JPH0830951A - Vertical magnetic recording medium - Google Patents

Vertical magnetic recording medium

Info

Publication number
JPH0830951A
JPH0830951A JP16530894A JP16530894A JPH0830951A JP H0830951 A JPH0830951 A JP H0830951A JP 16530894 A JP16530894 A JP 16530894A JP 16530894 A JP16530894 A JP 16530894A JP H0830951 A JPH0830951 A JP H0830951A
Authority
JP
Japan
Prior art keywords
layer
magnetic
intermediate layer
recording
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP16530894A
Other languages
Japanese (ja)
Inventor
Ryoetsu Yoshino
亮悦 吉野
Michihide Ozawa
道秀 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SENSUTAA CORP
Denka Co Ltd
Censtor Corp
Original Assignee
SENSUTAA CORP
Denki Kagaku Kogyo KK
Censtor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SENSUTAA CORP, Denki Kagaku Kogyo KK, Censtor Corp filed Critical SENSUTAA CORP
Priority to JP16530894A priority Critical patent/JPH0830951A/en
Publication of JPH0830951A publication Critical patent/JPH0830951A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE: To obtain a perpendicular magnetic recording medium having a higher coercive force. CONSTITUTION: A perpendicular magnetic recording medium is formed by laminating, on a non-magnetic substrate 1, a soft magnetic reinforcing layer 2, a first intermediate layer 3, a second intermediate layer 4 and a recording magnetic layer 5 including an artificial lattice structure having the vertical magnetic anisotropy. A higher coercive force suitable for high density recording can be obtained by forming the first intermediate layer with carbon. Moreover, a perpendicular magnetic recording medium having a higher coercive force suitable for high density recording can be obtained by forming the first intermediate layer 3 with carbon and forming the recording magnetic layer 5 and second intermediate layer 4 with Co/Pt and Pt, or Co/Pd and Pd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は垂直磁気記録方式に用い
る垂直磁気記録媒体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a perpendicular magnetic recording medium used in a perpendicular magnetic recording system.

【0002】[0002]

【従来の技術】近年、コンピューター等で使用されるハ
ードディスクドライブには、ソフトの高容量化により、
いっそう高い記録容量が要求されている。また、パーソ
ナルコンピューターの小型化によりハードディスクドラ
イブも必然的に小型化され、磁気記録媒体としては高い
記録密度のものが求められている。このような、高い記
録密度を達成する一つの手法として垂直磁気記録方式が
提案されている。
2. Description of the Related Art In recent years, hard disk drives used in computers etc.
Higher recording capacity is required. Further, due to the miniaturization of personal computers, hard disk drives are inevitably miniaturized, and magnetic recording media with high recording density are required. A perpendicular magnetic recording method has been proposed as one method for achieving such a high recording density.

【0003】垂直磁気記録方式においては、垂直方向に
配向された記録ビットに記録することにより、超高記録
密度の記録が達成されるが、記録ビットの安定性を図る
には、記録ビットを垂直方向に記録しているために強い
反磁界の影響を受ける。この反磁界や外部磁界に耐え得
るため、高い保磁力のものが要求されている。
In the perpendicular magnetic recording system, by recording on recording bits oriented in the vertical direction, recording with an extremely high recording density can be achieved. However, in order to stabilize the recording bits, the recording bits are perpendicular to each other. Since it is recorded in the direction, it is affected by a strong demagnetizing field. A high coercive force is required to withstand the demagnetizing field and the external magnetic field.

【0004】高い保磁力を有する垂直磁気記録媒体とし
て、Co/Pt及びCo/Pd人工格子層からなる垂直
磁気記録層を有する媒体が提案されている。この人工格
子層からなる垂直磁気記録媒体は、通常、スパッタ法や
真空蒸着等で作製されるが、保磁力を高くする方法とし
て種々の検討がなされている。
As a perpendicular magnetic recording medium having a high coercive force, a medium having a perpendicular magnetic recording layer composed of Co / Pt and Co / Pd artificial lattice layers has been proposed. The perpendicular magnetic recording medium composed of this artificial lattice layer is usually produced by a sputtering method, vacuum deposition or the like, but various studies have been made as a method for increasing the coercive force.

【0005】例えば、スパッタガスとしてArよりもK
rやXeを用いて、スパッタリングする方法(P.F. Car
cia and W. B. Zeper, IEEE Trans. Magn., Vol. 26, 1
703,1990 )や軟磁性層と人工格子層との間にPtやP
d金属等の適当な中間層を用いたもの(C-Y You, J. Hu
r and S-C Shin, J. Appl. Phys., Vol. 73, 5951,199
3)などが報告されている。
For example, the sputtering gas is K rather than Ar.
Method of sputtering using r or Xe (PF Car
cia and WB Zeper, IEEE Trans. Magn., Vol. 26, 1
703, 1990) or Pt or P between the soft magnetic layer and the artificial lattice layer.
Using a suitable intermediate layer such as d metal (CY You, J. Hu
r and SC Shin, J. Appl. Phys., Vol. 73, 5951,199
3) etc. have been reported.

