JPH08313480A - Electrode of constant potential electrolytic gas sensor - Google Patents

Electrode of constant potential electrolytic gas sensor

Info

Publication number
JPH08313480A
JPH08313480A JP7123489A JP12348995A JPH08313480A JP H08313480 A JPH08313480 A JP H08313480A JP 7123489 A JP7123489 A JP 7123489A JP 12348995 A JP12348995 A JP 12348995A JP H08313480 A JPH08313480 A JP H08313480A
Authority
JP
Japan
Prior art keywords
electrode
gold
gas
gas sensor
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7123489A
Other languages
Japanese (ja)
Inventor
Takaki Nakamura
隆紀 中村
Kazuo Konno
和夫 紺野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gastec Corp
Original Assignee
Gastec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gastec Corp filed Critical Gastec Corp
Priority to JP7123489A priority Critical patent/JPH08313480A/en
Publication of JPH08313480A publication Critical patent/JPH08313480A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Alarm Devices (AREA)

Abstract

PURPOSE: To output a warning at a tolerant concn. or less by supporting a catalyst composed of ultrafine particles of gold on a carrier composed of conductive material quality. CONSTITUTION: Pores 2 are provided on a stainless steel plate material 1 by etching processing and a compsn. 3 prepared by adding 2wt.% of carbon to a mixture of ultrafine particles of gold and a fluoroplastic suspension is pressed to the plate material 1 to fill the pores 2 and the whole is baked to form an electrode. A platinum black electrode is also formed in the same way by using a mixture of a platinum black powder and a fluoroplastic suspension. A gold vapor deposition electrode is formed by depositing gold 5 on a gas passing film 4. The electrode using ultrafine particles of gold as an electrode catalyst is used as the electrode of a gas sensor. When semiconductor producing gas is detected by using this gas sensor, the surface area of the electrode itself is large as compared with a conventional electrode and a three-phase field reacting with gas becomes large. Therefore, an output power value is high and a good result is obtained and, since the interference of hydrogen is low, a warning can be emitted at a tolerant concn. or less in work environment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、定電位電解式ガスセン
サの電極に関するものであり、特に、半導体製造に使用
するガスの検知に用いる定電位電解式ガスセンサの電極
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode of a potentiostatic electrolytic gas sensor, and more particularly to an electrode of an potentiostatic electrolytic gas sensor used for detecting a gas used in semiconductor manufacturing.

【0002】[0002]

【従来の技術】生活環境の周辺や生産工場等において
は、種々の有害ガスが使用されたり発生したりしてい
る。そして、これらのガス濃度を正確に検知するため
に、従来から定電位電解法による定電位電解式ガスセン
サが使用されている。
2. Description of the Related Art Various harmful gases are used or generated in the vicinity of the living environment or production plants. In order to accurately detect these gas concentrations, a potentiostatic electrolysis gas sensor based on the potentiostatic electrolysis method has been conventionally used.

【0003】これらの有害ガスの中でも、半導体製造に
使用される特殊材料ガスは、毒性が非常に高い。また、
可燃性や腐食性を併せ持つことが多く、取り扱いには十
分な注意が必要である。従って、この半導体製造に使用
される特殊材料ガスが漏洩した場合は、すばやく検知
し、警報を出し、安全対策を行うことが重要である。そ
こで、従来から半導体製造に使用されるガスの検知に
は、検出感度の高い定電位電解式ガスセンサが、一般的
に使用されている。そして、そのガスセンサの電極とし
ては、金を電極触媒としたもの、即ち、図2に示すよう
に、ガス透過膜4に金を蒸着した電極5が使用されてい
る。
Among these harmful gases, the special material gas used for semiconductor manufacturing has a very high toxicity. Also,
Since it is often flammable and corrosive, it must be handled with sufficient care. Therefore, when the special material gas used for semiconductor manufacturing leaks, it is important to detect it quickly, issue an alarm, and take safety measures. Therefore, a potentiostatic electrolysis gas sensor having a high detection sensitivity has been generally used to detect a gas used in semiconductor manufacturing. As an electrode of the gas sensor, an electrode using gold as an electrode catalyst, that is, an electrode 5 in which gold is deposited on a gas permeable film 4 as shown in FIG. 2 is used.

【0004】[0004]

【発明が解決しようとする課題】半導体製造用ガスを検
知して警報を出す場合に、その警報設定値は、作業環境
の空気中の有害物質による健康障害を予防するための許
容濃度およびセンサの検出範囲の関係から決定されてき
たが、年々許容濃度が下がり、センサの高感度化が望ま
れている。一方、警報器には誤警報を出さないことも重
要であり、干渉ガスとして存在する水素の干渉が小さ
く、かつアルコールに対して感度がないことも望まれて
いる。
When a semiconductor manufacturing gas is detected and an alarm is issued, the alarm set value is an allowable concentration for preventing health hazard due to harmful substances in the air of the working environment and a sensor. Although it has been determined from the relationship of the detection range, the permissible concentration is decreasing year by year, and there is a demand for higher sensitivity of the sensor. On the other hand, it is important not to give a false alarm to the alarm device, and it is desired that the interference of hydrogen existing as an interference gas is small and that it is not sensitive to alcohol.

