JPH08308300A - Speed sensorless vector controller for induction motor - Google Patents

Speed sensorless vector controller for induction motor

Info

Publication number
JPH08308300A
JPH08308300A JP7114191A JP11419195A JPH08308300A JP H08308300 A JPH08308300 A JP H08308300A JP 7114191 A JP7114191 A JP 7114191A JP 11419195 A JP11419195 A JP 11419195A JP H08308300 A JPH08308300 A JP H08308300A
Authority
JP
Japan
Prior art keywords
value
torque
current
excitation
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7114191A
Other languages
Japanese (ja)
Inventor
Katashige Yamada
堅滋 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP7114191A priority Critical patent/JPH08308300A/en
Publication of JPH08308300A publication Critical patent/JPH08308300A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE: To so limit as to eliminate the voltage saturation and to execute the safe operation by providing a torque limiter for calculating the maximum capable of outputting torque calculated by a voltage equation by using a DC voltage, a speed estimated value and a motor constant at the torque current command value input terminal of a current control calculator. CONSTITUTION: A torque limiter 12 for calculating the maximum capable of outputting torque calculated by a voltage equation by using a DC voltage, a speed estimated value and a motor constant is provided at the torque current command value input terminal of a current control calculator 3. The limit value is previously obtained, and output, and a limit value is obtained by an approximate expression. Thus, the voltage saturation due to the DC voltage drop can be prevented, and the stable operation can be conducted. A limit curve is previously calculated off line and stored to conduct the stable operation by a simple method. Further, the stable operation can be conducted by the simple calculation by the equation for approximating the curve of the DC voltage-the maximum capable of outputting torque.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、インバータの電圧飽和
時にても安定制御を行なう誘導電動機(以下IMとい
う)の速度センサを用いない(速度センサレス)ベクト
ル制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vector control device which does not use a speed sensor (speed sensorless) of an induction motor (hereinafter referred to as IM) which performs stable control even when the voltage of an inverter is saturated.

【0002】[0002]

【従来の技術】図3は従来技術に係るIMの速度センサ
レスベクトル制御装置を示す。このベクトル制御装置で
は、インバータ1の出力電流であるIM2の1次電流i
u ,i w を検出すると共に、1次電流iu ,iw から1
次電流iv を検出する。1次電流iu ,iv ,iw は3
相−2相変換器3により、固定子座標系の励磁軸電流検
出値i1α及びトルク軸電流検出値i1βとなり、励磁軸
及びトルク軸の電流検出値i1α,i1βは座標変換器4
により、インバータ出力周波数に同期して回転する同期
回転座標系の励磁軸電流検出値i1d及びトルク軸電流検
出値i1qに変換される。
2. Description of the Related Art FIG. 3 shows an IM speed sensor according to the prior art.
2 shows a response vector control device. With this vector controller
Is the primary current i of IM2 which is the output current of the inverter 1.
u, I wAnd the primary current iu, IwFrom 1
Next current ivIs detected. Primary current iu, Iv, IwIs 3
Phase-to-phase converter 3 is used to detect the excitation axis current of the stator coordinate system.
Outgoing price i1α and torque axis current detection value i1β, the excitation axis
And the current detection value i of the torque shaft1α, i1β is the coordinate converter 4
Allows the inverter to rotate in synchronization with the output frequency
Excitation axis current detection value i in rotating coordinate system1dAnd torque axis current detection
Outgoing price i1qIs converted to.

【0003】電流制御演算部5では、励磁軸電流検出値
1d及びトルク軸電流検出値i1qが、励磁軸電流指令値
1d * 及びトルク軸電流指令値i1q * に等しくなるよう
な、励磁軸電圧指令値v1d * 及びトルク軸電圧指令値v
1q * を、次式(1)により求める。
In the current control calculation unit 5, the excitation axis current detection value i 1d and the torque axis current detection value i 1q become equal to the excitation axis current command value i 1d * and the torque axis current command value i 1q * . Excitation axis voltage command value v 1d * and torque axis voltage command value v
1q * is calculated by the following equation (1).

