it can be processed into a complicated shape, and a thin base material is used.
By partially applying an insulating coating, a composite of an insulator and a conductor can be formed, which makes it possible to reduce the thickness of parts and also to eliminate the conventional soldering process of terminals to a ceramic substrate. In addition to being unnecessary, there is a peculiar effect that the reliability of resin sealing is significantly improved.

また、第2の発明の絶縁被覆部材の製造方法によれ
ば、基材に印加される負のバイアス電圧の、アースとの
電位差が1V以下の条件でイオンプレーティングすること
により絶縁被膜を形成するので、絶縁被膜の硬度等を制
御することができると共に、得られた被膜は、硬度が小
さく柔軟で可撓性に優れており、絶縁被膜の厚みを大き
くしても、被膜の剥離や亀裂が生じることがないだけで
なく、酸化物または窒化物からなる絶縁被膜を形成でき
るので、高い電気絶縁性を有する絶縁被覆部材を製造す
ることができるという特有の効果を奏する。
According to the method for producing an insulating coating member of the second invention, the insulating coating is formed by ion plating under the condition that the potential difference between the negative bias voltage applied to the base material and the ground is 1 V or less. Therefore, the hardness and the like of the insulating coating can be controlled, and the obtained coating has small hardness and is flexible and excellent in flexibility, and even if the thickness of the insulating coating is increased, peeling or cracking of the coating can be prevented. Not only does it not occur, but since an insulating coating film made of an oxide or a nitride can be formed, a unique effect of being able to manufacture an insulating coating member having high electrical insulation is exhibited.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図は集積回路を搭載した本発明の絶縁
被覆部材を示す概略断面図、 第3図および第4図は、センサーを搭載した本発明の絶
縁被覆部材の概略断面図である。 (1)(11)(21)(31)……基材、 (2)(12)(22)(32)……絶縁被膜。
1 and 2 are schematic sectional views showing an insulating coating member of the present invention in which an integrated circuit is mounted, and FIGS. 3 and 4 are schematic sectional views of the insulating coating member of the present invention in which a sensor is mounted. . (1) (11) (21) (31) …… Base material, (2) (12) (22) (32) …… Insulating coating.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H05K 3/44 A (72)発明者 前田 貴雄 兵庫県伊丹市昆陽北1丁目1番1号 住友 電気工業株式会社伊丹製作所内 (72)発明者 瀧川 貴稔 兵庫県伊丹市昆陽北1丁目1番1号 住友 電気工業株式会社伊丹製作所内 (56)参考文献 特開 昭63−223162(JP,A) 特開 昭54−126466(JP,A) 特開 昭61−256506(JP,A) 特開 昭58−15241(JP,A)─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication location H05K 3/44 A (72) Inventor Takao Maeda 1-1-1 Kunyokita, Itami City, Hyogo Prefecture Sumitomo Electric Industry Co., Ltd. Itami Works (72) Inventor Takatoshi Takigawa 1-1-1 Kunyokita, Itami City, Hyogo Prefecture Sumitomo Electric Industries Co., Ltd. Itami Works (56) Reference JP-A-63-223162 (JP, A) ) JP-A-54-126466 (JP, A) JP-A-61-256506 (JP, A) JP-A-58-15241 (JP, A)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】金属製基材の少なくとも一部が電気絶縁性
酸化物または窒化物からなる絶縁被膜で被覆されている
絶縁部材において、上記金属製基材が、3×10-6〜25×
10-6/Kの線膨脹係数を有すると共に、上記絶縁被膜が、
マイクロビッカース硬度1000以下のものであることを特
徴とする絶縁被覆部材。
1. An insulating member in which at least a part of a metallic base material is covered with an insulating coating film made of an electrically insulating oxide or nitride, wherein the metallic base material is 3 × 10 −6 to 25 ×.
While having a linear expansion coefficient of 10 -6 / K, the insulating coating,
An insulating coating member having a micro Vickers hardness of 1000 or less.
【請求項2】基材が、金属、合金、金属系複合材料、複
合金属板、複合金属線材から選択されたものである上記
特許請求の範囲第1項記載の絶縁被覆部材。
2. The insulating coated member according to claim 1, wherein the base material is selected from a metal, an alloy, a metal-based composite material, a composite metal plate, and a composite metal wire.
【請求項3】基材が、Va族金属、VI a族金属、Zr、Al、
Cu、Fe、Ni、Fe−Ni合金のうち少なくとも一種を含むも
のである上記特許請求の範囲第1項または第2項記載の
絶縁被覆部材。
3. The substrate is a group Va metal, a group VIa metal, Zr, Al,
The insulating coating member according to claim 1 or 2, which contains at least one of Cu, Fe, Ni, and an Fe-Ni alloy.
【請求項4】金属製基材を電気絶縁性酸化物または窒化
物からなる絶縁被覆で被覆する絶縁部材の製造方法であ
って、基材に、アースとの電位差1V以下の負のバイアス
電圧を印加し、イオンプレーティング法によりマイクロ
ビッカース硬度1000以下の絶縁被膜を形成することを特
徴とする絶縁被覆部材の製造方法。
4. A method of manufacturing an insulating member, comprising coating a metal base material with an insulating coating made of an electrically insulating oxide or nitride, wherein the base material is provided with a negative bias voltage having a potential difference of 1 V or less with respect to ground. A method for producing an insulating coating member, which comprises applying an insulating coating film having a micro Vickers hardness of 1000 or less by an ion plating method.
【請求項5】真空度10-1〜10-5Torrの条件下、無機物質
を電子ビーム加熱により蒸発させると共に、高周波励起
することにより絶縁被膜を形成する上記特許請求の範囲
第4項記載の絶縁被覆部材の製造方法。
5. The method according to claim 4, wherein the insulating film is formed by evaporating the inorganic material by electron beam heating and exciting it at a high frequency under the condition of a vacuum degree of 10 -1 to 10 -5 Torr. A method for manufacturing an insulating coating member.
JP62137120A 1987-05-30 1987-05-30 Insulation covering member and method of manufacturing the same Expired - Fee Related JPH0831665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62137120A JPH0831665B2 (en) 1987-05-30 1987-05-30 Insulation covering member and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62137120A JPH0831665B2 (en) 1987-05-30 1987-05-30 Insulation covering member and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPS63301429A JPS63301429A (en) 1988-12-08
JPH0831665B2 true JPH0831665B2 (en) 1996-03-27