【0005】上記の定電位電解式ガスセンサは、一酸化
炭素、硫化水素の検知用として普及しているが、その際
使用されている電極触媒は白金黒が一般的である。即
ち、ステンレス製の板体に微細孔を設け、その微細孔に
電極触媒である白金黒の粉体とフッ素樹脂懸濁液を混合
したものを充填し、これを焼成した電極を使用する。ま
た、半導体製造用ガスの検知には、金を電極触媒とした
もの、即ち、ガス透過膜に金を蒸着した電極が使用され
ている。
The above-mentioned potentiostatic electrolysis gas sensor is widely used for detecting carbon monoxide and hydrogen sulfide, and the electrode catalyst used at that time is generally platinum black. That is, a plate made of stainless steel is provided with micropores, the micropores are filled with a mixture of platinum black powder as an electrode catalyst and a fluororesin suspension, and the electrode is fired. Further, a gas using gold as an electrode catalyst, that is, an electrode in which gold is vapor-deposited on a gas permeable film is used for detection of semiconductor manufacturing gas.

【0006】しかしながら、上記の白金黒電極や金蒸着
電極を用いた定電位電解式ガスセンサを使用して、半導
体製造用ガスを検知し、その出力電流値を測定すると、
白金黒電極の場合は、アルシン、ホスフィン等の半導体
製造用ガスの出力電流値は高く良好な結果が得られる
が、水素の出力電流値も高く、干渉ガスの影響を受け
て、誤警報が出ると共に、アルコールに対しても感度が
あるため使用できない。そして、金蒸着電極を用いて検
知すると、水素の干渉は少ないが、半導体製造用ガスの
出力電流値も低いため、許容濃度以下で警報を出すこと
が難しい。
However, when the potentiostatic electrolysis gas sensor using the platinum black electrode or the gold vapor deposition electrode is used to detect the semiconductor manufacturing gas and the output current value is measured,
In the case of the platinum black electrode, the output current value of the semiconductor manufacturing gas such as arsine and phosphine is high and good results are obtained, but the output current value of hydrogen is also high and the false alarm is given due to the influence of the interference gas. At the same time, it cannot be used because it is sensitive to alcohol. When the gold vapor deposition electrode is used for detection, the interference of hydrogen is small, but the output current value of the semiconductor manufacturing gas is also low, so it is difficult to give an alarm when the concentration is lower than the allowable concentration.

【0007】本発明は、定電位電解式ガスセンサを使用
して、半導体製造用ガスを検知する際の、使用する電極
に関する上記の問題に鑑みてなされたものであり、その
目的は、半導体製造用ガスを検知する電極であって、ア
ルシン、ホスフィン等を検知した出力電流値が高く、干
渉ガスとして存在する水素の干渉が小さく、かつアルコ
ールに対して感度が非常に低く、許容濃度以下で警報を
出すことができる定電位電解式ガスセンサの電極を提供
することである。
The present invention has been made in view of the above problems regarding electrodes to be used when a gas for semiconductor production is detected by using a potentiostatic electrolysis gas sensor. It is an electrode that detects gas, the output current value that detected arsine, phosphine, etc. is high, the interference of hydrogen existing as an interfering gas is small, and the sensitivity to alcohol is very low. It is to provide an electrode of a potentiostatic electrolytic gas sensor which can be discharged.

【0008】[0008]

【課題を解決するための手段及び作用】本発明者等は、
上記の課題を解決するために鋭意研究をした結果、定電
位電解式ガスセンサでは、電極間電位を変化させて干渉
ガスの成分を選択することができると共に、電極に使用
する触媒の種類を変えても同じ効果が得られることに着
目した。
Means and Actions for Solving the Problems The present inventors have
As a result of intensive research to solve the above problems, in the potentiostatic electrolysis gas sensor, it is possible to change the interelectrode potential to select the components of the interference gas, and change the type of catalyst used for the electrodes. We focused on that the same effect can be obtained.

