JPH08311510A - Production of copper-tungsten mixed powder - Google Patents

Production of copper-tungsten mixed powder

Info

Publication number
JPH08311510A
JPH08311510A JP7141308A JP14130895A JPH08311510A JP H08311510 A JPH08311510 A JP H08311510A JP 7141308 A JP7141308 A JP 7141308A JP 14130895 A JP14130895 A JP 14130895A JP H08311510 A JPH08311510 A JP H08311510A
Authority
JP
Japan
Prior art keywords
copper
soln
mixed powder
mixed
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7141308A
Other languages
Japanese (ja)
Inventor
Yukio Makiyama
行夫 牧山
Junji Asai
純二 浅井
Tsukushi Yamamoto
筑紫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIYO KOUKOU KK
Original Assignee
TAIYO KOUKOU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIYO KOUKOU KK filed Critical TAIYO KOUKOU KK
Priority to JP7141308A priority Critical patent/JPH08311510A/en
Publication of JPH08311510A publication Critical patent/JPH08311510A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To produce a homogeneous and high-purity Cu-W mixed powder as a sintering material by dehydrating a precipitate obtained by regulating the pH of an aq. soln. contg. dissolved Cu, W and a small amt. of Co or Ni, roasting the dehydrated precipitate in the atmosphere and then reducing the roasted precipitate. CONSTITUTION: Aq. ammonia is added to an aq. soln. contg. sodium tungstate, copper sulfate and a small amt. of Ni nitrate or cobalt nitrate to regulate the soln. to pH4 to 7, and the W, Cu, Co, Ni, etc., in the soln. are precipitated as their hydroxides. The precipitates are separated from water, then washed with an aq. ammonium nitrate soln., completely dehydrated with a centrifugal separator, etc., roasted in a rotary kiln, etc., and dried to obtain a mixed oxide. The mixed oxide is heated in an electric furnace filled with a gaseous hydrogen atmosphere, and a raw material for a sintered member consisting of the W-Cu mixed powder contg. a small amt. of Co or Ni as the sintering assistant and 10-30wt.% Cu is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、新規なCu−W(銅−
タングステン)混合粉末の製造法に関するものである。
The present invention relates to a novel Cu-W (copper-
(Tungsten) mixed powder manufacturing method.

【0002】[0002]

【従来の技術】電気接点や、半導体のヒートシンク部材
として、従来からCu−W(銅−タングステン)複合材
が使用されている。Cu−W複合材は、多孔質のタング
ステン焼結体に溶融した銅を含浸させて製造する溶浸法
や、Cu粉末とW粉末との混合物を加圧成型して焼結す
る混合焼結法によって製造されている。
2. Description of the Related Art Conventionally, Cu-W (copper-tungsten) composite materials have been used as electrical contacts and semiconductor heat sink members. The Cu-W composite material is an infiltration method produced by impregnating molten tungsten into a porous tungsten sintered body, or a mixed sintering method in which a mixture of Cu powder and W powder is pressure-molded and sintered. Is manufactured by.

