JPH08313516A - Method for measuring molten steel constituent by emission spectral analysis method - Google Patents

Method for measuring molten steel constituent by emission spectral analysis method

Info

Publication number
JPH08313516A
JPH08313516A JP7145623A JP14562395A JPH08313516A JP H08313516 A JPH08313516 A JP H08313516A JP 7145623 A JP7145623 A JP 7145623A JP 14562395 A JP14562395 A JP 14562395A JP H08313516 A JPH08313516 A JP H08313516A
Authority
JP
Japan
Prior art keywords
light
wavelength
measured
wavelengths
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7145623A
Other languages
Japanese (ja)
Inventor
Takanori Yamamoto
孝則 山本
Tomohiro Ito
知洋 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7145623A priority Critical patent/JPH08313516A/en
Publication of JPH08313516A publication Critical patent/JPH08313516A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE: To provide a method for suppressing the scattering in measurement due to intensity change and disturbance, and for measuring molten steel constituent by an accurate emission spectral analysis method. CONSTITUTION: Outlet slits 14-16 are provided to effect the wavelength separation of light to be measured by a grating 13, and for passing light (Q) with the wavelength of a measuring element, and lights (P, R) with wavelengths close to both sides of the light Q. The quantity of lights (P, Q, and R) which have passed through the slits 14-16 is simultaneously measured by light reception elements 19-21 and the quantity of background light of the light (Q) with the wavelength of a measuring element is estimated by the lights (P and R) with close wavelengths. An operation is made by the quantity of light of the light (Q) with the wavelength of the measuring element and the estimated quantity of background light, thus accurately calculating the emission spectrum value of the measuring element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、転炉における吹錬中の
溶鋼成分等の測定を火点の自然発光を利用して高精度に
測定する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the composition of molten steel during blowing in a converter with high accuracy by utilizing the spontaneous emission of a fire point.

【0002】[0002]

【従来の技術】金属の精錬又は製鋼プロセスの管理にお
いては、迅速に成分を分析して成分含有率を把握し、そ
の結果によって迅速な対応措置を採ることが必要である
ため、種々の迅速な分析方法が提案されている。このよ
うな金属の分析方法としては、鋼の表面にレーザー光を
照射した時に放出される光を分析し、鋼中に含有する各
元素を定量分析する特開昭61−86636号公報記載
の鋼のレーザ発光分光分析方法や、溶融金属の表面に化
学炎を吹き付けて局部的に加熱された部分(火点)から
発生する発光スペクトルを分光することによって溶融金
属の成分分析を行う特開昭62−156545号公報記
載の溶融金属の分光分析方法が知られている。そして、
例えば特開昭62−156545号公報等において使用
されている分光装置50は、図4に示すように、光ファ
イバー51からの出力光を入口スリット52、グレーテ
ィング53、出口スリット54を通じて受光素子の一例
であるフォトマル(フォトマルチプライヤーをいう)5
5によってその光量(光強度)を測定していた。
2. Description of the Related Art In the management of metal refining or steelmaking processes, it is necessary to quickly analyze the components to grasp the content ratio of the components, and to take prompt countermeasures depending on the results, so various quick measures are required. Analytical methods have been proposed. As a method of analyzing such a metal, the steel described in JP-A-61-86636 is used, in which light emitted when the surface of steel is irradiated with laser light is analyzed to quantitatively analyze each element contained in the steel. Laser emission spectroscopic analysis method described in US Pat. No. 6,096,839, and a component analysis of molten metal is performed by spectrally analyzing an emission spectrum generated from a locally heated portion (fire point) by spraying a chemical flame on the surface of molten metal. The method for spectroscopic analysis of molten metal described in Japanese Patent Publication No. 156545 is known. And
For example, as shown in FIG. 4, a spectroscopic device 50 used in, for example, Japanese Patent Laid-Open No. 62-156545 is an example of a light receiving element that outputs light from an optical fiber 51 through an entrance slit 52, a grating 53, and an exit slit 54. A certain Photomul (referred to as Photomultiplier) 5
The amount of light (light intensity) was measured according to No. 5.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、特開昭
61−86636号公報記載の鋼のレーザ発光分光分析
方法は、資料をサンプリングして測定する必要があるの
で、精錬中の金属をリアルタイムにその成分分析を行う
ことは困難である。また、特開昭62−156545号
公報記載の溶融金属の分光分析方法においては、単に火
点の光を従来機構の分光装置で測定するものであるが、
図4に示すような従来の分光装置50を使用し、バック
グランド光量については、例えば、入口スリット52を
少し上下させて測定対象波長(λ)から少し離れた波長
(λ0 )の光を同一のフォトマル55によって時間を変
えて測定していたので、発光波長における真のバックグ
ランド光量にならず、測定にバラツキが生じ、測定精度
が悪いという問題がある。本発明はかかる事情に鑑みて
なされたもので、強度変化、外乱による測定のバラツキ
を抑制でき、精度の良い発光分析法による溶鋼成分の測
定方法を提供することを目的とする。
However, in the laser emission spectroscopic analysis method for steel described in Japanese Patent Laid-Open No. 61-86636, it is necessary to sample and measure data, so that the metal under refining is analyzed in real time. It is difficult to perform component analysis. Moreover, in the method for spectroscopic analysis of molten metal described in JP-A-62-156545, light at the fire point is simply measured by a spectroscopic device having a conventional mechanism.
A conventional spectroscopic device 50 as shown in FIG. 4 is used, and as for the background light amount, for example, the light having a wavelength (λ 0 ) slightly apart from the measurement target wavelength (λ) is made the same by moving the entrance slit 52 up and down a little. Since the measurement was performed by changing the time with the photomultiplier 55, there is a problem in that the true background light amount at the emission wavelength is not obtained, the measurement varies, and the measurement accuracy is poor. The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for measuring a molten steel component by an optical emission analysis method with high accuracy, which can suppress variation in measurement due to strength change and disturbance.