Family

ID=15191290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62137120A Expired - Fee Related JPH0831665B2 (en) 1987-05-30 1987-05-30 Insulation covering member and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JPH0831665B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2755594B2 (en) * 1988-03-30 1998-05-20 株式会社 東芝 Ceramic circuit board
JP5206111B2 (en) * 2008-05-19 2013-06-12 大日本印刷株式会社 Raw material powder for ion plating evaporation source material, ion plating evaporation source material and manufacturing method thereof, and gas barrier sheet manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126466A (en) * 1978-03-24 1979-10-01 Toshiba Corp Semiconductor device
JPS63223162A (en) * 1987-03-11 1988-09-16 Nippon Light Metal Co Ltd Formation of crystalline transparent alumina film by ion plating

Also Published As

Publication number Publication date
JPS63301429A (en) 1988-12-08

Similar Documents

Publication Publication Date Title
TW565625B (en) Improved tantalum-containing barrier layers for copper
JP3126977B2 (en) Reinforced direct bond copper structure
US4409079A (en) Method of metallizing sintered ceramics
JPS5815241A (en) Substrate for semiconductor device
WO2005091360A1 (en) Substrate for semiconductor device and semiconductor device
EP0282285B1 (en) A method of metallization for a nitride ceramic member
JP2001295040A (en) Sputtering target and backing plate material
JPH0831665B2 (en) Insulation covering member and method of manufacturing the same
EP0113088B1 (en) Substrate for mounting semiconductor element
US5250327A (en) Composite substrate and process for producing the same
JPS63124555A (en) Substrate for semiconductor device
CN101572994B (en) Method for forming conducting wire on radiating substrate in a vacuum sputtering way
JPS60128625A (en) Base board for mounting of semiconductor element
JP2003089883A (en) Functional element and method of manufacturing the same
JPS58103156A (en) Substrate for semiconductor device
US6914330B2 (en) Heat sink formed of diamond-containing composite material with a multilayer coating
JPS59184586A (en) Circuit board for placing semiconductor element
JPS5848954A (en) Substrate for tape carrier type integrated circuit
CN1292626C (en) A circuit board and manufacturing method thereof
US11945054B2 (en) Method for producing a metal-ceramic substrate, solder system, and metal-ceramic substrate produced using such a method
JPS58138061A (en) Substrate for integrated circuit
JP2986948B2 (en) AlN circuit board
JPS6255814A (en) Electric contact material
JPH0786379A (en) Semiconductor manufacturing suscepter
EP0930378A1 (en) Method of processing of CVD diamond coatings

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees