JPH0831614B2 - Solar cell - Google Patents

Solar cell

Info

Publication number
JPH0831614B2
JPH0831614B2 JP62281613A JP28161387A JPH0831614B2 JP H0831614 B2 JPH0831614 B2 JP H0831614B2 JP 62281613 A JP62281613 A JP 62281613A JP 28161387 A JP28161387 A JP 28161387A JP H0831614 B2 JPH0831614 B2 JP H0831614B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
solar cell
layer
semiconductor
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62281613A
Other languages
Japanese (ja)
Other versions
JPH01123479A (en
Inventor
滋 北陽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62281613A priority Critical patent/JPH0831614B2/en
Priority to US07/202,507 priority patent/US4846896A/en
Priority to DE3819671A priority patent/DE3819671A1/en
Priority to GB8813737A priority patent/GB2206732B/en
Publication of JPH01123479A publication Critical patent/JPH01123479A/en
Publication of JPH0831614B2 publication Critical patent/JPH0831614B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は複数個の太陽電池を直列に接続して光発電に
使用する場合、一部の太陽電池セルが影になつた時に発
生する逆電圧に破壊を防止する逆導通太陽電池セルに関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention, when a plurality of solar cells are connected in series and used for photovoltaic power generation, the reverse phenomenon that occurs when some solar cells are shaded. The present invention relates to a reverse conducting solar cell that prevents breakdown to voltage.

〔従来の技術〕[Conventional technology]

一般に、この種の太陽電池セルは基本的には1つのp
−n接合を有するダイオードである。
Generally, a solar cell of this type basically has one p
-A diode having an n-junction.

実際の太陽電池セルを発電用として使用する際には、
複数個のセルを直列に接続し、全体の発生電圧が所定の
電圧となるようにしていた。
When using an actual solar cell for power generation,
A plurality of cells are connected in series so that the overall generated voltage becomes a predetermined voltage.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら従来の太陽電池セルは、太陽電池セルの
一部が影になつた場合、直列接続された他のセルに発生
する電圧が、ダイオードである太陽電池セルの性質上、
逆方向電圧として印加されることになり、この時、太陽
電池セルの逆方向耐量が小さいと破壊現象が起り、太陽
電池セルとしての機能が低下し又は消滅してしまうとい
う欠点があつた。
However, in the conventional solar cell, when a part of the solar cell is shaded, the voltage generated in the other cells connected in series is due to the nature of the solar cell which is a diode,
Since a reverse voltage is applied to the solar cell at this time, if the reverse withstand voltage of the solar battery cell is small, a destruction phenomenon occurs and the function as the solar battery cell deteriorates or disappears.

上記の欠点を防止するためには太陽電池セルの逆方向
耐圧を高めるか、又は直列接続したセルの発生電圧が1
セルの逆阻止能力を越えない範囲毎に、逆並列に別途ダ
イオードを挿入するという方法がある。
In order to prevent the above drawbacks, the reverse withstand voltage of the solar cells is increased, or the generated voltage of the cells connected in series is 1
There is a method in which a diode is separately inserted in antiparallel in each range that does not exceed the reverse blocking capability of the cell.

前者の太陽電池セルの逆方向電圧を高めるには、ベー
ス層の不純物濃度を下げるという方法がある。このため
には太陽電池セルでは浅いp−n接合を必要とし、特に
宇宙用太陽電池セルは短波長感度を高めるために0.3〜
0.5μm以下にする必要があり、通常数百Vの逆耐圧を
得るのに必要な不純物濃度のベース層に対して上記のよ
うなp−n接合を拡散によつて形成することは、実験的
には可能であつても技術的に量産は非常に困難である。
また、GaAs太陽電池セルにおいては、その結晶成長時に
低不純物濃度を得ることは困難であり、このため得られ
る逆耐圧は多くても数十Vである。
In order to increase the reverse voltage of the former solar cell, there is a method of decreasing the impurity concentration of the base layer. For this purpose, a solar cell requires a shallow pn junction, and especially for space solar cells, 0.3-
It is necessary to reduce the thickness to 0.5 μm or less, and it is experimentally possible to form the above-described pn junction by diffusion in a base layer having an impurity concentration necessary to obtain a reverse breakdown voltage of several hundred V. Although it is possible, it is technically very difficult to mass-produce.
Further, in a GaAs solar cell, it is difficult to obtain a low impurity concentration during the crystal growth thereof, and therefore the reverse breakdown voltage obtained is at most several tens of volts.

他方、後者の別途ダイオードを挿入する方法は、ダイ
オード接続により部品点数が増加するのでコストアツプ
につながり且つ系としての信頼性を下げることになり、
特に高信頼性を要求される宇宙用等の太陽電池セルでは
大きな問題となる。
On the other hand, the latter method of inserting a separate diode increases the number of parts due to the diode connection, which leads to cost increase and lowers the reliability of the system.
In particular, this is a big problem in solar cells for space use, which require high reliability.

他の方法として太陽電池セル中に逆並列接続された独
立のダイオードを形成することにより外部逆並列ダイオ
ード挿入と同様の効果を得ることができる。しかし反
面、同一半導体基板内に逆並列ダイオードを形成した場
合、入射光により逆並列ダイオードに太陽電池起電力と
反対方向に起電力が発生してしまい、太陽電池の特性を
著しく損うことになる。
As another method, the same effect as the external anti-parallel diode insertion can be obtained by forming an independent diode connected in anti-parallel in the solar cell. However, on the other hand, when an anti-parallel diode is formed in the same semiconductor substrate, an incident light will generate an electromotive force in the anti-parallel diode in a direction opposite to the solar cell electromotive force, which will significantly impair the characteristics of the solar cell. .

以上のように太陽電池セルの逆耐圧を高めることは限
度があり、高電圧発電システムとしての使用は困難であ
つた。
As described above, there is a limit to increase the reverse breakdown voltage of the solar battery cell, and it is difficult to use it as a high-voltage power generation system.

本発明は以上のような問題点を解消し、同一半導体基
板内に逆並列ダイオードを形成する逆導通太陽電池セル
において、逆並列ダイオードの起電力を防止して高効率
の太陽電池セルを得ることを目的とする。
The present invention solves the above problems and, in a reverse conducting solar cell in which an antiparallel diode is formed in the same semiconductor substrate, an electromotive force of the antiparallel diode is prevented to obtain a highly efficient solar cell. With the goal.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は半導体基板の第1の主面に全面形成され、そ
の1部が半導体基板を貫通して第2の主面に到達するよ
うな第1の導電型の第1の半導体層と、半導体基板を第
1の半導体層により分離して形成された第2の導電型の
第2の半導体層および第2の導電型の第3の半導体層
と、 第2の導電型の第3の半導体層内に位置し、第2の主
面側に形成された第1の導電型を有する半導体層であつ
て、第3の半導体層と形成するp−n接合が第1の主面
から入射される光発電に寄与する波長の光が第3の半導
体層に吸収されて該p−n接合まで達しない深さに形成
された第4の半導体層と、第2の主面側の所定箇所に形
成された外部接続用の電極とを設けたものである。
The present invention relates to a first semiconductor layer of a first conductivity type, which is entirely formed on a first main surface of a semiconductor substrate, a part of which penetrates the semiconductor substrate and reaches the second main surface, A second semiconductor layer of the second conductivity type and a third semiconductor layer of the second conductivity type, which are formed by separating the substrate by the first semiconductor layer; and a third semiconductor layer of the second conductivity type. A semiconductor layer having a first conductivity type, which is located inside and is formed on the second main surface side, and a pn junction formed with the third semiconductor layer is incident from the first main surface. Light having a wavelength that contributes to photovoltaic power generation is formed in a fourth semiconductor layer formed at a depth that is absorbed by the third semiconductor layer and does not reach the pn junction, and at a predetermined location on the second main surface side. And an externally connected electrode for external connection.

〔作用〕[Action]

本発明は第1の主面側からの光は第3の半導体層に吸
収され、第2の主面側からの光は電極により反射又は吸
収されるので、第3の半導体層および第4の半導体層に
より形成されるp−n接合部には光が到達せず、逆方向
の発電は生じない。
In the present invention, the light from the first main surface side is absorbed by the third semiconductor layer, and the light from the second main surface side is reflected or absorbed by the electrodes. Therefore, the third semiconductor layer and the fourth semiconductor layer Light does not reach the pn junction formed by the semiconductor layer, and power generation in the opposite direction does not occur.

〔実施例〕〔Example〕

次に本発明の実施例について図を用いて説明する。 Next, an embodiment of the present invention will be described with reference to the drawings.

第1図(a)〜(e)は本発明の一実施例を示すGaAs
太陽電池セルの各製造工程の断面図である。
1 (a) to 1 (e) are GaAs showing one embodiment of the present invention.
It is sectional drawing of each manufacturing process of a photovoltaic cell.

まず、n型GaAsの半導体基板1の表面側である受光面
側(図では上側)および裏面側の両面に選択拡散用のマ
スクとしてCVD方法によりSi3N4膜2を形成し((a)
図)、そのSi3N4膜2の所定箇所を写真製版技術により
除去して半導体基板1が露出するような窓を形成する
((b)図)。
First, a Si 3 N 4 film 2 is formed by a CVD method as a mask for selective diffusion on both the light-receiving surface side (upper side in the figure) and the back surface side of the n-type GaAs semiconductor substrate 1 ((a)).
Then, a predetermined portion of the Si 3 N 4 film 2 is removed by a photolithography technique to form a window through which the semiconductor substrate 1 is exposed (see (b)).

次に前工程で形成された窓から不純物であるZnの拡散
を行い、半導体基板1を貫通するようなp型、GaAs層4
(第1の導電型の第1の半導体層)を形成する。これに
より半導体基板1は左右に分離されn型GaAs層3,5(第
2の導電型の第2,第3の半導体層)が形成される。そし
て、n型GaAs層5の裏面側にp型GaAs層6(第1の導電
型を有する第4の半導体層)を形成する。((c)
図)。この際、n型GaAs層5およびp型GaAs層6より形
成されるp−n接合である逆並列ダイオードの位置は、
セル端から少なくとも20μm以上離れるようにする。
Next, Zn, which is an impurity, is diffused through the window formed in the previous step, and the p-type GaAs layer 4 which penetrates the semiconductor substrate 1 is formed.
(First semiconductor layer of first conductivity type) is formed. As a result, the semiconductor substrate 1 is separated into right and left, and n-type GaAs layers 3 and 5 (second conductive type second and third semiconductor layers) are formed. Then, the p-type GaAs layer 6 (fourth semiconductor layer having the first conductivity type) is formed on the back surface side of the n-type GaAs layer 5. ((C)
Figure). At this time, the position of the anti-parallel diode, which is a pn junction formed by the n-type GaAs layer 5 and the p-type GaAs layer 6, is
At least 20 μm or more away from the cell edge.

これは、特にGaAs太陽電池セルにおいては、GaAsの光
吸収係数が大きく,光発電に寄与する波長の光の浸透深
さが約20μmであり、逆並列ダイオードのp−n接合が
これ以上深い位置にあれば接合部に電力が発生すること
がないからである。
This is because, especially in GaAs solar cells, the light absorption coefficient of GaAs is large, the penetration depth of light having a wavelength that contributes to photovoltaic power generation is about 20 μm, and the pn junction of the antiparallel diode is deeper than this. This is because no power will be generated at the junction if the above condition exists.

この後、受光面側のSi3N4膜2を除去し、太陽電池機
能を有するp−n接合を形成するために約0.5μmの厚
みのp型GaAs層7(第1の導電型の第1の半導体層)お
よびp型AlGaAs層8を形成する((d)図)。
After that, the Si 3 N 4 film 2 on the light-receiving surface side is removed, and in order to form a pn junction having a solar cell function, a p-type GaAs layer 7 (first conductivity type first layer) having a thickness of about 0.5 μm is formed. 1 semiconductor layer) and the p-type AlGaAs layer 8 are formed ((d) figure).

さらに、受光面側にはp型AlGaAs層8上にSi3N4の反
射防止膜9を形成し、裏面側にはSi3N4の絶縁膜10を形
成する。続いてこれらの反射防止膜9および絶縁膜10の
所定箇所を写真製版技術により除去し、その除去部分
に、受光面側にはグリツド電極11を形成し、裏面側には
2つの独立しが外部接続電極として陽電極,陰電極12,1
3を形成する((e)図)。
Further, the light receiving surface side reflection preventing film 9 the Si 3 N 4 is formed on the p-type AlGaAs layer 8, on the back side to form the insulating film 10 the Si 3 N 4. Subsequently, predetermined portions of the antireflection film 9 and the insulating film 10 are removed by a photolithography technique, and a grid electrode 11 is formed on the light receiving surface side on the removed portion, and two independent external electrodes are formed on the back surface side. Positive and negative electrodes 12,1 as connecting electrodes
3 is formed (Fig. (E)).

この陽電極12はp型GaAs層4,n型GaAs層5に接触する
ように形成され、他方、陰電極13はn型GaAs層3,p型GaA
s層6に接触するように形成され、位置的に離れたn型G
aAs層3およびp型GaAs層6を電気的に接続している。
The positive electrode 12 is formed in contact with the p-type GaAs layer 4 and the n-type GaAs layer 5, while the negative electrode 13 is formed with the n-type GaAs layer 3 and p-type GaA.
n-type G formed so as to contact the s layer 6 and separated in position
The aAs layer 3 and the p-type GaAs layer 6 are electrically connected.

さらに陰電極13はn型GaAs層5及びp型GaAs6から成
るp−n接合部分を絶縁膜10を介して被覆するように形
成されている。
Further, the negative electrode 13 is formed so as to cover the pn junction portion composed of the n-type GaAs layer 5 and the p-type GaAs 6 via the insulating film 10.

次に本実施例の動作について説明する。 Next, the operation of this embodiment will be described.

まず、太陽電池セルの受光面に光が入射すると、n型
GaAs層3及びp型GaAs層4の間に光起電力が生じ、陽電
極12を正,陰電極13を負とする電池として動作する。こ
の際、p型GaAs層4及びn型GaAs層5は陽電極12により
短絡しているので、光発電には寄与しない。ここで、n
型GaAs層5とp型GaAs層6により形成されるp−n接合
はその性質上太陽電池セルの発電方向とは逆方向の発電
機能を有しているのであるが、受光面側からの入射光中
発電に有効な波長の光はn型GaAs層5およびp型GaAs層
7により吸収され、他方、裏面側からの入射光は陰電極
13により遮蔽されるので、該p−n接合には光は到達せ
ず従つて、逆方向に発電を防ぐことができる。
First, when light is incident on the light-receiving surface of a solar cell, the n-type
Photoelectromotive force is generated between the GaAs layer 3 and the p-type GaAs layer 4, and the cell operates as a battery in which the positive electrode 12 is positive and the negative electrode 13 is negative. At this time, since the p-type GaAs layer 4 and the n-type GaAs layer 5 are short-circuited by the positive electrode 12, they do not contribute to photovoltaic power generation. Where n
The pn junction formed by the p-type GaAs layer 5 and the p-type GaAs layer 6 has a power generation function in the direction opposite to the power generation direction of the solar cell due to its nature, but is incident from the light-receiving surface side. Light having a wavelength effective for photo-electric power generation is absorbed by the n-type GaAs layer 5 and the p-type GaAs layer 7, while incident light from the back surface side is a negative electrode.
Since it is shielded by 13, light does not reach the pn junction, and accordingly, power generation can be prevented in the opposite direction.

また、陽電極12,陰電極13を介して直列接続された複
数の太陽電池セルにおいては、一部の太陽電池セルが影
になつた場合、逆電圧が印加され陽電極12が負、陰電極
13に正がバイアスされるが、このときはn型GaAs層5,p
型GaAs層6から成るp−n接合が順バイアスされ、電流
が陰電極13から陽電極12へ流れることになり(逆方向導
通能力)、このため、該p−n接合には逆電圧が印加さ
れない。
Further, in a plurality of solar cells connected in series via the positive electrode 12 and the negative electrode 13, when some of the solar cells are shaded, a reverse voltage is applied and the positive electrode 12 is negative and the negative electrode is negative.
13 is positively biased, but at this time, n-type GaAs layer 5, p
The pn junction composed of the type GaAs layer 6 is forward-biased, and a current flows from the negative electrode 13 to the positive electrode 12 (reverse conduction capability). Therefore, a reverse voltage is applied to the pn junction. Not done.

このように本実施例ではn型GaAs層5及びp型GaAs層
6から成るp−n接合部に逆電圧の発電を生じないよう
に構成しているので、太陽電池セルは逆方向電圧による
破壊を防ぐことが可能となる。
As described above, in this embodiment, since the pn junction composed of the n-type GaAs layer 5 and the p-type GaAs layer 6 is configured so as not to generate the reverse voltage, the solar cell is destroyed by the reverse voltage. Can be prevented.

なお、本実施例ではGaAs太陽電池セルについて説明し
たが、この他にもSi太陽電池セル等他の太陽電池セルに
適用しうることができるのはいうまでもない。
In addition, although the GaAs solar cell has been described in the present embodiment, it is needless to say that the present invention can be applied to other solar cells such as a Si solar cell.

また、本実施例では陰電極13がn型GaAs層3およびp
型GaAs層6を短絡するように形成しているが、n型GaAs
層3,p型GaAs層6に電極を各々形成してアセンブリ時に
コネクタにより結合しても良い。
In this embodiment, the negative electrode 13 is the n-type GaAs layer 3 and p.
The n-type GaAs layer 6 is formed so as to be short-circuited.
Electrodes may be formed on the layer 3 and the p-type GaAs layer 6, respectively, and may be connected by a connector during assembly.