【0003】しかしながら、上記溶浸法による製造方法
は、銅を含浸したブロックにおいて部分的な銅の含有率
のばらつきが多く、銅含浸ブロックはさらに研磨成形す
る工程が必要であり、工程数が多い上に材料の無駄が多
く歩留まりが悪いなどの課題を抱えている。一方、Cu
粉末とW粉末との混合物を加圧・焼結して製造する混合
焼結法は、Cu粉末とW粉末の比重の差が大きいため、
両者を均一に混合するのが難しく、偏析等が生じ易いと
いう問題点があった。また、機械的に混合するため、混
合時に銅粉末が押し潰されて扁平化し、燒結体中に銅の
プ−ルができる原因となっていた。さらに、上記混合中
に不純物が混入し易いという問題点もあった。
However, in the manufacturing method by the above-mentioned infiltration method, there are many variations in the copper content rate in the block impregnated with copper, and the copper-impregnated block requires a step of further polishing and shaping, and the number of steps is large. In addition, there are many problems such as waste of material and poor yield. On the other hand, Cu
In the mixed sintering method in which a mixture of powder and W powder is pressed and sintered, the difference in specific gravity between Cu powder and W powder is large.
There is a problem that it is difficult to mix both uniformly and segregation easily occurs. In addition, since they are mechanically mixed, the copper powder is crushed and flattened during the mixing, which causes a pool of copper in the sintered body. Further, there is a problem that impurities are easily mixed during the above mixing.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、上記
の焼結法によってCu−W複合材を製造する場合に、原
料として使用できる好ましいCu−W混合粉末、すなわ
ちCuの割合が10〜30重量%程度で、均質かつ純度
の高いCu−W混合粉末の製造法を提供することにあ
る。
The object of the present invention is to provide a preferable Cu-W mixed powder which can be used as a raw material when the Cu-W composite material is produced by the above-mentioned sintering method, that is, the ratio of Cu is 10 to 10. An object of the present invention is to provide a method for producing a Cu—W mixed powder having a uniform and high purity of about 30% by weight.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明は以下のような構成とした。すなわち、本発
明の銅−タングステン混合粉末の製造法は、銅もしくは
銅化合物と、タングステン酸ソ−ダと、コバルトもしく
はコバルト化合物および/またはニッケルもしくはニッ
ケル化合物とを含む溶液にアンモニア水を加え、pH4
〜7に調整して沈殿物を得たのち、得られた沈殿物を大
気中で焙焼し、さらに水素還元して、少量のコバルトも
しくはニッケルを含有する銅−タングステン混合粉末を
得ることを特徴としている。
In order to achieve the above object, the present invention has the following constitution. That is, the method for producing a copper-tungsten mixed powder according to the present invention comprises adding ammonia water to a solution containing copper or a copper compound, soda tungstate, cobalt or a cobalt compound and / or nickel or a nickel compound, and adjusting the pH to 4
After adjusting to ~ 7 to obtain a precipitate, the obtained precipitate is roasted in the air and further hydrogen reduced to obtain a copper-tungsten mixed powder containing a small amount of cobalt or nickel. I am trying.

【0006】以下、具体例を示す図1の工程図に基づい
て、詳細に説明する。本発明で使用される原料のうちタ
ングステン源として好適に使用されるものは、酸化タン
グステン、パラタングステン酸アンモニウム、タングス
テン酸ソ−ダ等であり、また、銅源として好適に使用さ
れるものは、酸化銅、硝酸銅、塩化銅、硫酸銅等の含銅
化合物である。なお、場合によっては金属銅を使用する
こともできる。
Detailed description will be given below with reference to the process chart of FIG. 1 showing a specific example. Of the raw materials used in the present invention, those preferably used as a tungsten source are tungsten oxide, ammonium paratungstate, soda tungstate, etc., and those preferably used as a copper source are Copper-containing compounds such as copper oxide, copper nitrate, copper chloride, and copper sulfate. In addition, metallic copper can also be used depending on the case.

【0007】さらに、ニッケル源として好ましいもの
は、酸化ニッケル、硝酸ニッケル、塩化ニッケル、硫酸
ニッケル等の含ニッケル化合物であり、コバルト源とし
て好ましいものは、酸化コバルト、硝酸コバルト、塩化
コバルト、硫酸コバルト等の含コバルト化合物である。
なお、上記化合物の代わりに、金属ニッケル、金属コバ
ルト等を使用することもできる。
Further, preferable nickel sources are nickel-containing compounds such as nickel oxide, nickel nitrate, nickel chloride and nickel sulfate, and preferable cobalt sources are cobalt oxide, cobalt nitrate, cobalt chloride, cobalt sulfate and the like. Is a cobalt-containing compound.
Note that metal nickel, metal cobalt, or the like can be used instead of the above compound.

【0008】これらの原料を、目的とする製品の組成が
得られる配合比で混合する。製品中に含まれる各金属の
量は、重量比で銅(Cu)が8〜13%、コバルト(C
o)が0〜3%、ニッケル(Ni)が0〜3%、タング
ステン(W)が80〜92%とするのが好ましい。上記
原料の混合方法としては、例えば、原料が硫酸銅、硫酸
コバルト、硫酸ニッケル等の水溶性化合物の場合は、水
を加えて順に溶解すればよい。この水溶液にタングステ
ン源であるパラタングステン酸アンモニウムを加えて、
スラリ−状で混合する。
[0008] These raw materials are mixed in a compounding ratio so as to obtain a desired product composition. The amount of each metal contained in the product is 8 to 13% by weight of copper (Cu) and cobalt (C).
It is preferable that 0) is 0 to 3%, nickel (Ni) is 0 to 3%, and tungsten (W) is 80 to 92%. As a method for mixing the above-mentioned raw materials, for example, when the raw material is a water-soluble compound such as copper sulfate, cobalt sulfate, and nickel sulfate, water may be added and dissolved in order. Ammonium paratungstate, which is a tungsten source, is added to this aqueous solution,
Mix in slurry form.