【0004】[0004]

【数1】 [Equation 1]

【0005】励磁軸及びトルク軸の電圧指令値v1d *
1q * は、座標変換器6により、固定子座標系の励磁軸
電圧指令値v1α* 及びトルク軸電圧指令値v1β* に変
換される。励磁軸及びトルク軸の電圧指令値v1α*
1β* は、2相−3相変換器7により1次電圧制御指
令vu ,vv ,vw に変換される。インバータ1は、1
次電圧制御指令vu ,vv ,vw に応じた三相電流であ
る1次電流iu ,iv ,iw をIM2へ送る。これによ
り、電流指令値i1d * ,i1q * に応じてIM2の回転制
御が行なわれる。
Voltage command values v 1d * for the excitation axis and the torque axis,
The v 1q * is converted by the coordinate converter 6 into the excitation axis voltage command value v 1 α * and the torque axis voltage command value v 1 β * of the stator coordinate system. Excitation and torque axis voltage command values v 1 α * ,
The v 1 β * is converted into primary voltage control commands v u , v v , v w by the 2-phase to 3-phase converter 7. Inverter 1 is 1
Send next voltage control command v u, v v, v 1 primary current is a three-phase current corresponding to w i u, i v, and i w to IM2. As a result, the rotation control of IM2 is performed according to the current command values i 1d * and i 1q * .

【0006】図3の例は、IM2の速度を検出するセン
サを有しない、速度センサレスベクトル制御装置であ
り、次に述べるように同一次元磁束オブザーバ8及び速
度適応機構9を用いて電動機速度を推定する。
The example of FIG. 3 is a speed sensorless vector control device which does not have a sensor for detecting the speed of IM2, and estimates the motor speed using the same-dimensional magnetic flux observer 8 and speed adaptation mechanism 9 as described below. To do.

【0007】まず同一次元磁束オブザーバ8は、一定の
演算周期毎に、励磁軸及びトルク軸の電圧指令値v1α
* ,v1β* と、励磁軸及びトルク軸の電流検出値i
1α,i1βを取り込み、取り込んだデータを次式(2)
に適用することにより、励磁軸電流推定値i1α# 及び
トルク軸電流推定値i1β# と、2次励磁軸磁束推定値
λ2α# 及び2次トルク軸磁束推定値λ2β# を求める。
First, the same-dimensional magnetic flux observer 8 has a voltage command value v 1 α for the excitation axis and the torque axis for each constant calculation cycle.
* , V 1 β *, and the current detection values i of the excitation and torque axes
1 α, i 1 β are captured and the captured data is expressed by the following equation (2).
Applied to the excitation axis current estimation value i 1 α # and the torque axis current estimation value i 1 β # , the secondary excitation axis flux estimation value λ 2 α # and the secondary torque axis flux estimation value λ 2 β # Ask for.

【0008】[0008]

【数2】 [Equation 2]

【0009】式(2)の行列に用いた12個の係数のう
ち、4個の係数A11,A31,B11,B31の値は速度によ
って変化しないが、残りの8個の係数A13,A14
33,A 34,G1 ,G2 ,G3 ,G4 は速度によって変
化する。速度によって変化する係数(これは複雑な数式
を演算することにより求められる)を、オンラインで計
算すると長い計算時間が必要となるので、現状では、所
定の速度きざみ毎にあらかじめ計算した係数値をROM
(メモリ)に記憶させておき、速度に応じた係数値を読
み出して式(2)に示すオブザーバ演算をしている。
The 12 coefficients used in the matrix of equation (2)
C, four coefficients A11, A31, B11, B31The value of depends on the speed
The remaining 8 coefficients A13, A14,
A33, A 34, G1, G2, G3, GFourDepends on speed
Become Coefficient that changes with speed (this is a complex mathematical formula
Can be calculated online by
Since it takes a long time to calculate, the current situation is that
ROM with pre-calculated coefficient values for each constant speed step
Store it in (memory) and read the coefficient value according to the speed.
The observer calculation shown in equation (2) is performed.