【0004】[0004]

【課題を解決するための手段】前記目的に沿う請求項1
記載の発光分析法による溶鋼成分の測定方法は、測定対
象光をグレーティングにより波長分離し、測定元素の波
長の光(Q)と、その両側の近接した波長の光(P、
R)とをそれぞれ通過する出口スリットを設け、該出口
スリットを通過した光(P、Q、R)を受光素子によっ
てその光量をそれぞれ同時に測定し、前記測定元素の波
長の光(Q)のバックグランド光量を前記近接した波長
の光(P、R)によって推定し、測定元素の波長の光
(Q)の光量と前記推定したバックグランド光量とによ
って演算して、測定元素の発光スペクトル値を精度良く
算出している。また、請求項2記載の発光分析法による
溶鋼成分の測定方法は、請求項1記載の方法において、
測定元素の波長の光(Q)の両側にある波長の光(P、
R)は、前記出口スリットを通過した後、ミラー反射さ
れてそれぞれの受光素子に入力している。そして、請求
項3記載の発光分析法による溶鋼成分の測定方法は、請
求項1又は2記載の方法において、測定元素の波長の光
(Q)の両側にある波長の光(P、R)の光量を、
1 、b2 とした場合、測定元素の波長の光(Q)のバ
ックグランド光量bを以下の式によって演算している。 b=αb1 +βb2 ・・・・・・・(1) 但し、α、βは、測定元素の光(Q)の波長と、その両
側にある光(P、R)の波長によって決まる比例定数で
ある。なお、前記グレーティングには測定する光の波長
によって反射角度が異なるものの他、入射する光の波長
によってその屈折角度が変化するもの(例えば、プリズ
ム)を含む。
A method according to the above-mentioned object.
The method for measuring molten steel components by the described emission analysis method is that wavelength of a measurement target light is separated by a grating, and light of a wavelength of a measurement element (Q) and light of adjacent wavelengths on both sides thereof (P,
R) and an exit slit respectively passing through the exit slit are provided, and the light quantity (P, Q, R) that has passed through the exit slit is simultaneously measured by a light receiving element, and the back light of the wavelength (Q) of the measurement element is measured. The ground light amount is estimated by the light of the adjacent wavelengths (P, R), the light amount of the light of the wavelength of the measurement element (Q) and the estimated background light amount are calculated, and the emission spectrum value of the measurement element is accurately calculated. Well calculated. Further, the method for measuring the molten steel component by the optical emission method according to claim 2 is the method according to claim 1,
Light of wavelengths (P,
After passing through the exit slit, R) is reflected by a mirror and is input to each light receiving element. And the measuring method of the molten steel component by the optical emission method according to claim 3 is the method according to claim 1 or 2, wherein the light (P, R) having wavelengths on both sides of the light (Q) having the wavelength of the element to be measured is used. The amount of light
When b 1 and b 2 are used, the background light amount b of the light (Q) having the wavelength of the measurement element is calculated by the following formula. b = αb 1 + βb 2 (1) where α and β are proportional constants determined by the wavelength of the light (Q) of the element to be measured and the wavelengths of light (P, R) on both sides thereof. Is. The grating includes not only those having a different reflection angle depending on the wavelength of light to be measured, but also those having a refraction angle that changes depending on the wavelength of incident light (for example, a prism).