【0009】十分に混合したら、これに例えばアンモニ
ア水(NH4 OH)を加えてpH調整を行う。好ましい
pH値は4〜7であり、5.5前後とするのが最も好ま
しい。これにより、タングステン、銅、コバルト(ニッ
ケル)等が水酸化物として沈殿する。
After being sufficiently mixed, for example, aqueous ammonia (NH 4 OH) is added to adjust the pH. The preferable pH value is 4 to 7, and the most preferable pH value is around 5.5. As a result, tungsten, copper, cobalt (nickel), etc. are precipitated as hydroxides.

【0010】pH調整を終えた混合スラリ−は、60〜
90℃程度(80℃前後が最も好ましい)に加温し、攪
拌する。撹拌時間は1時間程度とするのが好ましい。こ
れらの条件は、他の条件に応じて適宜選択すればよい。
The mixed slurry after the pH adjustment is 60-
Warm to about 90 ° C (most preferably around 80 ° C) and stir. The stirring time is preferably about 1 hour. These conditions may be appropriately selected according to other conditions.

【0011】上記加温攪拌が終わったら、攪拌を停止し
て放置し、熟成させる。しかるのち、上澄み液を捨てて
洗浄を行う。この洗浄は、例えば硝酸アンモニウム(N
4NO3 )溶液を用いて行ない、洗浄後は廃液する。
この洗浄を適当回数(通常は2回でよい)繰り返し、得
られたスラリ−を遠心分離機、フィルタ−プレス等を用
いてろ過する。この場合のろ液は捨て、残りの混合水酸
化物を取り出して乾燥する。
After completion of the heating and stirring, the stirring is stopped and the mixture is allowed to stand for aging. Then, discard the supernatant and wash. This cleaning is performed, for example, with ammonium nitrate (N
H 4 NO 3 ) solution and drain after washing.
This washing is repeated an appropriate number of times (usually twice), and the obtained slurry is filtered using a centrifuge, a filter press or the like. The filtrate in this case is discarded, and the remaining mixed hydroxide is taken out and dried.

【0012】乾燥後の混合水酸化物は、ロータリキルン
等を用いて焙焼し、混合酸化物粉末とする。この場合の
焙焼温度は500〜600℃程度、時間は4〜6時間程
度が好ましい。
The dried mixed hydroxide is roasted using a rotary kiln or the like to obtain mixed oxide powder. In this case, the roasting temperature is preferably about 500 to 600 ° C., and the time is preferably about 4 to 6 hours.

【0013】上記焙焼によって得られた酸化物混合粉末
は、最後に水素ガス雰囲気下の電気炉内にて加熱還元す
る。これにより、少量のコバルトおよび/またはニッケ
ルを含むCu−W混合粉末が得られる。この場合の加熱
還元条件は850〜1000℃、1.5〜3時間程度で
ある。以下、本発明の実施例について、より具体的に説
明する。
The oxide mixed powder obtained by the above roasting is finally reduced by heating in an electric furnace under a hydrogen gas atmosphere. Thereby, a Cu-W mixed powder containing a small amount of cobalt and / or nickel is obtained. The heat reduction conditions in this case are 850 to 1000 ° C. and about 1.5 to 3 hours. Hereinafter, examples of the present invention will be described more specifically.

【0014】[0014]

【実施例】表1に示した原料を用いて、図1に示す工程
で混合粉末を製造した。使用した原料は、硫酸銅168
g、硫酸コバルト(または硫酸ニッケル)3.9g、タ
ングステン酸アンモニウム493gであり、最初に硫酸
銅と硫酸コバルトを水に溶解した。この溶液にパラタン
グステン酸アンモニウムを加え、混合したのち、アンモ
ニア水を加えてpH値を5.5に調整した。
[Examples] Using the raw materials shown in Table 1, mixed powders were produced in the steps shown in FIG. The raw material used is copper sulfate 168.
g, cobalt sulfate (or nickel sulfate) 3.9 g, and ammonium tungstate 493 g. First, copper sulfate and cobalt sulfate were dissolved in water. Ammonium paratungstate was added to this solution and mixed, and then aqueous ammonia was added to adjust the pH value to 5.5.