【0006】しかし、この中間層の厚さが厚いと磁気ヘ
ッドの主磁極と軟磁性層の距離が遠くなり、記録再生効
率が低下するため、できるだけ薄い中間層が望まれる一
方、逆に薄すぎると保磁力が低下し、記録容量が低下す
るという問題があり、これら両方の特性を満たす中間層
を有する垂直磁気記録媒体は得られていなかった。
However, if the thickness of the intermediate layer is large, the distance between the main magnetic pole of the magnetic head and the soft magnetic layer becomes large, and the recording / reproducing efficiency is lowered. Therefore, the thinnest intermediate layer is desired, while it is too thin. Therefore, there is a problem that the coercive force is lowered and the recording capacity is lowered, and a perpendicular magnetic recording medium having an intermediate layer satisfying both of these characteristics has not been obtained.

【0007】また、保磁力を高くするために、人工格子
層からなる垂直磁気記録層の下にPtやPdの金属層を
設けたものや人工格子層の格子間にPtやPdの金属層
を設けたものが特開平6−52535号公報に開示され
ている。
In order to increase the coercive force, a metal layer of Pt or Pd is provided under the perpendicular magnetic recording layer made of an artificial lattice layer, or a metal layer of Pt or Pd is provided between the lattices of the artificial lattice layer. The one provided is disclosed in JP-A-6-52535.

【0008】しかしながら、これらの従来技術による垂
直磁気記録媒体によっても、尚、十分な保磁力を有する
ものが得られず、さらに高い保磁力のものが必要とされ
ている。また、KrやXeガスはArに比べて高価であ
り、より効果的な垂直磁気記録媒体が求められていた。
However, even with these perpendicular magnetic recording media according to the prior art, a medium having a sufficient coercive force cannot be obtained, and a medium having a higher coercive force is required. Further, Kr and Xe gas are more expensive than Ar, and a more effective perpendicular magnetic recording medium has been demanded.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上述したよ
うに従来の技術では得ることができなかった高い保磁力
を有する人工格子層からなる垂直磁気記録媒体を経済的
に得るという課題を解決することを目的としてなされた
ものであり、非磁性基板上に形成された軟磁性層と人工
格子層の間に設ける中間層の構成と材質について検討し
て得られた知見に基づき完成するに至ったものである。
SUMMARY OF THE INVENTION As described above, the present invention solves the problem of economically obtaining a perpendicular magnetic recording medium composed of an artificial lattice layer having a high coercive force, which cannot be obtained by the conventional technique. The purpose of this study was to study the composition and material of the intermediate layer provided between the soft magnetic layer formed on the non-magnetic substrate and the artificial lattice layer, and completed based on the findings. It is a thing.

【0010】[0010]

【課題を解決するための手段】本発明の特徴は、非磁性
基板上に軟磁性層、第1中間層、第2中間層及び垂直磁
気異方性を有する人工格子層を有する記録磁性層を積層
されてなる垂直磁気記録媒体であって、第1中間層が炭
素である垂直磁気記録媒体である。また、前記構成の垂
直磁気記録媒体であって、記録磁性層がCo/Pt人工
格子層であり、第1中間層が炭素であり、第2中間層が
Pt金属層である垂直磁気記録媒体である。さらに前記
構成の垂直磁気記録媒体であって、記録磁性層がCo/
Pd人工格子層であり、第1中間層が炭素であり、第2
中間層がPd金属層である垂直磁気記録媒体である。
A feature of the present invention is to provide a recording magnetic layer having a soft magnetic layer, a first intermediate layer, a second intermediate layer and an artificial lattice layer having perpendicular magnetic anisotropy on a non-magnetic substrate. The perpendicular magnetic recording medium is a laminated perpendicular magnetic recording medium in which the first intermediate layer is carbon. In the perpendicular magnetic recording medium having the above structure, the recording magnetic layer is a Co / Pt artificial lattice layer, the first intermediate layer is carbon, and the second intermediate layer is a Pt metal layer. is there. Further, in the perpendicular magnetic recording medium having the above structure, the recording magnetic layer is Co /
Pd artificial lattice layer, the first intermediate layer is carbon, the second
A perpendicular magnetic recording medium in which the intermediate layer is a Pd metal layer.