【0005】[0005]

【作用】請求項1〜3記載の発光分析法による溶鋼成分
の測定方法は、測定対象光をグレーティングによって波
長分離し、測定元素の波長の光(Q)と、その両側の近
接した波長の光(P、R)とを受光素子によってその光
量をそれぞれ同時に測定している。即ち、同一時間に発
する光、バックグランド光量及び測定元素の発光波長で
の光量、即ちピーク光量を測定し、測定したピーク光量
とバックグランド光量とによって演算し、発光スペクト
ル値を算出しているので、測定光に強度変化があった場
合、あるいは外乱があった場合でも、影響されず真の発
光スペクトル値を測定できる。特に、請求項2記載の発
光分析法による溶鋼成分の測定方法においては、測定元
素の波長の光(Q)の両側にある波長の光(P、R)
は、前記出口スリットを通過した後、ミラー反射されて
それぞれの受光素子に入力しているので、ミラーの角度
を調整することによって、受光素子の位置を離すことが
可能となり、機器の配置、例えば、出口スリット位置の
近接配置等が容易となる。
According to the method for measuring molten steel components by the optical emission method according to any one of claims 1 to 3, the light to be measured is wavelength-separated by the grating, and the light (Q) having the wavelength of the element to be measured and the light having wavelengths close to each other on both sides thereof The light amounts of (P, R) are simultaneously measured by the light receiving element. That is, the light emitted at the same time, the background light quantity and the light quantity at the emission wavelength of the measurement element, that is, the peak light quantity is measured, and the peak light quantity and the background light quantity are measured, and the emission spectrum value is calculated. The true emission spectrum value can be measured without being affected even when the intensity of the measurement light changes or when there is a disturbance. In particular, in the method for measuring a molten steel component by an emission analysis method according to claim 2, light (P, R) having wavelengths on both sides of light (Q) having a wavelength of the element to be measured is used.
After passing through the exit slit, is reflected by the mirror and is input to each light receiving element, so that by adjusting the angle of the mirror, it becomes possible to separate the positions of the light receiving elements. It is easy to arrange the exit slits close to each other.

【0006】また、請求項3記載の発光分析法による溶
鋼成分の測定方法においては、例えば、図3に示すよう
に、発光スペクトルの波長がλの光(Q)の量を測定す
る場合、その両側にある波長λ1 、λ2 の光(P、R)
の光量b1 、b2 を測定し、前記(1)式によって光量
bを算出する。ここで、係数α、βの決定においては例
えば、入口スリットを上下させて、測定しようとする発
光スペクトルに影響のない位置まで測定波長を全体的に
ずらし、その位置でのそれぞれの光(P´、R´)の光
量b1 ´、b2 ´の値を測定すると共に、中央の光(Q
´)の光量b´を測定、これらの関係から係数α、βを
求めることができる。なお、前記測定を2位置について
求めることによって、係数α、βをより精度良く求める
ことができる。
Further, in the method for measuring the molten steel component by the emission analysis method according to claim 3, for example, as shown in FIG. 3, when measuring the amount of light (Q) having an emission spectrum wavelength of λ, Light with wavelengths λ 1 and λ 2 on both sides (P, R)
The light amounts b 1 and b 2 are measured, and the light amount b is calculated by the equation (1). Here, in determining the coefficients α and β, for example, the entrance slit is moved up and down to shift the measurement wavelength as a whole to a position that does not affect the emission spectrum to be measured, and each light (P ′ , R ′) of the light quantities b 1 ′ and b 2 ′ of the central light (Q
It is possible to measure the light amount b ′ of ′) and obtain the coefficients α and β from these relationships. It should be noted that the coefficients α and β can be more accurately obtained by obtaining the above-mentioned measurement for two positions.