【0015】[0015]

【表1】 [Table 1]

【0016】次に、このスラリ−を80℃に加温し、1
時間攪拌したのち、攪拌を止めて放置熟成した。これに
より、沈殿物と液が分離したので、その液を捨て、硝酸
アンモニウム溶液を加えて第1回の洗浄を行った。洗浄
後は廃液したのち、スラリ−に再度硝酸アンモニウム溶
液を加えて第2回目の洗浄を行ない、上記と同様に廃液
した。
Next, this slurry was heated to 80 ° C.,
After stirring for an hour, the stirring was stopped and the mixture was left to mature. As a result, the precipitate and the liquid were separated, and the liquid was discarded, an ammonium nitrate solution was added, and the first washing was performed. After the washing, the liquid was drained, the ammonium nitrate solution was added to the slurry again to carry out the second washing, and the liquid was drained in the same manner as above.

【0017】第2回目の洗浄を終えたスラリ−は、フィ
ルタ−プレスを用いてろ過し、ろ液は捨て、残りの混合
水酸化物を取り出した。この混合水酸化物は、乾燥した
のち、大気中で550℃で5時間焙焼した。これにより
均一な混合酸化物粉末が得られた。
The slurry that had been washed for the second time was filtered using a filter press, the filtrate was discarded, and the remaining mixed hydroxide was taken out. This mixed hydroxide was dried and then roasted in the air at 550 ° C. for 5 hours. As a result, a uniform mixed oxide powder was obtained.

【0018】この混合酸化物粉末は、電気炉を用いて、
水素気流中で還元した。還元温度は950℃、還元時間
は2時間であった。この還元により、銅とコバルト(ま
たはニッケル)とタングステンとが均一に混ざった金属
混合粉末が得られた。得られたCu−Co−W混合粉末
の組成は表2に示す通りであり、これらの金属粉末がき
わめて均一に分散していることが確認された。
This mixed oxide powder was prepared using an electric furnace.
It was reduced in a stream of hydrogen. The reduction temperature was 950 ° C. and the reduction time was 2 hours. By this reduction, a metal mixed powder in which copper, cobalt (or nickel), and tungsten were uniformly mixed was obtained. The composition of the obtained Cu-Co-W mixed powder is as shown in Table 2, and it was confirmed that these metal powders were extremely uniformly dispersed.

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【発明の効果】以上の説明の如く、本発明に係るCu−
W混合粉末の製造法によれば、焼結法によってCu−W
複合材を製造する場合に原料として使用できる、Cuの
割合が10〜30重量%の純度の高い均一なCu−W混
合粉末を、能率よく製造することができる。
As described above, the Cu-
According to the method for producing the W mixed powder, Cu-W is produced by the sintering method.
A highly pure and uniform Cu—W mixed powder having a Cu content of 10 to 30% by weight, which can be used as a raw material when manufacturing a composite material, can be efficiently manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の具体例を示す工程図である。FIG. 1 is a process drawing showing a specific example of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 銅もしくは銅化合物と、タングステン酸
ソ−ダと、コバルトもしくはコバルト化合物および/ま
たはニッケルもしくはニッケル化合物とを含む溶液にア
ンモニア水を加え、pH4〜7に調整して沈殿物を得た
のち、得られた沈殿物を大気中で焙焼し、さらに水素還
元して、少量のコバルトもしくはニッケルを含有する銅
−タングステン混合粉末を得ることを特徴とする銅−タ
ングステン混合粉末の製造法。
1. Ammonia water is added to a solution containing copper or a copper compound, soda tungstate, cobalt or a cobalt compound and / or nickel or a nickel compound, and the pH is adjusted to 4 to 7 to obtain a precipitate. After that, the obtained precipitate is roasted in the air and further hydrogen-reduced to obtain a copper-tungsten mixed powder containing a small amount of cobalt or nickel, and a method for producing a copper-tungsten mixed powder. .
JP7141308A 1995-05-15 1995-05-15 Production of copper-tungsten mixed powder Pending JPH08311510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7141308A JPH08311510A (en) 1995-05-15 1995-05-15 Production of copper-tungsten mixed powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7141308A JPH08311510A (en) 1995-05-15 1995-05-15 Production of copper-tungsten mixed powder

Publications (1)

Publication Number Publication Date
JPH08311510A true JPH08311510A (en) 1996-11-26

Family

ID=15288878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7141308A Pending JPH08311510A (en) 1995-05-15 1995-05-15 Production of copper-tungsten mixed powder