【0011】以下、本発明について図面を参照してさら
に詳細に説明する。本発明の垂直磁気記録媒体は、非磁
性基板上に軟磁性層が形成され、その上にそれぞれ、材
質のことなる第1中間層及び第2中間層が形成され、そ
の上に垂直磁気異方性を有する人工格子層を有する記録
磁性層が積層されてなる構造の垂直磁気記録媒体であ
る。
The present invention will be described in more detail below with reference to the drawings. In the perpendicular magnetic recording medium of the present invention, a soft magnetic layer is formed on a non-magnetic substrate, and a first intermediate layer and a second intermediate layer made of different materials are formed on the soft magnetic layer, and the perpendicular magnetic anisotropic layer is formed on the soft magnetic layer. A perpendicular magnetic recording medium having a structure in which recording magnetic layers having an artificial lattice layer having properties are laminated.

【0012】非磁性基板1は通常、アルミニウム、アル
ミニウム合金、ガラス、セラミックス、プラスチック、
炭素、シリコンなど硬度が高く平滑性を容易に出すこと
ができ耐食性の優れているものが使用できる。非磁性基
板1は化学的方法、機械的方法または物理的方法等によ
り平滑な表面に仕上げられていたり、その後に同心円状
の凹凸を有するテクスチャリングが形成されている。
The non-magnetic substrate 1 is usually made of aluminum, aluminum alloy, glass, ceramics, plastic,
It is possible to use a material such as carbon or silicon which has high hardness and can easily provide smoothness and has excellent corrosion resistance. The non-magnetic substrate 1 is finished to have a smooth surface by a chemical method, a mechanical method, a physical method, or the like, and thereafter, texturing having concentric concavities and convexities is formed.

【0013】軟磁性層2は、CuMoNiFe、NiF
eNb等のNiFe系合金、CoZrNb等のCoZr
系合金、FeAl系合金、MnZnフェライト等の高透
磁率を有する軟磁性合金を使用することができる。
The soft magnetic layer 2 is made of CuMoNiFe, NiF.
NiFe alloys such as eNb, CoZr such as CoZrNb
A soft magnetic alloy having a high magnetic permeability such as a system alloy, a FeAl system alloy, and MnZn ferrite can be used.

【0014】第1中間層3の材質は炭素である。この炭
素からなる第1中間層は通常、スパッタリングにより形
成されるがこれに限定されることはない。その厚さは1
〜10nm程度であるが、保磁力及び再生出力の大きさ
から、好ましくは1〜5nmがよい。
The material of the first intermediate layer 3 is carbon. The first intermediate layer made of carbon is usually formed by sputtering, but is not limited to this. Its thickness is 1
Although it is about 10 nm, it is preferably 1 to 5 nm in view of the coercive force and the size of the reproduction output.

【0015】第2中間層4は人工格子層を構成している
金属と同じもので形成される。例えば、人工格子層がC
o/Ptの場合は、第2中間層4はPtで形成される。
また、人工格子層がCo/Pdの場合は、第2中間層4
はPdで形成される。
The second intermediate layer 4 is made of the same metal as the metal constituting the artificial lattice layer. For example, the artificial lattice layer is C
In the case of o / Pt, the second intermediate layer 4 is made of Pt.
When the artificial lattice layer is Co / Pd, the second intermediate layer 4
Is formed of Pd.

【0016】記録磁性層5は人工格子層で形成されてお
り、垂直磁気異方性を有する磁性層である。人工格子層
を形成する物質は、Co又はCoCr、CoCrPt、
CoCrPtTaなどのCo系合金、並びにPt又はP
dなどの貴金属がある。例えばCo/Pt又はCo/P
d人工格子層、CoCr/Pt又はCoCr/Pd人工
格子層などが形成される。Co金属又はCo系合金層の
厚さは1nm程度以下であり、Pt又はPdなどの貴金
属層の厚さは1nm程度以下である。Co/Pt又はC
o/Pd人工格子層の場合が工業的製造に適し、かつ特
性の制御がしやすいのでより好ましい。
The recording magnetic layer 5 is formed of an artificial lattice layer and has perpendicular magnetic anisotropy. The material forming the artificial lattice layer is Co or CoCr, CoCrPt,
Co-based alloys such as CoCrPtTa and Pt or P
There are precious metals such as d. For example Co / Pt or Co / P
d artificial lattice layer, CoCr / Pt or CoCr / Pd artificial lattice layer, etc. are formed. The thickness of the Co metal or Co-based alloy layer is about 1 nm or less, and the thickness of the noble metal layer such as Pt or Pd is about 1 nm or less. Co / Pt or C
The case of the o / Pd artificial lattice layer is more preferable because it is suitable for industrial production and the characteristics can be easily controlled.

【0017】保護層6は通常、炭素やSi、Zr、H
f、Cr等の酸化物、窒化物、炭化物などで形成されて
いる。また、保護膜の潤滑性をよくするため保護膜表面
に潤滑層を形成してもよい。
The protective layer 6 is usually made of carbon, Si, Zr, H.
It is made of oxides such as f and Cr, nitrides, and carbides. In addition, a lubricating layer may be formed on the surface of the protective film in order to improve the lubricity of the protective film.