【0010】速度適応機構9は、一定の演算周期毎に、
励磁軸及びトルク軸の電流検出値i 1α,i1βと、同一
次元磁束オブザーバ8で演算した電流推定値i1α#
1β # 及び2次磁束推定値λ2α# ,λ2β# を取り込
み、取り込んだデータを次式(3)の適応調整則に適用
して電動機速度推定値ωr # を推定演算する。
The speed adaptation mechanism 9 has a constant calculation cycle.
Current detection value i of excitation axis and torque axis 1α, i1same as β
Current estimated value i calculated by the three-dimensional magnetic flux observer 81α#,
i1β #And secondary magnetic flux estimated value λ2α#, Λ2β#Capture
And apply the captured data to the adaptive adjustment rule of the following equation (3)
And estimate the motor speed ωr #Estimate calculation.

【0011】 ωr # =Kp (eiαλ2β# −eiβλ2α# ) +Ki ∫(eiαλ2β# −eiβλ2α# )dt …(3) 但し、 eiα=i1α−i1α# :推定誤差 eiβ=i1β−i1β# :推定誤差 Kp :速度推定部比例ゲイン Ki :速度推定部積分ゲイン なお、同一次元磁束オブザーバ8と速度適応機構9とか
らなる速度適応2次磁束オブザーバによって誘導電動機
の実速度の推定を行なう誘導電動機の速度センサレスベ
クトル制御方式については、「電気学会論文誌D,11
1巻11号,平成3年」(久保田、尾崎、松瀬、中野:
「適応2次磁束オブザーバを用いた誘導電動機の速度セ
ンサレス直接形ベクトル制御」)に掲載されている。
Ω r # = K p (e i αλ 2 β # −e i βλ 2 α # ) + K i ∫ (e i αλ 2 β # −e i βλ 2 α # ) dt (3) where e i α = i 1 α-i 1 α # : estimation error e i β = i 1 β-i 1 β # : estimation error K p : velocity estimation part proportional gain K i : velocity estimation part integration gain For the speed sensorless vector control method of the induction motor, which estimates the actual speed of the induction motor by the speed adaptive secondary magnetic flux observer including the observer 8 and the speed adaptation mechanism 9, see the IEEJ Transactions D, 11
Vol. 1, No. 11, 1991 "(Kubota, Ozaki, Matsuse, Nakano:
"Direct-type vector control without speed sensor of induction motor using adaptive secondary magnetic flux observer").

【0012】すべり算出器10は次式(4)を用いて、
すべり角周波数指令値ωs * を求める。 ωs * =i1q * /i1d * ・τ2 …(4) 但し τ2 :2次時定数(τ2 =L2 /R2 ) L2 :2次インダクタンス(H) R2 :2次抵抗(R)
The slip calculator 10 uses the following equation (4) to calculate:
Calculate the slip angular frequency command value ω s * . ω s * = i 1q * / i 1d * · τ 2 (4) However, τ 2 : Secondary time constant (τ 2 = L 2 / R 2 ) L 2 : Secondary inductance (H) R 2 : Secondary Resistance (R)

【0013】なお電動機速度推定値ωr # を推定演算す
る演算過程において遅れがあるため、電動機速度推定値
ωr # とすべり角周波数指令値ωs * との加算により得
られた値ωr # +ωs * を電源角周波数とすると電源角
周波数が真値からずれてしまい、座標変換軸がずれてし
まう。そこで制御軸ずれ補償器11では、上記ずれを補
償する、すべり角周波数修正値ωscを求めて出力する。
[0013] Note that because there is a delay in the operation process for estimating the motor speed estimated value omega r #, the value obtained by adding the motor speed estimated value omega r # a slip angular frequency command value ω s * ω r # When + ω s * is the power source angular frequency, the power source angular frequency deviates from the true value, and the coordinate conversion axis deviates. Therefore, the control axis deviation compensator 11 obtains and outputs a slip angular frequency correction value ω sc that compensates for the deviation.