【0007】また、別の手法としては実際に測定した光
(P〜R)の波長を求めておき、以下の式に基づいて比
例配分することも可能である。 α=(λ2 −λ)/(λ2 −λ1 ) ・・・・(2) β=(λ−λ1 )/(λ2 −λ1 ) ・・・・(3) そして、測定したピーク光量をaとした場合、(a−
b)の値を測定値とすることによって、発光スペクトル
値をリアルタイムに測定できる。
As another method, it is also possible to obtain the wavelengths of the actually measured light (P to R) and to perform proportional distribution based on the following equation. α = (λ 2 −λ) / (λ 2 −λ 1 ) ··· (2) β = (λ−λ 1 ) / (λ 2 −λ 1 ) ··· (3) And the measurement was performed. When the peak light amount is a, (a-
By using the value of b) as the measurement value, the emission spectrum value can be measured in real time.

【0008】[0008]

【実施例】続いて、添付した図面を参照しつつ、本発明
を具体化した実施例につき説明し、本発明の理解に供す
る。ここに、図1は本発明の一実施例に係る発光分析法
による溶鋼成分の測定方法を具体化した分光装置の説明
図、図2は実際に測定したデータの説明図、図3は測定
方法の説明図である。
Embodiments of the present invention will now be described with reference to the accompanying drawings to provide an understanding of the present invention. Here, FIG. 1 is an explanatory view of a spectroscopic device that embodies a method for measuring molten steel components by an emission analysis method according to an embodiment of the present invention, FIG. 2 is an explanatory view of actually measured data, and FIG. 3 is a measurement method. FIG.

【0009】まず、本発明の一実施例に係る発光分析法
による溶鋼成分の測定方法を具体化した分光装置10に
ついて説明する。前記分光装置10は、精錬炉の一例で
ある図示しない転炉内で吹錬中の溶鋼が発する火点から
の光を光ファイバー11によって取り込み、入口スリッ
ト12を介してグレーティング13に照射し、光の波長
によって反射角度を変えて、3個の出口スリット14〜
16と、両側の出口スリット14、16を通過した光を
更に外側に曲げるミラー17、18を介して、受光素子
の一例であるフォトマル19〜21によって受光してい
る。
First, a spectroscopic device 10 embodying a method for measuring molten steel components by an emission analysis method according to an embodiment of the present invention will be described. The spectroscopic device 10 takes in light from a fire point generated by molten steel being blown in a converter (not shown), which is an example of a refining furnace, by an optical fiber 11 and irradiates the grating 13 through an entrance slit 12 to emit light. By changing the reflection angle depending on the wavelength, three exit slits 14-
16 and light passing through the exit slits 14 and 16 on both sides are received by photo-marus 19 to 21, which are examples of light receiving elements, via mirrors 17 and 18 that bend further outward.