【0018】[0018]

【作用】本発明の垂直磁気記録媒体においては、非磁性
基板上に形成された軟磁性層上に第1中間層として炭素
からなる層を形成し、さらに第2中間層としてPt又は
Pd金属層、記録磁性層としてCo/Pt、Co/P
d、CoCr系合金/Pt、CoCr系合金/Pdなど
の人工格子層を順次形成することによって垂直磁気異方
性を有する記録磁性層が得られ、高保磁力で再生出力の
大きい高密度記録が可能な垂直磁気記録媒体が得られ
る。
In the perpendicular magnetic recording medium of the present invention, a layer made of carbon is formed as a first intermediate layer on a soft magnetic layer formed on a non-magnetic substrate, and a Pt or Pd metal layer is further formed as a second intermediate layer. , Co / Pt, Co / P as the recording magnetic layer
A recording magnetic layer having perpendicular magnetic anisotropy can be obtained by sequentially forming artificial lattice layers such as d, CoCr alloy / Pt, CoCr alloy / Pd, etc., and high coercive force and high density recording with high reproduction output are possible. A perpendicular magnetic recording medium can be obtained.

【0019】人工格子層の保磁力を高くするためにはそ
の垂直磁気異方性を高くすれば良い。垂直磁気異方性を
高くするためには、人工格子層の下地である第2中間層
としての金属層の結晶構造を制御し、その上部に積層さ
れる人工格子層の結晶配向を制御する方法がある。通
常、このためにこの第2中間層の金属層の厚さを厚くす
ることによって制御しているが、この金属層の下地とし
て、さらに他の元素からなる第1中間層を形成すること
によって、この第2中間層の金属層の結晶構造を制御す
ることが可能となる。
In order to increase the coercive force of the artificial lattice layer, its perpendicular magnetic anisotropy should be increased. In order to increase the perpendicular magnetic anisotropy, a method of controlling the crystal structure of the metal layer as the second intermediate layer which is the base of the artificial lattice layer, and controlling the crystal orientation of the artificial lattice layer laminated on the metal layer There is. Normally, for this purpose, the thickness is controlled by increasing the thickness of the metal layer of the second intermediate layer, but by forming a first intermediate layer made of another element as a base of the metal layer, It is possible to control the crystal structure of the metal layer of the second intermediate layer.

【0020】例えば、軟磁性層上に形成した炭素からな
る第1中間層の上部にPt又はPd金属からなる第2中
間層を成長させることによりPt又はPd金属層の結晶
配向を向上させることができ、その上部に成長させたC
o/PtやCo/Pd人工格子層の結晶配向も向上させ
ることができる。そのため人工格子層の磁気異方性が高
くなり高い保磁力を得ることが可能となる。
For example, the crystal orientation of the Pt or Pd metal layer can be improved by growing the second intermediate layer of Pt or Pd metal on the first intermediate layer of carbon formed on the soft magnetic layer. Done, C grown on top of it
The crystal orientation of the o / Pt or Co / Pd artificial lattice layer can also be improved. Therefore, the magnetic anisotropy of the artificial lattice layer becomes high, and a high coercive force can be obtained.

【0021】[0021]

【実施例1】外径95mm、内径25mm、厚み1.2
7mmのアルミニウム合金基板1上に、軟磁性層2とし
て厚さ7μmのNi80Fe20(以下、磁性材料層の組成
式は原子%で示す)をめっき法により形成し、その上に
第1中間層3として2.5nmの炭素層、さらにその上
に第2中間層4としてPt金属層をそれぞれ、スパッタ
リング法で形成した。ここでは、Pt金属層の厚さを1
0,20,40nmの3種類( No.1 〜 3)とした。さ
らに、その各々の上部に記録磁性層5として(Co0.
68nm/Pt 0.38nm)×20層の人工格子
層、保護層6として10nmの炭素層を形成し垂直磁気
記録媒体を作製した。これらの媒体の磁気特性及び記録
再生特性を以下に示す方法によって測定した。その結果
を表1に示す。
Example 1 Outer diameter 95 mm, inner diameter 25 mm, thickness 1.2
On a 7 mm aluminum alloy substrate 1, Ni 80 Fe 20 having a thickness of 7 μm (hereinafter, the composition formula of the magnetic material layer is shown in atomic%) is formed as a soft magnetic layer 2 by a plating method, and a first intermediate layer is formed thereon. A 2.5 nm carbon layer was formed as the layer 3, and a Pt metal layer was formed thereon as the second intermediate layer 4 by the sputtering method. Here, the thickness of the Pt metal layer is 1
There are three types (No. 1 to 3) of 0, 20, and 40 nm. Further, a recording magnetic layer 5 (Co0.
A perpendicular magnetic recording medium was prepared by forming an artificial lattice layer of 68 nm / Pt 0.38 nm) × 20 layers and a carbon layer of 10 nm as the protective layer 6. The magnetic characteristics and recording / reproducing characteristics of these media were measured by the following methods. Table 1 shows the results.