【0009】本発明は、上記の着想に基づくものであ
り、その課題を解決する具体的な手段として、半導体製
造に使用するガスの検知に用いる定電位電解式ガスセン
サの電極であって、導電性の材質からなる担体に金の超
微粒子からなる触媒を担持させたことを特徴とする定電
位電解式ガスセンサの電極としたものである。
The present invention is based on the above idea, and as a concrete means for solving the problem, it is an electrode of a potentiostatic electrolysis gas sensor used for detecting a gas used in semiconductor manufacturing, An electrode for a potentiostatic electrolysis gas sensor, characterized in that a catalyst made of ultrafine gold particles is carried on a carrier made of the above material.

【0010】そして本発明は、本出願人が先に提案した
特願平5-17330号「定電位電解式ガスセンサ」の電極と
して用いることが好ましいものであり、具体的には、電
解液を充填した反応室内に少なくとも作用極、対極、参
照極並びにガス透過膜を備え、そのガス透過膜と作用極
を分離した構造からなる定電位電解式ガスセンサの電極
であって、導電性の材質からなる担体に金の超微粒子か
らなる触媒を担持させたことを特徴とする定電位電解式
ガスセンサの電極とするものである。
The present invention is preferably used as an electrode of Japanese Patent Application No. 5-17330 “Potential Potential Electrolysis Gas Sensor” previously proposed by the present applicant, and specifically, it is filled with an electrolytic solution. An electrode of a potentiostatic electrolysis gas sensor having at least a working electrode, a counter electrode, a reference electrode, and a gas permeable film in the reaction chamber, and having a structure in which the gas permeable film and the working electrode are separated, and a carrier made of a conductive material. An electrode of a potentiostatic electrolysis gas sensor characterized in that a catalyst composed of ultrafine gold particles is supported on the electrode.

【0011】本発明において、検知対象となる半導体製
造用ガスとしては、使用頻度の高いアルシン(As
3)、ホスフィン(PH3)、モノシラン(Si
4)、ジボラン(B26)および干渉ガスの水素、ア
ルコールであるが、ゲルマン(GeH4)、セレン化水
素(H2Se)、ジシラン(Si26)、ジクロルシラ
ン(SiH2Cl2)も挙げられる。なお、これらのガス
を検知して警報を出す場合に、その警報設定値として多
く用いられる許容濃度は、アルシンで0.05ppm、
ホスフィンで0.3ppm、ジボランで0.1ppmであ
り、一酸化炭素の許容濃度である50ppmや硫化水素
の10ppmに比べ非常に低い値である。
In the present invention, the gas for semiconductor production to be detected is arsine (As) which is frequently used.
H 3 ), phosphine (PH 3 ), monosilane (Si
H 4 ), diborane (B 2 H 6 ), hydrogen as interference gas and alcohol, but germane (GeH 4 ), hydrogen selenide (H 2 Se), disilane (Si 2 H 6 ), dichlorosilane (SiH 2 Cl) 2 ) can also be mentioned. Note that when detecting these gases and issuing an alarm, the permissible concentration often used as the alarm set value is 0.05 ppm for arsine,
Phosphine is 0.3 ppm and diborane is 0.1 ppm, which are very low values compared to the allowable concentration of carbon monoxide of 50 ppm and hydrogen sulfide of 10 ppm.

【0012】本発明に係る定電位電解式ガスセンサの電
極としては、上記の作用極、対極、参照極の全てが対象
となるが、必要に応じて作用極のみに使用する。そし
て、電極の作成方法は、例えばステンレス(SUS31
6)のような導電性の板体にエッチング加工により微細
孔を設け、この微細孔に電極触媒である金の超微粒子
(真空冶金(株)製、粒子径約1000オングストローム)と
フッ素樹脂懸濁液との混合物をプレスして固定し、これ
を焼成する方法により作成する。また、導電性の材質
で、かつ電解液である硫酸に対して耐食性のあるカーボ
ン、白金、金、チタンから選択される1種以上の材質か
らなる網体に、金の超微粒子とフッ素樹脂懸濁液との混
合物を固定し、これを焼成する方法でも作成することが
できる。
As the electrodes of the potentiostatic electrolysis gas sensor according to the present invention, all of the working electrode, the counter electrode and the reference electrode described above are applicable, but only the working electrode is used if necessary. Then, the method of forming the electrode is, for example, stainless steel (SUS31
6) Fine holes are formed in the conductive plate by etching, and ultrafine particles of gold (Vacuum Metallurgical Co., Ltd., particle diameter of about 1000 angstroms) and a fluororesin suspension are provided in these fine holes. The mixture with the liquid is pressed and fixed, and the mixture is baked. In addition, a net made of at least one material selected from carbon, platinum, gold, and titanium, which is a conductive material and has corrosion resistance to sulfuric acid as an electrolytic solution, is attached to ultrafine particles of gold and fluororesin suspension. It can also be prepared by a method of fixing a mixture with a suspension and baking it.

【0013】さらに、本発明に係る定電位電解式ガスセ
ンサの構造は、先に本出願人が提案した特願平5-17330
号に示したように、「電解液を充填した反応室内に作用
極と対極並びに参照極を備え、その作用極に被検ガスを
作用させるようにしてなる定電位電解式ガスセンサにお
いて、ガス透過膜と作用極を分離した構造とし、透水性
の多孔質材を介してその一面にガス透過膜と作用極を、
他面に対極と参照極を配した構造からなる定電位電解式
ガスセンサ」とするものである。
Further, the structure of the potentiostatic electrolysis gas sensor according to the present invention is the same as the Japanese Patent Application No. 5-17330 previously proposed by the present applicant.
As described in No. 3, "a potentiostatic electrolysis gas sensor having a working electrode, a counter electrode, and a reference electrode in a reaction chamber filled with an electrolytic solution, and a test gas acting on the working electrode, has a gas permeable membrane. With a structure in which the working electrode and the working electrode are separated, a gas permeable film and a working electrode are formed on one surface of the water-permeable porous material.
A potentiostatic electrolysis gas sensor having a structure in which a counter electrode and a reference electrode are arranged on the other surface ".

【0014】本発明に係る金の超微粒子を電極触媒とし
た電極は、上記のような構造からなるガスセンサの電極
として用いるものであるが、この電極を使用して半導体
製造用ガスを検知すると、その出力電流値が比較的高く
良好な結果が得られ、水素の干渉も小さいことから、作
業環境における許容濃度以下で警報を出すことができ
る。その理由は、金の超微粒子を使用したことにより、
従来の金蒸着電極に比較して電極自身の表面積が大きく
なり、ガスと反応する三相界面が大きくなったためであ
る。
The electrode using ultrafine gold particles as an electrode catalyst according to the present invention is used as an electrode of a gas sensor having the above structure. When this electrode is used to detect a semiconductor manufacturing gas, Since the output current value is relatively high and good results are obtained, and the interference of hydrogen is small, an alarm can be issued when the concentration is lower than the allowable concentration in the working environment. The reason is that by using ultrafine gold particles,
This is because the surface area of the electrode itself is larger than that of the conventional gold vapor deposition electrode and the three-phase interface that reacts with the gas is larger.

【0015】さらに、本発明に用いる金の超微粒子は、
物理的手段により超微粒子を製造するため、微粒子の表
面は清浄で、その表面に不純物が吸着しておらず、触媒
として十分な機能を果たすものである。また、金は非常
に高価であるため、金の超微粒子とフッ素樹脂懸濁液と
の混合物にカーボンを入れ、金の使用量を少なくするこ
とも可能であり、カーボンは5wt%まで添加が可能で
ある。
Further, the ultrafine gold particles used in the present invention are
Since the ultrafine particles are produced by physical means, the surface of the fine particles is clean and impurities are not adsorbed on the surface, and thus the particles fulfill a sufficient function as a catalyst. Also, since gold is very expensive, it is possible to reduce the amount of gold used by adding carbon to the mixture of ultrafine gold particles and a fluororesin suspension. Carbon can be added up to 5 wt%. Is.

【0016】[0016]

【実施例】
本発明に係る金の超微粒子を電極触媒とし
た電極の外に、比較のために白金黒電極と金蒸着電極を
作成し、これらを定電位電解式ガスセンサの電極として
使用して、半導体製造用ガスを検知し、その出力電流値
を測定した。電極の作成は、図1(1)及び(2)で示
すSUS316のステンレスの板体1にエッチング加工
により微細孔2を設け、図1(3)に示すように、この
微細孔に金の超微粒子(真空冶金(株)製、粒子径約1000
オングストローム)とフッ素樹脂懸濁液との混合物にカ
ーボンを2wt%添加したもの3をプレスして充填し、
これを焼成する方法により作成した。同様にして、白金
黒電極も微細孔2に電極触媒である白金黒の粉体とフッ
素樹脂懸濁液を混合したものを充填し、これを焼成して
作成する。また、金蒸着電極は、図2に示すようにガス
の透過膜4に金5を蒸着して電極を作成した。
【Example】
In addition to the electrode using gold ultrafine particles as an electrode catalyst according to the present invention, a platinum black electrode and a gold vapor deposition electrode were prepared for comparison, and these were used as electrodes of a potentiostatic electrolysis gas sensor for semiconductor manufacturing. The gas was detected and the output current value was measured. The electrodes are formed by forming fine holes 2 in the stainless steel plate body 1 of SUS316 shown in FIGS. 1 (1) and 1 (2) by etching, and as shown in FIG. Fine particles (Vacuum Metallurgy Co., Ltd., particle size approx. 1000
Angstrom) and a fluororesin suspension, 2% by weight of carbon was added to the mixture, and the mixture was pressed and filled.
This was prepared by a method of firing. Similarly, a platinum black electrode is also prepared by filling the micropores 2 with a mixture of platinum black powder, which is an electrode catalyst, and a fluororesin suspension, and firing the mixture. Further, the gold vapor deposition electrode was prepared by vapor depositing gold 5 on the gas permeable film 4 as shown in FIG.

【0017】次に、使用した定電位電解式ガスセンサ
は、図3に示す構成からなるものである。図3は、ガス
の透過膜、作用極、透水性の多孔質材、対極並びに参照
極の構成を示す配置図である。これは、ガス透過性の高
分子合成樹脂膜からなるガス透過膜20と作用極21を
別々の部材とした構造とし(上記の金蒸着電極の場合は
ガスの透過膜に金を蒸着した電極を使用)、この両者を
形状変化のない透水性の多孔質材22を介してその一面
に配し、他面に対極23と参照極24を配した構造から
なるものである。そして、ケーシング25内に形成され
た反応室内に電解液26を充填してなるものである。
Next, the potentiostatic electrolysis gas sensor used has the structure shown in FIG. FIG. 3 is a layout diagram showing the configurations of a gas permeable film, a working electrode, a water-permeable porous material, a counter electrode, and a reference electrode. This has a structure in which the gas permeable film 20 made of a gas permeable polymer synthetic resin film and the working electrode 21 are separate members (in the case of the above gold vapor deposition electrode, an electrode in which gold is vapor deposited on the gas permeable film is used). Both are used), and both of them are arranged on one surface of the water-permeable porous material 22 which does not change in shape, and a counter electrode 23 and a reference electrode 24 are arranged on the other surface. Then, the reaction chamber formed in the casing 25 is filled with the electrolytic solution 26.

【0018】このような構成としたことにより、この透
水性の多孔質材を通して電解液を浸透させ、その液が作
用極等に常時接するようにすることができる。また、こ
のような構成によれば、諸電極とガス透過膜と電解液の
三相界面が、形状変化をしない多孔質材を介して形成さ
れているので、常時一定のテンションによって加圧され
た状態とすることができるので、環境の温度や湿度が変
化しても、それによって影響を受けることが少ないガス
センサとなる。
With such a structure, it is possible to allow the electrolytic solution to permeate through the water-permeable porous material so that the solution is always in contact with the working electrode or the like. Further, according to such a configuration, since the three-phase interface between the electrodes, the gas permeable membrane, and the electrolytic solution is formed via the porous material that does not change in shape, it is constantly pressurized with a constant tension. Since the gas sensor can be brought into a state, the gas sensor is less affected by changes in the temperature and humidity of the environment.

【0019】次に、前記により作成した各電極を上記の
定電位電解式ガスセンサに取り付けて、半導体製造用ガ
スを検知し、その出力電流値を測定したところ、表1に
示すような結果を得た。
Next, each of the electrodes prepared as described above was attached to the above potentiostatic electrolysis gas sensor to detect a semiconductor manufacturing gas, and the output current value thereof was measured. The results shown in Table 1 were obtained. It was

【表1】 (注)1.出力電流値の単位はμA 2.ガス成分の濃度は、AsH3 0.5ppm、PH3 0.5ppm、SiH4 10ppm B26 0.5ppm、水素 2%、アルコール(エチルアルコール) 200ppm[Table 1] (Note) 1. Unit of output current value is μA 2. Concentration of gas components is AsH 3 0.5ppm, PH 3 0.5ppm, SiH 4 10ppm B 2 H 6 0.5ppm, hydrogen 2%, alcohol (ethyl alcohol) 200ppm

【0020】表1から明らかなように、電極触媒が白金
黒の場合は、アルシン、ホスフィン等の出力電流値は高
く、良好な結果であるが、水素の出力も高く干渉ガスの
影響を受けてしまう。ここで、アルシンと水素を同濃度
とした場合の干渉比は、アルシン:水素=1333:1であ
る。次に、従来の電極作成法による金蒸着電極では、ア
ルシン、ホスフィン等の出力電流値が低く、増幅率を上
げるとS/N比でノイズが大きくなり警報設定値が許容
濃度を大きく超える。一方、干渉比はアルシン:水素=
368000:1であり、水素の誤警報は防げる。
As is clear from Table 1, when the electrocatalyst is platinum black, the output current values of arsine, phosphine, etc. are high, which is a good result, but the output of hydrogen is also high and is affected by the interference gas. I will end up. Here, when the concentration of arsine and hydrogen is the same, the interference ratio is arsine: hydrogen = 1333: 1. Next, in the gold vapor deposition electrode manufactured by the conventional electrode forming method, the output current value of arsine, phosphine, etc. is low, and when the amplification factor is increased, the S / N ratio becomes large in noise and the alarm set value greatly exceeds the allowable concentration. On the other hand, the interference ratio is arsine: hydrogen =
Since it is 368000: 1, false alarm of hydrogen can be prevented.