【0014】つまり制御軸ずれ補償器11は、固定子座
標系の2次トルク軸磁束推定値λ2β# を同期回転座標
系の2次トルク軸磁束推定値λ2q # に変換し、次式
(5)を用いて修正値ωrcを求める。 ωrc=Kωi ∫λ2q # ・dt …(5) 但し Kωi :積分ゲイン
That is, the control axis deviation compensator 11 converts the secondary torque axis magnetic flux estimated value λ 2 β # of the stator coordinate system into the secondary torque axis magnetic flux estimated value λ 2q # of the synchronous rotating coordinate system, and The correction value ω rc is obtained using (5). ω rc = Kω i ∫λ 2q # · dt (5) where Kω i : integral gain

【0015】式(5)は、2次トルク軸磁束が零である
ことを条件に式(1)が成立していることを基にして、
導出された式である。そして本例ではω0 =ωr # +ω
rc+ωs * としている。よって電源角周波数ω0 が真値
となる。なお、加え合せ点の値ωrc+ωr # を同一次元
磁束オブザーバ8にフィードバックするのは、速度想定
誤差にて生じた軸ずれ補正後の正しい速度推定値にて同
一次元オブザーバのパラメータを決定するためである。
The equation (5) is based on the fact that the equation (1) is established on condition that the secondary torque axis magnetic flux is zero.
This is the derived formula. And in this example, ω 0 = ω r # + ω
It is rc + ω s * . Therefore, the power source angular frequency ω 0 becomes a true value . The value of the addition point ω rc + ω r # is fed back to the same-dimensional magnetic flux observer 8 in order to determine the parameter of the same-dimensional observer with the correct speed estimated value after the axis deviation correction caused by the speed assumption error. This is because.

【0016】[0016]

【発明が解決しようとする課題】上述のIMのセンサレ
スベクトル制御装置にあって、これを電気自動車(BV
と称す)などに適用した場合、電源としては二次電池を
用いることになる。かかる二次電池を用いている場合、
インバータに入力される直流電圧は、この電池の放電状
態例えば放電末期とかインバータ入力の大きさ、すなわ
ち、大きな電流による電池の内部抵抗電圧降下によって
低下することになる。一方、IM2の定格電圧は、電池
の定格電圧をもとにして設定しており、このためこのイ
ンバータの出力可能な最大多流電圧も電池の直流電圧に
依存することになる。したがって、二次電池の直流電圧
が低下した場合には、インバータの最大出力としては指
令値どおりの出力ができず、いわゆる正弦波出力電圧は
得られず電圧が飽和した状態となる。
In the above-mentioned IM sensorless vector control device, an electric vehicle (BV) is used.
When referred to as)), a secondary battery is used as a power source. When using such a secondary battery,
The DC voltage input to the inverter decreases due to the discharge state of the battery, for example, the end of discharge, or the size of the inverter input, that is, the internal resistance voltage drop of the battery due to a large current. On the other hand, the rated voltage of IM2 is set based on the rated voltage of the battery, so that the maximum multi-current voltage that can be output by this inverter also depends on the DC voltage of the battery. Therefore, when the DC voltage of the secondary battery decreases, the maximum output of the inverter cannot be output according to the command value, so-called sine wave output voltage cannot be obtained, and the voltage is saturated.

【0017】かかる二次電池の電圧低下の発生が生じた
場合でも、速度センサを備えているベクトル制御では、
速度センサからの速度検出による電圧飽和状態が生じな
いよう電圧にリミッタをかけて出力電圧指令を正弦する
ことができる。しかしながら、図3に示す速度センサレ
スベクトル制御装置では、ずれをなくすような速度推定
を行なっているものの、電流i1α,i1β、指令電圧v
1α*,v1β* により速度を推定しているための速度推
定おくれ、過渡状態での速度推定のずれ、電流リップル
による速度推定リップルによるずれが生じており、この
ため電圧をリミットしようとしても正しい電圧がリミッ
トされないので、制御が不安定となる。
Even when such a voltage drop of the secondary battery occurs, the vector control provided with the speed sensor:
The output voltage command can be sinusoidal by applying a limiter to the voltage so that a voltage saturation state due to the speed detection from the speed sensor does not occur. However, in the speed sensorless vector control device shown in FIG. 3, although the speed is estimated so as to eliminate the deviation, the currents i 1 α, i 1 β and the command voltage v
There is a delay in speed estimation because the speed is estimated from 1 α * , v 1 β * , a deviation in speed estimation in a transient state, and a deviation in speed estimation ripple due to a current ripple. However, since the correct voltage is not limited, control becomes unstable.