【0022】[0022]

【表1】 [Table 1]

【0023】(磁気特性の測定方法)磁気特性の測定方
法:保磁力をKerr効果測定機(印加磁界15kO
e)により測定した。
(Measurement method of magnetic characteristics) Measurement method of magnetic characteristics: Coercive force is measured by a Kerr effect measuring device (applied magnetic field: 15 kO).
e).

【0024】(再生出力の測定方法)媒体の再生出力
は、材質CoZrNb、トラック幅7μm、コイル巻き
数40の単磁極ヘッドを用いて、媒体にヘッドを接触さ
せながら周速4m/s、記録周波数0.5MHzで測定
した。
(Measurement Method of Reproduction Output) The reproduction output of the medium was measured by using a single magnetic pole head having a material of CoZrNb, a track width of 7 μm and a coil winding number of 40, a peripheral speed of 4 m / s while the head was in contact with the medium, and a recording frequency. It was measured at 0.5 MHz.

【0025】(比較例1)外径95mm、内径25m
m、厚み1.27mmのアルミニウム合金基板1上に、
軟磁性層2として厚さ7μmのNi80Fe20(以下、磁
性材料層の組成式は原子%で示す)をめっき法により形
成し、第1中間層3の炭素層を形成せずに第2中間層4
を形成し、この時のPt金属層の厚さは実施例1と同様
( No.01〜No.03 ) としたものに、さらにその各々の上
部に記録磁性層5として(Co0.68nm/Pt
0.38nm)×20層の人工格子層、保護層6として
10nmの炭素層を形成し垂直磁気記録媒体を作製し
た。これらの媒体の磁気特性と記録再生特性を実施例と
同様の方法で測定し、表1に示した。また、第1中間層
の炭素層を2.5nm形成しただけで第2中間層を形成
せずに直接、上記と同じように20層の人工格子層を形
成させて垂直磁気記録媒体を作製したが、保磁力、再生
出力とも良好なものは得られなかった。
(Comparative Example 1) Outer diameter 95 mm, inner diameter 25 m
m, 1.27 mm thick on the aluminum alloy substrate 1,
As the soft magnetic layer 2, a Ni 80 Fe 20 layer having a thickness of 7 μm (hereinafter, the composition formula of the magnetic material layer is represented by atomic%) is formed by a plating method, and the second intermediate layer is formed without forming the carbon layer of the first intermediate layer 3. Middle layer 4
And the thickness of the Pt metal layer at this time was the same as that of Example 1 (No. 01 to No. 03), and a recording magnetic layer 5 (Co 0.68 nm / Pt) was formed on each of them.
A 0.38 nm) × 20 artificial lattice layer and a 10 nm carbon layer as the protective layer 6 were formed to prepare a perpendicular magnetic recording medium. The magnetic characteristics and recording / reproducing characteristics of these media were measured in the same manner as in the example, and are shown in Table 1. A perpendicular magnetic recording medium was prepared by forming 20 carbon layers of the first intermediate layer and forming the artificial layer of 20 layers in the same manner as above, without forming the second intermediate layer. However, good coercive force and reproduction output were not obtained.

【0026】第1中間層の炭素層が2.5nmの形成さ
れたいる実施例1の媒体は、比較例1の第1中間層の炭
素層がない媒体に比べて、それぞれ対応する第2中間層
であるPt金属層の厚さに対して、保磁力が高くなって
いることがわかる。従って同じ保磁力を得る場合、実施
例1の媒体構成をとれば比較例1よりも第2中間層のP
t金属層を薄くすることができる。
The medium of Example 1 in which the carbon layer of the first intermediate layer was formed to have a thickness of 2.5 nm was compared with the medium of Comparative Example 1 in which the carbon layer of the first intermediate layer was not formed, and the corresponding second intermediate layer was formed. It can be seen that the coercive force is higher than the thickness of the Pt metal layer that is the layer. Therefore, when the same coercive force is obtained, the P of the second intermediate layer is higher than that of Comparative Example 1 when the medium configuration of Example 1 is used.
The t metal layer can be thinned.