〔発明の効果〕〔The invention's effect〕

以上のように本発明では第1の主面側からの光は第3
の半導体層に吸収され、第2の主面側からの光は電極に
より反射され、第3の半導体層および第4の半導体層に
より形成されるp−n接合部には光が到達しないように
構成したので、p−n接合部での逆方向の発電を防止で
き、逆方向電圧により太陽電池セルが破壊されることも
なくなり、且つ外部にダイオードを挿入する必要もない
ので部品数を抑えることが可能となり、より信頼性の高
い太陽電池セルを得ることができる。
As described above, in the present invention, the light from the first main surface side is the third
The light from the second main surface side is absorbed by the semiconductor layer of the second main surface and is reflected by the electrode so that the light does not reach the pn junction formed by the third semiconductor layer and the fourth semiconductor layer. Since it is configured, it is possible to prevent power generation in the reverse direction at the pn junction, to prevent the solar cell from being destroyed by the reverse voltage, and to suppress the number of parts because it is not necessary to insert a diode outside. This makes it possible to obtain a more reliable solar cell.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)〜(e)は本発明の一実施例を示す太陽電
池セルの各製造工程の断面図である。 1……半導体基板、2……Si3N4膜、3……n型GaAs層
(第2の半導体層)、5……n型GaAs層(第3の半導体
層)、4……p型GaAs層(第1の半導体層)、6……p
型GaAs層(第4の半導体層)、7……p型GaAs層(第1
の半導体層)、8……p型AlGaAs層、9……反射防止
膜、10……絶縁膜、11……グリツド電極、12……陽極、
13……陰極。
1 (a) to 1 (e) are cross-sectional views of respective steps of manufacturing a solar battery cell showing an embodiment of the present invention. 1 ... Semiconductor substrate, 2 ... Si 3 N 4 film, 3 ... n-type GaAs layer (second semiconductor layer), 5 ... n-type GaAs layer (third semiconductor layer), 4 ... p-type GaAs layer (first semiconductor layer), 6 ... p
-Type GaAs layer (fourth semiconductor layer), 7 ... p-type GaAs layer (first
Semiconductor layer), 8 ... P-type AlGaAs layer, 9 ... Antireflection film, 10 ... Insulating film, 11 ... Grid electrode, 12 ... Anode,
13 ... Cathode.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】半導体基板の第1の主面に全面形成され、
その1部が半導体基板を貫通して第2の主面に到達する
ような第1の導電型の第1の半導体層と、 半導体基板を第1の半導体層により分離して形成された
第2の導電型の第2の半導体層および第2の導電型の第
3の半導体層と、 第2の導電型の第3の半導体層内に位置し、第2の主面
側に形成された第1の導電型を有する半導体層であつ
て、第3の半導体層と形成するp−n接合が第1の主面
から入射される光発電に寄与する波長の光が第3の半導
体層に吸収されて該p−n接合まで達しない深さに形成
された第4の半導体層と、 第1及び第2の主面側の所定箇所に形成された外部接続
用の電極とを設けたことを特徴とする太陽電池セル。
1. An entire surface of a first main surface of a semiconductor substrate,
A first semiconductor layer of a first conductivity type, a part of which penetrates the semiconductor substrate to reach the second main surface, and a second semiconductor layer formed by separating the semiconductor substrate by the first semiconductor layer. Of the second conductivity type second semiconductor layer and the second conductivity type third semiconductor layer, and the third semiconductor layer of the second conductivity type located on the second main surface side. A semiconductor layer having a conductivity type of 1, in which a pn junction formed with a third semiconductor layer absorbs light having a wavelength that contributes to photovoltaic power generation incident from the first main surface into the third semiconductor layer. And a fourth semiconductor layer formed to a depth that does not reach the pn junction and an electrode for external connection formed at a predetermined location on the first and second main surface sides. Characteristic solar cell.
【請求項2】前記第2の主面側に形成された電極は、第
1の半導体層および第3の半導体層の両方に接触するよ
うに形成された第1の電極と、第2の半導体層上に形成
された第2の電極と、第2の主面に露出した第3の半導
体層および第4の半導体層より形成されるp−n接合部
を絶縁層を介して覆うような位置で且つ第4の半導体層
上に形成され、第2の電極と電気的に接続している第3
の電極とから成ることを特徴とする特許請求の範囲第1
項記載の太陽電池セル。
2. An electrode formed on the side of the second main surface, a first electrode formed so as to contact both the first semiconductor layer and the third semiconductor layer, and a second semiconductor. A position where the pn junction formed by the second electrode formed on the layer and the third semiconductor layer and the fourth semiconductor layer exposed on the second main surface is covered with the insulating layer. And a third electrode formed on the fourth semiconductor layer and electrically connected to the second electrode.
Claim 1 which is characterized by comprising an electrode of
The solar cell according to the item.
【請求項3】前記半導体基板はGaAsより成ることを特徴
とする特許請求の範囲第1項記載の太陽電池セル。
3. The solar cell according to claim 1, wherein the semiconductor substrate is made of GaAs.
【請求項4】前記第3の半導体層及び第4の半導体層よ
り形成されるp−n接合部は、半導体基板の端部より20
μm以上離れて形成されることを特徴とする特許請求の
範囲第1項記載の太陽電池セル。
4. The pn junction formed by the third semiconductor layer and the fourth semiconductor layer is located at an end of the semiconductor substrate 20.
The solar battery cell according to claim 1, wherein the solar battery cells are formed at a distance of at least μm.
【請求項5】前記第1の半導体層および第4の半導体層
はZnを不純物とするp型層であることを特徴とする特許
請求の範囲第1項,第2項,第3項又は第4項記載の太
陽電池セル。
5. The first semiconductor layer and the fourth semiconductor layer are p-type layers containing Zn as an impurity, and the first semiconductor layer and the fourth semiconductor layer are claim 1, claim 2, claim 3 or claim 4. The solar cell according to item 4.
【請求項6】前記第3の半導体層の一部及び、第3,第4
の半導体層により形成されるp−n接合の第2の主面露
出部は、少なくともSi3N4を含む絶縁層を介して、第3
の電極に覆われていることを特徴とする特許請求の範囲
第2項記載の太陽電池セル。
6. A part of the third semiconductor layer, and third and fourth semiconductor layers.
The second major surface exposed portion of the p-n junction formed by the semiconductor layer via an insulating layer containing at least Si 3 N 4, 3
The solar cell according to claim 2, wherein the solar cell is covered with the electrode.
JP62281613A 1987-07-08 1987-11-06 Solar cell Expired - Lifetime JPH0831614B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62281613A JPH0831614B2 (en) 1987-11-06 1987-11-06 Solar cell
US07/202,507 US4846896A (en) 1987-07-08 1988-06-07 Solar cell with integral reverse voltage protection diode
DE3819671A DE3819671A1 (en) 1987-07-08 1988-06-09 SOLAR CELL AND METHOD FOR THEIR PRODUCTION
GB8813737A GB2206732B (en) 1987-07-08 1988-06-10 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62281613A JPH0831614B2 (en) 1987-11-06 1987-11-06 Solar cell