【0021】さらに、本発明に係る金の超微粒子電極で
は、アルシン、ホスフィン等の出力電流値は比較的高
く、水素の出力は非常に低い。干渉比は、アルシン:水
素=4000000:1であり、アルシン0.25ppmと水素100
%が等価出力である。そして、アルシンの許容濃度は、
0.05ppmであるから、アルシン0.05ppmと水素20%
が等価出力であり、水素の誤警報が防げる。
Further, in the gold ultrafine particle electrode according to the present invention, the output current value of arsine, phosphine, etc. is relatively high, and the output of hydrogen is very low. The interference ratio is arsine: hydrogen = 4000000: 1, arsine 0.25 ppm and hydrogen 100
% Is the equivalent output. And the permissible concentration of arsine is
Since it is 0.05ppm, arsine 0.05ppm and hydrogen 20%
Is an equivalent output, and false alarm of hydrogen can be prevented.

【0022】以上のことから従来法のガス透過膜に金を
蒸着した電極では、水素の干渉は小さいが半導体製造用
ガスの出力も低いため、許容濃度以下で警報を出すこと
ができない。また、電極触媒に白金黒粉体を使用する
と、半導体製造用ガスの出力は高いが、水素の感度も高
く干渉ガスで誤警報が出ると共に、アルコールに対して
も感度が高いので使用できない。そして、本発明に係る
電極のように、金の超微粒子を電極触媒として電極を作
成すると、半導体製造用ガスの出力が比較的高く、水
素、アルコールの干渉も小さいことから許容濃度以下で
警報を出すことができる。
From the above, in the conventional electrode in which gold is vapor-deposited on the gas permeable film, the interference of hydrogen is small, but the output of the semiconductor manufacturing gas is also low, so that an alarm cannot be issued below the allowable concentration. Further, when platinum black powder is used for the electrode catalyst, the output of the semiconductor manufacturing gas is high, but the sensitivity of hydrogen is also high, and a false alarm is given by the interference gas, and the sensitivity to alcohol is also high, so it cannot be used. When an electrode is prepared by using gold ultrafine particles as an electrode catalyst like the electrode according to the present invention, the output of the semiconductor manufacturing gas is relatively high and the interference of hydrogen and alcohol is small. Can be issued.

【0023】[0023]

【発明の効果】本発明は、半導体製造に使用するガスの
検知に用いる定電位電解式ガスセンサの電極であって、
導電性の材質からなる担体に金の超微粒子からなる触媒
を担持させたことからなる電極であるが、本発明によれ
ば、アルシン、ホスフィン等の半導体製造用ガスを検知
すると、その出力電流値が比較的高く良好な結果が得ら
れ、水素の干渉も小さく、かつアルコールに対して感度
が非常に低く、誤警報が出ることがなく、作業環境にお
ける許容濃度以下で警報を出すことができる。その理由
は、金の超微粒子を使用したことにより、従来の金蒸着
電極に比較して電極自身の表面積が大きくなり、ガスと
反応する三相界面が大きくなったためである。さらに、
本発明に用いる金の超微粒子は、物理的手段により超微
粒子を製造するため、微粒子の表面は清浄で、その表面
に不純物が吸着しておらず、触媒として十分な機能を果
たすことができる。
The present invention provides an electrode of a potentiostatic electrolysis gas sensor used for detecting a gas used in semiconductor manufacturing,
Although the electrode is formed by supporting a catalyst made of ultrafine gold particles on a carrier made of a conductive material, according to the present invention, when a gas for semiconductor production such as arsine and phosphine is detected, its output current value Is relatively high, good results are obtained, the interference of hydrogen is small, the sensitivity to alcohol is very low, no false alarm is given, and an alarm can be issued below the allowable concentration in the working environment. The reason for this is that the use of ultrafine gold particles increases the surface area of the electrode itself as compared with the conventional gold vapor deposition electrode and increases the three-phase interface that reacts with gas. further,
Since the gold ultrafine particles used in the present invention are produced by physical means, the surface of the fine particles is clean, and no impurities are adsorbed on the surface, so that they can perform a sufficient function as a catalyst.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(1)は、ステンレスの板体にエッチング
加工により微細孔を設けた状態を示す平面図であり、図
1(2)は微細孔の拡大断面図であり、図1(3)は微
細孔に金の超微粒子とフッ素樹脂懸濁液との混合物をプ
レスして充填した状態を示す拡大断面図である。
FIG. 1 (1) is a plan view showing a state in which fine holes are provided in a stainless steel plate by etching, and FIG. 1 (2) is an enlarged sectional view of the fine holes. FIG. 3) is an enlarged cross-sectional view showing a state in which a mixture of gold ultrafine particles and a fluororesin suspension is pressed and filled in the fine holes.