【0027】(実施例2及び比較例2)外径95mm、
内径25mm、厚み1.27mmのアルミニウム合金基
板1上に、軟磁性層2として厚さ7μmのNi80Fe20
(以下、磁性材料層の組成式は原子%で示す)をめっき
法により形成し、その上に第1中間層3として2.5n
mの炭素層、さらにその上に第2中間層4としてPd金
属層をそれぞれ、スパッタリング法で形成した。ここで
は、Pd金属層の厚さを10,20,40nmの3種類
( No.4 〜 6)とした。さらに、その各々の上部に記録
磁性層5として(Co0.68nm/Pd1.18n
m)×20層の人工格子層、保護層6として10nmの
炭素層を形成し垂直磁気記録媒体を作製した。第1中間
層の炭素層を形成しない以外は実施例2の No.4 〜 6と
同様にして、垂直磁気記録媒体(比較例2:No.04 〜0
6)を作製した。これらの媒体の磁気特性及び記録再生
特性を実施例1と同様の方法で測定した。その結果を表
2に示す。
(Example 2 and Comparative Example 2) Outer diameter 95 mm,
Ni 80 Fe 20 having a thickness of 7 μm is formed as the soft magnetic layer 2 on the aluminum alloy substrate 1 having an inner diameter of 25 mm and a thickness of 1.27 mm.
(Hereinafter, the compositional formula of the magnetic material layer is represented by atomic%) is formed by a plating method, and 2.5 n is formed thereon as the first intermediate layer 3.
m carbon layer, and a Pd metal layer as the second intermediate layer 4 was further formed thereon by the sputtering method. Here, the thickness of the Pd metal layer is set to three types (No. 4 to 6) of 10, 20, and 40 nm. Further, a recording magnetic layer 5 (Co0.68 nm / Pd1.18n) is formed on each of them.
m) × 20 layers of artificial lattice layer, and a carbon layer of 10 nm was formed as the protective layer 6 to prepare a perpendicular magnetic recording medium. A perpendicular magnetic recording medium (Comparative Example 2: No. 04 to 0) was prepared in the same manner as No. 4 to No. 6 of Example 2 except that the carbon layer of the first intermediate layer was not formed.
6) was produced. The magnetic characteristics and recording / reproducing characteristics of these media were measured in the same manner as in Example 1. The results are shown in Table 2.

【0028】[0028]

【表2】 [Table 2]

【0029】この結果、実施例2の第2中間層がPd金
属層である場合についても、実施例1の特性と同様に、
第1中間層の炭素層が2.5nmの形成されている実施
例2の媒体は、比較例2の第1中間層の炭素層がない媒
体に比べて、それぞれ対応する第2中間層であるPt金
属層の厚さに対して、保磁力が高くなっていることがわ
かる。従って同じ保磁力を得る場合、実施例1の媒体構
成をとれば比較例1よりも第2中間層のPt金属層を薄
くすることができる。
As a result, also in the case where the second intermediate layer of Example 2 is a Pd metal layer, similar to the characteristics of Example 1,
The medium of Example 2 in which the carbon layer of the first intermediate layer is formed to have a thickness of 2.5 nm is the corresponding second intermediate layer as compared with the medium of Comparative Example 2 in which the carbon layer of the first intermediate layer is not formed. It can be seen that the coercive force is higher than the thickness of the Pt metal layer. Therefore, when the same coercive force is obtained, the Pt metal layer of the second intermediate layer can be made thinner than in Comparative Example 1 by using the medium configuration of Example 1.

【0030】(実施例3及び比較例3)外径95mm、
内径25mm、厚み1.27mmのアルミニウム合金基
板1上に、軟磁性層2として厚さ7μmのNi80Fe20
(以下、磁性材料層の組成式は原子%で示す)をめっき
法により形成し、その上に第1中間層3の炭素層の厚さ
を0 nm (比較例3)、1〜 10nm (実施例3:No. 7
〜 11 )と変化させ、さらにその上に第2中間層4とし
て22nmのPt金属層をそれぞれ、スパッタリング法
で形成した。その各々の上部に記録磁性層5として(C
o0.68nm/Pt 0.38nm)×20層の人工
格子層、保護層6として10nmの炭素層を形成し垂直
磁気記録媒体を作製した。これらの媒体の磁気特性及び
記録再生特性を実施例1と同様の方法によって測定し
た。その結果を表3に示す。
(Example 3 and Comparative Example 3) Outer diameter 95 mm,
Ni 80 Fe 20 having a thickness of 7 μm is formed as the soft magnetic layer 2 on the aluminum alloy substrate 1 having an inner diameter of 25 mm and a thickness of 1.27 mm.
(Hereinafter, the compositional formula of the magnetic material layer is shown in atomic%) is formed by a plating method, and the thickness of the carbon layer of the first intermediate layer 3 is set to 0 nm (Comparative Example 3), 1 to 10 nm (implementation). Example 3: No. 7
.About.11), and a 22 nm Pt metal layer was further formed thereon as the second intermediate layer 4 by the sputtering method. A recording magnetic layer 5 (C
A 0.68 nm / Pt 0.38 nm) × 20 artificial lattice layer and a 10 nm carbon layer as a protective layer 6 were formed to prepare a perpendicular magnetic recording medium. The magnetic characteristics and recording / reproducing characteristics of these media were measured by the same methods as in Example 1. Table 3 shows the results.