【0018】本発明は、上述の問題に鑑み、電圧飽和が
生じないようリミットすることにより安定運転を行なう
ようにした速度センサレスベクトル制御装置の提供を目
的とする。
In view of the above problems, it is an object of the present invention to provide a speed sensorless vector control device that performs stable operation by limiting voltage saturation so that it does not occur.

【0019】[0019]

【課題を解決するための手段】上述の目的を達成する本
発明は、次の構成を特徴とする。すなわち、誘導電動機
に供給する1次電流を3相−2相変換してなる励磁電流
検出値及びトルク電流検出値を、励磁電流指令値及びト
ルク電流指令値に等しくさせるべく励磁軸電圧指令値及
びトルク軸電圧指令値を演算して出力する電流制御演算
部と、前記励磁電圧指令値及びトルク電圧指令値を2相
−3相変換してなる1次電圧制御指令に応じた1次電流
を前記誘導電動機に供給するインバータと、前記励磁電
流検出値及びトルク電流検出値と、前記励磁電圧指令値
及びトルク電圧指令値を取り込んでオブザーバ演算する
ことにより、励磁電流推定値及びトルク電流推定値と、
2次励磁磁束推定値及び2次トルク磁束推定値を求めて
出力する同一次元磁束オブザーバと、前記励磁電流検出
値及びトルク電流検出値と、前記同一次元磁束オブザー
バで求めた前記励磁電流推定値及びトルク電流推定値
と、前記2次励磁磁束推定値及び2次トルク磁束推定値
を取り込んで適応制御演算することにより、電動機速度
推定値を求める速度適応機構とを備えた誘導電動機の速
度センサレスベクトル制御装置において、(1)直流電
圧、速度推定値、電動機定数を用いて電圧方程式より導
出した最大出力可能トルクを演算するトルクリミットを
上記電流制御演算部のトルク電流指令値入力端に備えた
ことを特徴とし、(2)直流電圧、電動機の最高回転
数、電動機定数を用いて予め電圧方程式にて得られたリ
ミット値を全回転域でのリミット値として出力するトル
クリミットを上記電流制御部のトルク電流指令値入力端
に備えたことを特徴とし、更に(3)直流電圧、電動機
の最高回転数を用いて近似式にて得られたリミット値を
出力するトルクリミットを上記電流制御部のトルク電流
指令値入力端に備えたことを特徴とする。
The present invention which achieves the above object is characterized by the following constitution. That is, in order to make the exciting current detection value and the torque current detection value obtained by converting the primary current supplied to the induction motor into a three-phase to two-phase state, the exciting axis voltage command value and the torque current command value are made equal to each other. A current control computing unit that computes and outputs a torque axis voltage command value, and a primary current according to a primary voltage control command that is obtained by converting the excitation voltage command value and the torque voltage command value by two-phase to three-phase. An inverter supplied to the induction motor, the exciting current detection value and the torque current detection value, by taking the excitation voltage command value and the torque voltage command value and performing an observer operation, the excitation current estimation value and the torque current estimation value,
A same-dimensional magnetic flux observer for obtaining and outputting a secondary excitation magnetic flux estimation value and a secondary torque magnetic flux estimation value, the excitation current detection value and the torque current detection value, the excitation current estimation value obtained by the same-dimensional magnetic flux observer, and A speed sensorless vector control of an induction motor including a torque current estimated value, a speed adaptive mechanism that obtains a motor speed estimated value by fetching the secondary excitation magnetic flux estimated value and the secondary torque magnetic flux estimated value and performing adaptive control calculation. In the device, (1) a torque limit for calculating a maximum outputtable torque derived from a voltage equation using a DC voltage, an estimated speed value, and a motor constant is provided at a torque current command value input end of the current control calculation unit. Characteristically, (2) DC voltage, the maximum rotation speed of the motor, and the constant value obtained in advance by the voltage equation using the motor constant in the entire rotation range A torque limit output as a limit value is provided at the torque current command value input end of the current control unit, and further, (3) a limit obtained by an approximate expression using the DC voltage and the maximum rotation speed of the motor. A torque limit for outputting a value is provided at a torque current command value input end of the current control unit.