【図2】図2は、ガス透過膜に金を蒸着した電極の断面
図である。
FIG. 2 is a cross-sectional view of an electrode in which gold is deposited on a gas permeable film.

【図3】図3は、本発明に係る定電位電解式ガスセンサ
の構成を示す配置図である。
FIG. 3 is a layout diagram showing a configuration of a potentiostatic electrolysis gas sensor according to the present invention.

【符号の説明】[Explanation of symbols]

1 ステンレス板体 2 微細孔 3 金の超微粒子とフッ素樹脂懸濁液との混合物 4 ガス透過膜 5 金蒸着電極 20 ガス透過膜 21 作用極 22 多孔質材 23 対極 24 参照極 25 ケーシング 26 電解液 1 Stainless Steel Plate 2 Micropores 3 Mixture of Ultrafine Gold Particles and Fluororesin Suspension 4 Gas Permeation Membrane 5 Gold Vapor Deposition Electrode 20 Gas Permeation Membrane 21 Working Electrode 22 Porous Material 23 Counter Electrode 24 Reference Electrode 25 Casing 26 Electrolyte

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体製造に使用するガスの検知に用い
る定電位電解式ガスセンサの電極であって、導電性の材
質からなる担体に金の超微粒子からなる触媒を担持させ
たことを特徴とする定電位電解式ガスセンサの電極。
1. An electrode of a potentiostatic electrolysis gas sensor used for detecting a gas used in semiconductor manufacturing, characterized in that a catalyst made of ultrafine gold particles is carried on a carrier made of a conductive material. Electrodes of potentiostatic electrolysis gas sensor.
【請求項2】 電解液を充填した反応室内に少なくとも
作用極、対極、参照極並びにガス透過膜を備え、該ガス
透過膜と作用極を分離した構造からなる定電位電解式ガ
スセンサの電極であって、導電性の材質からなる担体に
金の超微粒子からなる触媒を担持させたことを特徴とす
る定電位電解式ガスセンサの電極。
2. An electrode of a potentiostatic electrolysis gas sensor having a structure in which at least a working electrode, a counter electrode, a reference electrode and a gas permeable film are provided in a reaction chamber filled with an electrolytic solution, and the gas permeable film and the working electrode are separated. An electrode for a potentiostatic electrolysis gas sensor, characterized in that a catalyst made of ultrafine gold particles is carried on a carrier made of a conductive material.
【請求項3】 導電性の材質からなる担体に金の超微粒
子からなる触媒を担持させた電極が、ステンレス製の板
体に微細孔を設け、該微細孔にフッ素樹脂懸濁液と金の
超微粒子の混合物を充填し、これを焼成したものである
請求項1又は2に記載の定電位電解式ガスセンサの電
極。
3. An electrode in which a catalyst made of ultrafine gold particles is carried on a carrier made of an electrically conductive material is provided with fine holes in a stainless steel plate body, and the fine hole is made of a fluororesin suspension and gold. The electrode of the potentiostatic electrolysis gas sensor according to claim 1, which is obtained by filling a mixture of ultrafine particles and firing the mixture.
【請求項4】 導電性の材質からなる担体に金の超微粒
子からなる触媒を担持させた電極が、カーボン、白金、
金、チタンから選択される1種以上の材質からなる網体
に、フッ素樹脂懸濁液と金の超微粒子の混合物を固定
し、これを焼成したものである請求項1又は2に記載の
定電位電解式ガスセンサの電極。
4. An electrode in which a catalyst made of ultrafine gold particles is supported on a carrier made of a conductive material is carbon, platinum,
The composition according to claim 1 or 2, wherein a mixture of a fluororesin suspension and gold ultrafine particles is fixed to a net body made of one or more materials selected from gold and titanium, and the mixture is baked. Electrodes for potential electrolysis gas sensors.
JP7123489A 1995-05-23 1995-05-23 Electrode of constant potential electrolytic gas sensor Pending JPH08313480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7123489A JPH08313480A (en) 1995-05-23 1995-05-23 Electrode of constant potential electrolytic gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7123489A JPH08313480A (en) 1995-05-23 1995-05-23 Electrode of constant potential electrolytic gas sensor

Publications (1)

Publication Number Publication Date
JPH08313480A true JPH08313480A (en) 1996-11-29

Family

ID=14861901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7123489A Pending JPH08313480A (en) 1995-05-23 1995-05-23 Electrode of constant potential electrolytic gas sensor

Country Status (1)