Country Status (1)

Country Link
JP (1) JPH08311510A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100402204C (en) * 2003-01-21 2008-07-16 奥斯兰姆施尔凡尼亚公司 Electrochemical displacement-deposition method for making composite metal powders
CN100446899C (en) * 2005-04-14 2008-12-31 中南大学 Prepn process of superfine W-Cu composite powder
CN102350508A (en) * 2011-10-13 2012-02-15 北京科技大学 Method for preparing doped-tungsten-based composite powder
CN102485380A (en) * 2010-12-06 2012-06-06 北京有色金属研究总院 Preparation method of submicron nearly spherical tungsten powder
CN103128310A (en) * 2011-11-29 2013-06-05 中国科学院合肥物质科学研究院 Wolfram-copper composite powder preparation method
CN103862058A (en) * 2012-12-14 2014-06-18 重庆华浩冶炼有限公司 Method for producing copper lead powder
CN112708794A (en) * 2021-03-29 2021-04-27 陕西斯瑞新材料股份有限公司 Method for preparing copper-tungsten alloy by adopting superfine tungsten powder
CN114833348A (en) * 2022-05-07 2022-08-02 合肥工业大学 Large-scale preparation method of controllable high-quality W-Cu composite powder

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100402204C (en) * 2003-01-21 2008-07-16 奥斯兰姆施尔凡尼亚公司 Electrochemical displacement-deposition method for making composite metal powders
CN100446899C (en) * 2005-04-14 2008-12-31 中南大学 Prepn process of superfine W-Cu composite powder
CN102485380A (en) * 2010-12-06 2012-06-06 北京有色金属研究总院 Preparation method of submicron nearly spherical tungsten powder
CN102350508A (en) * 2011-10-13 2012-02-15 北京科技大学 Method for preparing doped-tungsten-based composite powder
CN103128310A (en) * 2011-11-29 2013-06-05 中国科学院合肥物质科学研究院 Wolfram-copper composite powder preparation method
CN103862058A (en) * 2012-12-14 2014-06-18 重庆华浩冶炼有限公司 Method for producing copper lead powder
CN112708794A (en) * 2021-03-29 2021-04-27 陕西斯瑞新材料股份有限公司 Method for preparing copper-tungsten alloy by adopting superfine tungsten powder
CN114833348A (en) * 2022-05-07 2022-08-02 合肥工业大学 Large-scale preparation method of controllable high-quality W-Cu composite powder

Similar Documents

Publication Publication Date Title
EP3100804B1 (en) Manufacturing method for nickel powder
CN110845237B (en) High-entropy ceramic powder, preparation method thereof and high-entropy ceramic block
KR101074930B1 (en) Valve metal powders, process for producing the same and method for producing solid electrolyte capacitors
AU2016314002B2 (en) Process for producing nickel powder
JPH08311510A (en) Production of copper-tungsten mixed powder
EP0759478B1 (en) Method of making an alloy of tungsten and lanthana
US5866493A (en) Method of manufacturing a sintered body of indium tin oxide
CN105798319B (en) Preparation method of silver-tungsten electrical contact material, electrical contact material and electrical contact
JPH09104908A (en) Production of powdery copper-tungsten mixture
JPH08120310A (en) Production of copper-tungsten mixed powder
CN114592138B (en) Nano alumina particle reinforced copper-based composite material and preparation method thereof
JP3613588B2 (en) Manufacturing method of electrical contact material
JPS61533A (en) Method for recovering samarium
CN113943152A (en) Method for preparing permanent magnetic ferrite from high-chlorine iron oxide red and permanent magnetic ferrite
JPH08510436A (en) Doped zinc oxide powder, process for its production, and ceramics obtained from said powder
CN108339989B (en) Simple preparation method of nano-grade tungsten-copper precursor powder
CN106180743A (en) A kind of preparation method of fine fe-based alloy powder
JPH03180481A (en) Production of copper oxide powder by electrolysis
WO2017038589A1 (en) Process for producing nickel powder
JP3873366B2 (en) Tungsten and / or molybdenum and copper alloys
JPH086121B2 (en) Method for producing low oxygen metal chromium powder
JPS634555A (en) Activated chemical treatment manganese dioxide for dry batterry and its manufacture
JPH0227778A (en) Manufacture of thermoelectric element
US7041151B2 (en) Electrochemical displacement-deposition method for making composite metal powders
JP2001003124A (en) Manufacture of iron-copper composite powder