【0020】[0020]

【作用】電流制御演算部のトルク電流指令端子にてトル
クリミッタを備えて、最大出力可能トルクを演算し、予
めリミット値を得て出力し、近似式にてリミット値を得
ることにより、直流電圧低下による電圧飽和が防止で
き、安定運転を行なうことができる。
[Function] A torque limiter is provided at the torque current command terminal of the current control calculation unit, the maximum outputtable torque is calculated, the limit value is obtained and output in advance, and the limit value is obtained by the approximate expression to obtain the DC voltage. Voltage saturation due to a decrease can be prevented, and stable operation can be performed.

【0021】[0021]

【実施例】ここで、図1、図2を参照して本発明の実施
例を説明する。なお、図1にて図3と同一部分には同符
号を付す。すなわち、IM2に対し3相−2相変換器
3、固定座標−回転座標変換器4、電流検出値i1α,
1βを指令値i1α* ,i1β * とするよう電圧指令値
1α* ,v1β* を得る電流制御演算部5、固定座標変
換のための座標変換器6、2相−3相変換器インバータ
1の制御系を有し、更に、電動機速度の推定のためには
電流・磁束推定値i1α# ,i1β# ,λ2α# ,λ2β#
を得る同一次元磁束オブザーバ8、速度を推定演算する
速度適応機構9、遅れ補償のための制御軸ずれ補償器1
1を有し、またすべり角周波数指令値ω s * を得るすべ
り算出器10を有する。
Embodiments of the present invention will now be described with reference to FIGS.
An example will be described. The same parts in FIG. 1 as those in FIG.
Number. That is, a 3-phase to 2-phase converter for IM2
3, fixed coordinate-rotating coordinate converter 4, current detection value i1α,
i1β is the command value i1α*, I1β *Voltage command value
v1α*, V1β*Current control calculation unit 5 to obtain
Coordinate converter 6 for conversion, two-phase to three-phase converter inverter
It has a control system of 1, and for estimating the motor speed,
Current / flux estimated value i1α#, I1β#, Λ2α#, Λ2β#
Dimensional magnetic flux observer 8 to obtain
Speed adaptation mechanism 9, control axis deviation compensator 1 for delay compensation
1 and the slip angular frequency command value ω s *Should get
A calculator 10 is provided.

【0022】この場合、電流制御演算部5の入力値とし
ては、その一部に励磁電流指令値i 1dとトルク電流指令
値i1q * が存在するが、このうちトルク電流指令値i1q
* はトルクリミッタ12にてリミットをかけることによ
り最大トルク以下に制限している。すなわち、電圧飽和
の発生は、インバータ出力が大きく(出力トルクが大き
く)二次電池の直流電圧が低下した時であるため、直流
電圧、回転速度、モータ定数にてその状態での最大トル
クを計算することにより換言すればトルク分電流を計算
することにより、電圧飽和が生じないように出力トルク
を最大トルク如何にリミットして運転するものである。
このためトルクリミッタ12では直流電圧Vdc、回転速
度ωs * +ωsr+ωr * を加味してトルク電流指令値i1q
* にリミットをかけている。トルクリミット値i1qの算
出は次の式[数3]による。
In this case, as the input value of the current control calculation unit 5,
The excitation current command value i 1dAnd torque current command
Value i1q *Exists, of which the torque current command value i1q
*Is due to the limit being applied by the torque limiter 12.
Is limited to less than the maximum torque. That is, voltage saturation
Occurs when the inverter output is large (output torque is large
When the DC voltage of the secondary battery drops,
Maximum torque in that state according to voltage, rotation speed and motor constant
In other words, the torque component current is calculated.
Output torque to prevent voltage saturation.
Is operated with the maximum torque limited.
Therefore, in the torque limiter 12, the DC voltage Vdc, Rotation speed
Degree ωs *+ Ωsr+ Ωr * In consideration of the torque current command value i1q
*Is putting a limit on. Torque limit value i1qCalculation of
The output is based on the following formula [Equation 3].