【0010】前記ミラー17、18は隣り合う出口スリ
ット14〜16の距離が極めて小さく、そのまま受光す
ると発光波長での光量、即ちピーク光量を測定する中央
のフォトマル20に上下のスリット光が入り込むので、
これを防止し、更にフォトマル19〜21の間隔を拡げ
るために配置するものである。そして、分光装置10に
おいては、フォトマル20によって測定元素のピーク光
量が、フォトマル19、21によってその両側のバック
グランド光量が測定できるようになっている。なお、入
口スリット12の隙間は0.5nm、出口スリット14
〜16の隙間は1.6nm程度であった。
In the mirrors 17 and 18, the distances between the adjacent exit slits 14 to 16 are extremely small, and if they are received as they are, the upper and lower slit lights enter the central photomultiplier 20 for measuring the light amount at the emission wavelength, that is, the peak light amount. ,
This is arranged in order to prevent this and further widen the interval between the photomultipliers 19 to 21. Then, in the spectroscopic device 10, the photomultiplier 20 can measure the peak light amount of the measurement element, and the photomultipliers 19 and 21 can measure the background light amount on both sides thereof. The gap between the entrance slit 12 and the exit slit 14 is 0.5 nm.
The gap of ˜16 was about 1.6 nm.

【0011】分光装置10に接続される制御装置22
は、内部にコンピュータを備え、前記フォトマル19〜
21からの電気信号を受けて、前記した式(1)〜
(3)によって、発光波長でのバックグランド光量を演
算し、真の発光スペクトル値を演算し予め測定されたデ
ータと対応させて、この実施例ではCr濃度を算出して
外部に表示するようになっている。
A control device 22 connected to the spectroscopic device 10.
Is equipped with a computer inside, and is connected to the Photo Mar 19-
21 receives the electrical signal from the above equation (1)-
According to (3), the background light amount at the emission wavelength is calculated, the true emission spectrum value is calculated, and it is made to correspond to the previously measured data. In this embodiment, the Cr concentration is calculated and displayed externally. Has become.

【0012】この様子を更に詳しく、図2を用いて説明
すると、外乱光が比較的少ないスペクトル分布曲線cに
おいては、波長(λ1 )の光の光量をb1 、波長
(λ2 )の光の光量をb2 とする。前記(1)式と、前
述した手法によって予め係数α、βを求めておき、これ
によってbを求め、フォトマル20による測定値aとの
差が、真の発光スペクトル値(a−b)となる。一方、
測定中に外乱光があった場合の別の時間のスぺクトル分
布曲線dにおいても、波長(λ1 )の光の光量をb
1´、波長(λ2 )の光の光量をb2 ´とし、前記
(1)式によって求めた値をb´とし、この時の波長
(λ)のフォトマル20による測定値をa´とすると、
真の発光スペクトル値は(a´−b´)となり、略一定
の測定値を記録することができる。
This situation will be described in more detail with reference to FIG. 2. In the spectrum distribution curve c in which the disturbance light is relatively small, the light quantity of the wavelength (λ 1 ) is b 1 , and the light of the wavelength (λ 2 ) is Let b 2 be the amount of light. The coefficients α and β are obtained in advance by the equation (1) and the method described above, and b is obtained by this, and the difference between the measured value a by the Photomul 20 is the true emission spectrum value (ab). Become. on the other hand,
Also in the case of the spectrum distribution curve d at another time when there is ambient light during the measurement, the amount of light of the wavelength (λ 1 ) is b
1 ', the light amount of light of wavelength (λ 2 ) is b 2 ′, the value obtained by the equation (1) is b ′, and the measured value of the wavelength (λ) by the photomultiplier 20 is a ′. Then,
The true emission spectrum value is (a'-b '), and a substantially constant measured value can be recorded.

【0013】なお、波長λ1 、λ2 の部分に他の元素の
発光スペクトルがある場合には、正常なバックグランド
光量を測定しないことになるので、この場合は、従来例
と同様に入口スリット12を少し上下に移動させて、測
定波長を少しシフトさせ、この場合であっても算出され
たバックグランド光量が変化しないことを確認しておく
のが好ましい。前記実施例においては、受光素子として
フォトマルを使用したが、他の光の強度を測定できる受
光素子を使用することも可能である。なお、従来装置で
の測定精度は測定誤差Cv値が20%程度であったが、
前記実施例に係る方法を用いて測定した結果、Cv値が
10%以下まで向上した。
When the emission spectra of other elements are present at the wavelengths λ 1 and λ 2 , the normal background light quantity will not be measured. In this case, therefore, the entrance slit is the same as in the conventional example. It is preferable to move 12 up and down a little to shift the measurement wavelength a little, and to confirm that the calculated background light amount does not change even in this case. In the above-mentioned embodiment, the photomultiplier is used as the light receiving element, but it is also possible to use other light receiving elements capable of measuring the intensity of light. Although the measurement error Cv value of the conventional device was about 20%,
As a result of measurement using the method according to the example, the Cv value was improved to 10% or less.