【0031】[0031]

【表3】 [Table 3]

【0032】この結果、第1中間層の炭素層がない場合
に比べ、第1中間層の炭素層がある場合の保磁力、再生
出力は高く、特に第1中間層の炭素層の厚さが1〜5n
mのとき保磁力が高く良好であることがわかる。1〜5
nmで垂直磁気記録媒体の再生出力は媒体の保磁力と強
い相関があり、保磁力が高いほど高い再生出力が得られ
る。よって、実施例1の媒体構成をとれば比較例1と同
等の再生出力を得られつつ、記録密度特性に優れた媒体
を得ることが可能となる。
As a result, the coercive force and reproduction output are higher when the carbon layer of the first intermediate layer is present than when the carbon layer of the first intermediate layer is not present. Especially, the thickness of the carbon layer of the first intermediate layer is high. 1-5n
It can be seen that when m, the coercive force is high and good. 1-5
The reproduction output of the perpendicular magnetic recording medium in nm has a strong correlation with the coercive force of the medium, and the higher the coercive force, the higher the reproduction output. Therefore, by adopting the medium structure of Example 1, it is possible to obtain a medium having excellent recording density characteristics while obtaining a reproduction output equivalent to that of Comparative Example 1.

【0033】[0033]

【発明の効果】本発明によれば、軟磁性層の上に、第1
中間層として炭素層を形成し、さらにその上にPt、P
dなどの金属層を第2中間層として形成することによ
り、高い保磁力を有し、再生出力の高い高密度記録に適
した垂直磁気記録媒体を得ることができる。
According to the present invention, the first magnetic layer is formed on the soft magnetic layer.
A carbon layer is formed as an intermediate layer, and Pt and P are further formed on the carbon layer.
By forming a metal layer such as d as the second intermediate layer, it is possible to obtain a perpendicular magnetic recording medium having a high coercive force and high reproduction output and suitable for high density recording.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一例を示す垂直磁気記録媒体の断面図
を示す。
FIG. 1 is a sectional view of a perpendicular magnetic recording medium showing an example of the present invention.

【符号の説明】[Explanation of symbols]

1:非磁性基板 2:軟磁性層 3:第1中間層 4:第2中間層 5:記録磁性層 6:保護層 1: non-magnetic substrate 2: soft magnetic layer 3: first intermediate layer 4: second intermediate layer 5: recording magnetic layer 6: protective layer

フロントページの続き (72)発明者 小沢 道秀 群馬県渋川市中村1135番地 電気化学工業 株式会社渋川工場内Front page continued (72) Inventor Michihide Ozawa 1135 Nakamura, Shibukawa City, Gunma Denki Kagaku Kogyo Co., Ltd. Shibukawa Plant

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 非磁性基板上に軟磁性層、第1中間層、
第2中間層及び垂直磁気異方性を有する人工格子構造を
持つ記録磁性層を積層してなる垂直磁気記録媒体であっ
て、前記第1中間層が炭素であるこを特徴とする垂直磁
気記録媒体。
1. A soft magnetic layer, a first intermediate layer, on a non-magnetic substrate,
A perpendicular magnetic recording medium comprising a second intermediate layer and a recording magnetic layer having an artificial lattice structure having perpendicular magnetic anisotropy laminated, wherein the first intermediate layer is carbon. .
【請求項2】 記録磁性層がCo/Pt人工格子層であ
り、第2中間層がPt金属層である請求項1記載の垂直
磁気記録媒体。
2. The perpendicular magnetic recording medium according to claim 1, wherein the recording magnetic layer is a Co / Pt artificial lattice layer, and the second intermediate layer is a Pt metal layer.
【請求項3】 記録磁性層がCo/Pd人工格子層であ
り、第2中間層がPd金属層である請求項1記載の垂直
磁気記録媒体。
3. The perpendicular magnetic recording medium according to claim 1, wherein the recording magnetic layer is a Co / Pd artificial lattice layer, and the second intermediate layer is a Pd metal layer.
JP16530894A 1994-07-18 1994-07-18 Vertical magnetic recording medium Withdrawn JPH0830951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16530894A JPH0830951A (en) 1994-07-18 1994-07-18 Vertical magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16530894A JPH0830951A (en) 1994-07-18 1994-07-18 Vertical magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0830951A true JPH0830951A (en) 1996-02-02