Country Link
JP (1) JPH08313480A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289816A (en) * 2000-04-06 2001-10-19 New Cosmos Electric Corp Controlled potential electrolysis type gas sensor
JP2009008668A (en) * 2007-05-29 2009-01-15 Central Res Inst Of Electric Power Ind Method and system for quantitative analysis of selenium
JP2009115680A (en) * 2007-11-08 2009-05-28 Keio Gijuku Electrochemical gas sensor, operation electrode suitable for the same, and detection method of arsine using electrochemical gas sensor
JP2010085130A (en) * 2008-09-30 2010-04-15 Riken Keiki Co Ltd Electrochemical gas sensor and operation electrode thereof
JP2010197260A (en) * 2009-02-26 2010-09-09 Riken Keiki Co Ltd Electrochemical gas sensor for lewisite detection and operation electrode thereof
WO2014203923A1 (en) * 2013-06-18 2014-12-24 新コスモス電機株式会社 Noble metal catalyst and constant potential electrolyte gas sensor
JP2015001506A (en) * 2013-06-18 2015-01-05 新コスモス電機株式会社 Controlled potential electrolysis type gas sensor
JP2015000399A (en) * 2013-06-18 2015-01-05 新コスモス電機株式会社 Noble metal catalyst
JP2016176946A (en) * 2013-06-18 2016-10-06 新コスモス電機株式会社 Constant potential electrolysis-type gas sensor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289816A (en) * 2000-04-06 2001-10-19 New Cosmos Electric Corp Controlled potential electrolysis type gas sensor
JP2009008668A (en) * 2007-05-29 2009-01-15 Central Res Inst Of Electric Power Ind Method and system for quantitative analysis of selenium
JP2009115680A (en) * 2007-11-08 2009-05-28 Keio Gijuku Electrochemical gas sensor, operation electrode suitable for the same, and detection method of arsine using electrochemical gas sensor
JP2010085130A (en) * 2008-09-30 2010-04-15 Riken Keiki Co Ltd Electrochemical gas sensor and operation electrode thereof
JP2010197260A (en) * 2009-02-26 2010-09-09 Riken Keiki Co Ltd Electrochemical gas sensor for lewisite detection and operation electrode thereof
WO2014203923A1 (en) * 2013-06-18 2014-12-24 新コスモス電機株式会社 Noble metal catalyst and constant potential electrolyte gas sensor
JP2015001506A (en) * 2013-06-18 2015-01-05 新コスモス電機株式会社 Controlled potential electrolysis type gas sensor
JP2015000399A (en) * 2013-06-18 2015-01-05 新コスモス電機株式会社 Noble metal catalyst
JP2016176946A (en) * 2013-06-18 2016-10-06 新コスモス電機株式会社 Constant potential electrolysis-type gas sensor

Similar Documents

Publication Publication Date Title
US4326927A (en) Method and device for the detection and measurement of electrochemically active compounds
US4042464A (en) Method for the detection and measurement of noxious gases
EP0084935B1 (en) Gas detection device
CA1170717A (en) Electro-chemical sensor for the detection of reducing gases, in particular carbon monoxide, hydrazine and hydrogen in air
US5061447A (en) Catalytic combustion type co gas sensor
US4001103A (en) Device for the detection and measurement of NO and NO2 gases
US20190025243A1 (en) Electrochemical sensor
GB2077437A (en) Ammonia gas sensors
JPH08313480A (en) Electrode of constant potential electrolytic gas sensor
EP1688736A1 (en) Electrochemical gas sensor
EP2975390B2 (en) Amperometric electrochemical gas sensing apparatus and method for measuring oxidising gases
CN111175362A (en) Electrochemical hydrogen sulfide sensor and preparation method thereof
US7087150B2 (en) Chloramine amperometric sensor
US4036724A (en) Device for the continuous determination of carbon monoxide content of air
FR2485199A1 (en) GAS DETECTOR
KR20160077125A (en) Potentiostatic electrolytic gas sensor
Alberti et al. Amperometric solid-state sensor for NO and NO2 based on protonic conduction
GB2342168A (en) Electrochemical oxygen sensor
GB2338559A (en) Electrochemical sensor for hydrides of arsenic and phosphorus
JP4594487B2 (en) Constant potential electrolytic gas sensor
AU5494999A (en) Method and device for the determination of O2 and N2O in gas mixtures
JP3881540B2 (en) Constant potential electrolysis gas sensor and gas detector
JP6330213B2 (en) Constant potential electrolytic oxygen gas sensor
Liu et al. Facile Electrodeposition of MoO x onto Gold Microwire Electrode: Application to Voltammetric Determination of As (III) under Mild Conditions
JPH06242059A (en) Electrochemical gas sensor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040225