【0014】[0014]

【発明の効果】請求項1〜3記載の発光分析法による溶
鋼成分の測定方法においては、測定する光に強度変化、
外乱があっても正確に測定できる。従って、特に転炉等
の精錬炉を操業中に発生する溶鋼の火点から発する光を
基に簡便に元素分析ができることになった。
According to the method for measuring molten steel components by the optical emission method according to claims 1 to 3, a change in intensity of the light to be measured,
Even if there is a disturbance, it can be measured accurately. Therefore, in particular, elemental analysis can be easily performed based on the light emitted from the hot spot of molten steel generated during the operation of a refining furnace such as a converter.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る発光分析法による溶鋼
成分の測定方法を具体化した分光装置の説明図である。
FIG. 1 is an explanatory diagram of a spectroscopic device embodying a method for measuring a molten steel component by an emission analysis method according to an embodiment of the present invention.

【図2】実際に測定したデータの説明図である。FIG. 2 is an explanatory diagram of actually measured data.

【図3】測定方法の作用説明図である。FIG. 3 is an explanatory view of the operation of the measuring method.

【図4】従来例に係る発光分析法による溶鋼成分の測定
方法の説明図である。
FIG. 4 is an explanatory diagram of a method for measuring a molten steel component by an emission analysis method according to a conventional example.

【符号の説明】[Explanation of symbols]

10 分光装置 11 光ファイバー 12 入口スリット 13 グレーティング 14 出口スリット 15 出口スリット 16 出口スリット 17 ミラー 18 ミラー 19 フォトマル 20 フォトマル 21 フォトマル 22 制御装置 10 Spectrometer 11 Optical fiber 12 Entrance slit 13 Grating 14 Exit slit 15 Exit slit 16 Exit slit 17 Mirror 18 Mirror 19 Photomal 20 Photomal 21 Photomal 22 Control device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 測定対象光をグレーティングにより波長
分離し、測定元素の波長の光(Q)と、その両側の近接
した波長の光(P、R)とをそれぞれ通過する出口スリ
ットを設け、該出口スリットを通過した光(P、Q、
R)を受光素子によってその光量をそれぞれ同時に測定
し、前記測定元素の波長の光(Q)のバックグランド光
量を前記近接した波長の光(P、R)によって推定し、
測定元素の波長の光(Q)の光量と前記推定したバック
グランド光量とによって演算し、測定元素の発光スペク
トル値を精度良く算出することを特徴とする発光分析法
による溶鋼成分の測定方法。
1. A measurement target light is wavelength-separated by a grating, and an exit slit is provided to pass light (Q) having a wavelength of a measurement element and light (P, R) having adjacent wavelengths on both sides thereof, respectively. Light that has passed through the exit slit (P, Q,
R) is simultaneously measured by a light-receiving element, and the background light amount of the light of the wavelength of the measurement element (Q) is estimated by the light of the adjacent wavelengths (P, R),
A method for measuring a molten steel component by an emission analysis method, which comprises calculating with an amount of light (Q) having a wavelength of a measurement element and the estimated background light amount to accurately calculate an emission spectrum value of the measurement element.
【請求項2】 測定元素の波長の光(Q)の両側にある
波長の光(P、R)は、前記出口スリットを通過した
後、ミラー反射されてそれぞれの受光素子に入力される
請求項1記載の発光分析法による溶鋼成分の測定方法。
2. The light (P, R) having wavelengths on both sides of the light (Q) having the wavelength of the element to be measured passes through the exit slit, is reflected by a mirror, and is input to each light receiving element. 1. A method for measuring a molten steel component by the optical emission method according to 1.
【請求項3】 測定元素の波長の光(Q)の両側にある
波長の光(P、R)の光量を、b1 、b2 とした場合、
測定元素の波長の光(Q)のバックグランド光量bを以
下の式によって演算する請求項1又は2記載の発光分析
法による溶鋼成分の測定方法。 b=αb1 +βb2 (但し、α、βは、測定元素の光
(Q)の波長と、その両側にある光(P、R)の波長に
よって決まる比例定数)
3. When the amounts of light (P, R) having wavelengths on both sides of the light (Q) having the wavelength of the element to be measured are b 1 and b 2 ,
The method for measuring a molten steel component by an emission analysis method according to claim 1 or 2, wherein the background light amount b of the light (Q) having the wavelength of the measurement element is calculated by the following formula. b = αb 1 + βb 2 (where α and β are proportional constants determined by the wavelengths of the light (Q) of the element to be measured and the wavelengths of light (P, R) on both sides thereof)
JP7145623A 1995-05-20 1995-05-20 Method for measuring molten steel constituent by emission spectral analysis method Withdrawn JPH08313516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7145623A JPH08313516A (en) 1995-05-20 1995-05-20 Method for measuring molten steel constituent by emission spectral analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7145623A JPH08313516A (en) 1995-05-20 1995-05-20 Method for measuring molten steel constituent by emission spectral analysis method