Family

ID=15809872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16530894A Withdrawn JPH0830951A (en) 1994-07-18 1994-07-18 Vertical magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0830951A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002157730A (en) * 2000-09-11 2002-05-31 Univ Waseda Magnetic recording medium, its manufacturing method and magnetic recording/reproducing device
WO2002054390A1 (en) * 2000-12-28 2002-07-11 Hitachi Maxell, Ltd. Magnetic recording medium and its manufacturing method, and magnetic storage device
WO2003042984A1 (en) * 2001-11-16 2003-05-22 Hitachi Maxell, Ltd. Magnetic recording medium, its manufacturing method, and magnetic storage
KR20030067030A (en) * 2002-02-06 2003-08-14 엘지전자 주식회사 Magneto-optical disk
US6893746B1 (en) 1999-10-29 2005-05-17 Hitachi Maxell, Ltd. Magnetic recording medium with high thermal stability, method for producing the same, and magnetic recording apparatus
US6972157B2 (en) 2002-03-26 2005-12-06 Waseda University Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
US7029772B2 (en) 2000-09-11 2006-04-18 Showa Denko Kabushiki Kaisha Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
US7229707B2 (en) 2002-10-01 2007-06-12 Samsung Electronics Co., Ltd. Magnetic recording medium
JP2008021365A (en) * 2006-07-12 2008-01-31 Hitachi Maxell Ltd Information recording medium and manufacturing method thereof, and information recording/reproducing device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6893746B1 (en) 1999-10-29 2005-05-17 Hitachi Maxell, Ltd. Magnetic recording medium with high thermal stability, method for producing the same, and magnetic recording apparatus
JP4578737B2 (en) * 2000-09-11 2010-11-10 学校法人早稲田大学 Magnetic recording medium and magnetic recording / reproducing apparatus
US7029772B2 (en) 2000-09-11 2006-04-18 Showa Denko Kabushiki Kaisha Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
JP2002157730A (en) * 2000-09-11 2002-05-31 Univ Waseda Magnetic recording medium, its manufacturing method and magnetic recording/reproducing device
US6602621B2 (en) 2000-12-28 2003-08-05 Hitachi Maxell, Ltd. Magnetic recording medium, method for producing the same, and magnetic storage apparatus
US6815098B2 (en) 2000-12-28 2004-11-09 Hitachi Maxell, Ltd. Magnetic recording medium, method for producing the same, and magnetic storage apparatus
WO2002054390A1 (en) * 2000-12-28 2002-07-11 Hitachi Maxell, Ltd. Magnetic recording medium and its manufacturing method, and magnetic storage device
US6846582B2 (en) 2001-11-16 2005-01-25 Hitachi Maxell, Ltd. Magnetic recording medium, method for producing the same, and magnetic storage apparatus
WO2003042984A1 (en) * 2001-11-16 2003-05-22 Hitachi Maxell, Ltd. Magnetic recording medium, its manufacturing method, and magnetic storage
KR20030067030A (en) * 2002-02-06 2003-08-14 엘지전자 주식회사 Magneto-optical disk
US6972157B2 (en) 2002-03-26 2005-12-06 Waseda University Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
US7229707B2 (en) 2002-10-01 2007-06-12 Samsung Electronics Co., Ltd. Magnetic recording medium
JP2008021365A (en) * 2006-07-12 2008-01-31 Hitachi Maxell Ltd Information recording medium and manufacturing method thereof, and information recording/reproducing device

Similar Documents

Publication Publication Date Title
JP4126276B2 (en) Antiferromagnetically coupled perpendicular magnetic recording media
JP4169663B2 (en) Perpendicular magnetic recording medium
US7842409B2 (en) Anti-ferromagnetically coupled perpendicular magnetic recording media with oxide
US7354664B1 (en) Magnetically soft, high saturation magnetization laminate of iron-cobalt-nitrogen and iron-nickel for perpendicular media underlayers
US6667118B1 (en) Texture-induced magnetic anisotropy of soft underlayers for perpendicular recording media
JP2003077122A (en) Perpendicular magnetic recording medium and manufacturing method therefor
JP2003091808A (en) Perpendicular magnetic recording medium and magnetic storage device
JP4515690B2 (en) Perpendicular multilayer magnetic recording medium
JPH0830951A (en) Vertical magnetic recording medium
JP4552668B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP2003317221A (en) Perpendicular magnetic recording medium
JP3822387B2 (en) Magnetic recording medium
JP2004227618A (en) Disk substrate for perpendicular magnetic recording medium, perpendicular magnetic recording disk and their manufacturing method
US7144641B2 (en) Magnetic backlayer
EP1485910B1 (en) Magnetic recording medium and magnetic recording device
JPH06215325A (en) Laminate type core of magnetic head
JPH0744851A (en) Perpendicular magnetic recording medium and its production
JPH0831639A (en) Vertical magnetic recording medium
JP2001250223A (en) Magnetic recording medium and magnetic recorder
JPH10289437A (en) Magnetic recording medium and magnetic storage device
JPH10261520A (en) Magnetic recording medium and its manufacture
JPH1041134A (en) Magnetic recording medium and its manufacturing method
JP2001167423A (en) Perpendicular magnetic recording medium and its manufacturing method
JP3658586B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic storage device
JP3653039B2 (en) Magnetic recording / reproducing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011002