【0023】[0023]

【数3】 [数3]による二次方程式の係数を運転時のVdcとω0
とi1d計算し、その係数でのi1qヲ計算しトルクリミッ
ト値とする。
(Equation 3) The coefficient of the quadratic equation according to [Equation 3] is set to V dc and ω 0 during operation.
And i 1d are calculated, and i 1q with that coefficient is calculated as the torque limit value.

【0024】上述の例では、[数3]に示すようにトル
クリミット値の計算として二次方程式を解かねばなら
ず、実際のトルクリミッタ12での計算ではその計算時
間が長くかかることになる。したがって、上述の例では
計算時間が早い場合しか適用できない。このため、より
簡便な方法として、二次方程式を用いた方式にて[表
1]にて示した条件にて実施に計算し図2に示すように
その特性をグラフ化した。
In the above example, the quadratic equation has to be solved for calculating the torque limit value as shown in [Equation 3], and the actual calculation of the torque limiter 12 takes a long time. . Therefore, the above example can be applied only when the calculation time is short. Therefore, as a simpler method, a calculation using a quadratic equation was carried out under the conditions shown in [Table 1], and its characteristics were graphed as shown in FIG.

【0025】[0025]

【表1】 図2に示すように回転数が高い特性と回転数が低い特性
との比較の結果、同じ直流電圧に対して、例えば165
Vについて大きくトルクが変化し高回転数では大きくト
ルクが絞られる。したがって、IMの最高回転数におけ
るリミット特性を予め計算しておき、その特性にて全回
転数でトルクをリミットすれば、全回転数にて電圧飽和
を起すことなく運転可能となる。
[Table 1] As shown in FIG. 2, as a result of comparison between the characteristic of high rotational speed and the characteristic of low rotational speed, for the same DC voltage, for example, 165
The torque changes greatly with respect to V, and the torque is greatly reduced at high rotational speeds. Therefore, if the limit characteristic at the maximum rotation speed of IM is calculated in advance and the torque is limited at all rotation speeds with that characteristic, operation can be performed at all rotation speeds without causing voltage saturation.

【0026】最高回転数付近のトルクリミット特性は、
次式[数4]に示す近似式によって近似できる。
The torque limit characteristic near the maximum speed is
It can be approximated by the approximation formula shown in the following formula [Equation 4].

【数4】 この[数4]を用いることによってオフラインにて予め
計算する必要がなくかつ簡単な計算式となるので計算時
間が短くて済み、安定な運転ができる。
[Equation 4] By using this [Equation 4], there is no need to perform pre-calculation off-line and the calculation formula is simple, so the calculation time is short and stable operation is possible.

【0027】[0027]

【発明の効果】以上説明したように本発明によれば、直
流電圧、回転数、モータ定数とモータの電圧方程式より
計算した最大出力可能トルクで、トルクをリミットする
ことにより、電圧飽和を起こさないよう運転することに
より、直流電圧低下時にも安定な運転が可能となる。ま
た、予めオフラインでリミットカーブを計算し記憶する
ことにより簡便な方法にて全範囲にて安定な運転ができ
る。更に、直流電圧−最大出力可能トルクのカーブを近
似する式にて、簡単な計算にて安定な運転ができる。
As described above, according to the present invention, by limiting the torque with the maximum outputtable torque calculated from the DC voltage, the rotation speed, the motor constant and the voltage equation of the motor, voltage saturation is prevented. By performing such operation, stable operation becomes possible even when the DC voltage drops. Further, by calculating and storing the limit curve off-line in advance, stable operation can be performed in the entire range by a simple method. Furthermore, stable operation can be performed by simple calculation using an expression that approximates the curve of DC voltage-maximum outputtable torque.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例に係る速度センサレスベクトル制
御ブロック図。
FIG. 1 is a speed sensorless vector control block diagram according to an embodiment of the present invention.

【図2】Vdc−トルクリミット特性曲線図。FIG. 2 is a V dc -torque limit characteristic curve diagram.

【図3】従来の速度センサレスベクトル制御ブロック
図。
FIG. 3 is a conventional speed sensorless vector control block diagram.