Publications (1)

Publication Number Publication Date
JPH08313516A true JPH08313516A (en) 1996-11-29

Family

ID=15389300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7145623A Withdrawn JPH08313516A (en) 1995-05-20 1995-05-20 Method for measuring molten steel constituent by emission spectral analysis method

Country Status (1)

Country Link
JP (1) JPH08313516A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010519554A (en) * 2007-02-23 2010-06-03 サーモ ニトン アナライザーズ リミテッド ライアビリティ カンパニー Handheld built-in emission spectroscopy (OES) analyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010519554A (en) * 2007-02-23 2010-06-03 サーモ ニトン アナライザーズ リミテッド ライアビリティ カンパニー Handheld built-in emission spectroscopy (OES) analyzer

Similar Documents

Publication Publication Date Title
US4081215A (en) Stable two-channel, single-filter spectrometer
US6188476B1 (en) Determination of light absorption pathlength in a vertical-beam photometer
US11243162B2 (en) Method for spectroscopically or spectrometrically examining a sample, and interferometric device
US7248357B2 (en) Method and apparatus for optically measuring the heating value of a multi-component fuel gas using nir absorption spectroscopy
EP0091126B1 (en) Fluorimeter
EP1960749B1 (en) Apparatus and method for illuminator-independent color measurements
RU2396546C2 (en) Spectrophotometre
KR20110127122A (en) Sample analyzing apparatus
JPH0915156A (en) Spectroscopic measuring method and measuring device
JP2001141563A (en) Spectrometry, its device, temperature measuring device, and film pressure measurement device
JP2011232106A (en) Icp optical emission spectrometer
EP3748339B1 (en) Device for gas analysis using raman spectroscopy
EP0771417B1 (en) Determination of light absorption pathlength in a vertical-beam photometer
US6353476B1 (en) Apparatus and method for substantially simultaneous measurement of emissions
JP3754581B2 (en) Analysis method for multi-component organic solutions
JPS6189543A (en) Method and device for measuring dual beam spectral transmittance
JPH08313516A (en) Method for measuring molten steel constituent by emission spectral analysis method
JP2007218860A (en) Strain measuring device and strain measuring method
JPH0572039A (en) Correcting method for spectrum of fluorescence spectrophotometer and fluorescence spectrophotometer with spectrum correcting function
JP4506524B2 (en) Optical emission spectrometer
US8873040B2 (en) Raman apparatus and method for real time calibration thereof
JPH09145619A (en) Method and instrument for spectroscopic measurement of scattered light and so on
JPH0534275A (en) Fluid component measuring apparatus
JPS61226620A (en) Spectrophotometer
JP2005274143A (en) Method for analyzing multicomponent aqueous solution

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020806