Publications (2)

Publication Number Publication Date
JPH01123479A JPH01123479A (en) 1989-05-16
JPH0831614B2 true JPH0831614B2 (en) 1996-03-27

Family

ID=17641576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62281613A Expired - Lifetime JPH0831614B2 (en) 1987-07-08 1987-11-06 Solar cell

Country Status (1)

Country Link
JP (1) JPH0831614B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0324768A (en) * 1989-06-22 1991-02-01 Sharp Corp Solar battery with bypass diode
JP2573083B2 (en) * 1990-06-06 1997-01-16 シャープ株式会社 Solar cell with bypass diode

Also Published As

Publication number Publication date
JPH01123479A (en) 1989-05-16

Similar Documents

Publication Publication Date Title
US5223044A (en) Solar cell having a by-pass diode
JP2837296B2 (en) Solar cell
US4133698A (en) Tandem junction solar cell
US4933022A (en) Solar cell having interdigitated contacts and internal bypass diodes
JP3448743B2 (en) Solar cell with front mounted bypass diode
JP5302500B2 (en) Reliable interconnection in solar cells including integrated bypass diodes
JP5198854B2 (en) Solar cell with integrated protection diode
US4409423A (en) Hole matrix vertical junction solar cell
JP2001189483A (en) Solar battery cell with bypass function, multi-junction laminating type solar battery cell with bypass function, and their manufacturing method
JPH02135786A (en) Solar battery cell
KR20100024511A (en) Solar cell
US4846896A (en) Solar cell with integral reverse voltage protection diode
US5215599A (en) Advanced solar cell
EP1878054B1 (en) Solar cell array with isotype-heterojunction diode
JPH0732263B2 (en) Heterojunction photodiode array
US4935067A (en) Solar cell and fabrication method thereof
US4918507A (en) Semiconductor device
KR20190085786A (en) Compound semiconductor solar cell module
JPH0831614B2 (en) Solar cell
US5142331A (en) Photoelectric conversion semiconductor device
JP3206339B2 (en) Solar cell
JP2573083B2 (en) Solar cell with bypass diode
JPH0289376A (en) Solar battery cell
JP3368825B2 (en) Solar cell
CN114335224A (en) Solar cell with high photovoltaic conversion efficiency and manufacturing method thereof