【符号の説明】[Explanation of symbols]

1 インバータ 2 誘導電動機 3 電流制御演算部 8 同一次元磁束オブザーバ 9 速度適応機構 12 トルクリミッタ 1 Inverter 2 Induction motor 3 Current control calculation unit 8 Same-dimensional magnetic flux observer 9 Speed adaptation mechanism 12 Torque limiter

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 誘導電動機に供給する1次電流を3相−
2相変換してなる励磁電流検出値及びトルク電流検出値
を、励磁電流指令値及びトルク電流指令値に等しくさせ
るべく励磁軸電圧指令値及びトルク軸電圧指令値を演算
して出力する電流制御演算部と、 前記励磁電圧指令値及びトルク電圧指令値を2相−3相
変換してなる1次電圧制御指令に応じた1次電流を前記
誘導電動機に供給するインバータと、 前記励磁電流検出値及びトルク電流検出値と、前記励磁
電圧指令値及びトルク電圧指令値を取り込んでオブザー
バ演算することにより、励磁電流推定値及びトルク電流
推定値と、2次励磁磁束推定値及び2次トルク磁束推定
値を求めて出力する同一次元磁束オブザーバと、 前記励磁電流検出値及びトルク電流検出値と、前記同一
次元磁束オブザーバで求めた前記励磁電流推定値及びト
ルク電流推定値と、前記2次励磁磁束推定値及び2次ト
ルク磁束推定値を取り込んで適応制御演算することによ
り、電動機速度推定値を求める速度適応機構とを備えた
誘導電動機の速度センサレスベクトル制御装置におい
て、 直流電圧、速度推定値、電動機定数を用いて電圧方程式
より導出した最大出力可能トルクを演算するトルクリミ
ットを上記電流制御演算部のトルク電流指令値入力端に
備えたことを特徴とする誘導電動機の速度センサレスベ
クトル制御装置。
1. A three-phase primary current supplied to an induction motor
Current control calculation for calculating and outputting the exciting axis voltage command value and the torque axis voltage command value so that the exciting current detection value and the torque current detection value obtained by the two-phase conversion are made equal to the exciting current command value and the torque current command value. Section, an inverter for supplying the induction motor with a primary current according to a primary voltage control command obtained by converting the excitation voltage command value and the torque voltage command value into two-phase to three-phase, the excitation current detection value, and The torque current detection value and the excitation voltage command value and the torque voltage command value are fetched and observer operation is performed to obtain the excitation current estimation value and the torque current estimation value, the secondary excitation magnetic flux estimation value and the secondary torque magnetic flux estimation value. The same-dimensional magnetic flux observer obtained and output, the excitation current detection value and the torque current detection value, the excitation current estimated value and the torque electric current obtained by the same-dimensional magnetic flux observer A speed sensorless vector control device for an induction motor, comprising: an estimated value; and a speed adaptive mechanism for obtaining an estimated motor speed value by fetching the secondary excitation magnetic flux estimated value and the secondary torque magnetic flux estimated value and performing adaptive control calculation. An induction motor characterized in that a torque limit for calculating a maximum outputtable torque derived from a voltage equation using a DC voltage, an estimated speed value, and a motor constant is provided at a torque current command value input end of the current control calculation unit. Speed sensorless vector controller.
【請求項2】 誘導電動機に供給する1次電流を3相−
2相変換してなる励磁電流検出値及びトルク電流検出値
を、励磁電流指令値及びトルク電流指令値に等しくさせ
るべく励磁軸電圧指令値及びトルク軸電圧指令値を演算
して出力する電流制御演算部と、 前記励磁電圧指令値及びトルク電圧指令値を2相−3相
変換してなる1次電圧制御指令に応じた1次電流を前記
誘導電動機に供給するインバータと、 前記励磁電流検出値及びトルク電流検出値と、前記励磁
電圧指令値及びトルク電圧指令値を取り込んでオブザー
バ演算することにより、励磁電流推定値及びトルク電流
推定値と、2次励磁磁束推定値及び2次トルク磁束推定
値を求めて出力する同一次元磁束オブザーバと、 前記励磁電流検出値及びトルク電流検出値と、前記同一
次元磁束オブザーバで求めた前記励磁電流推定値及びト
ルク電流推定値と、前記2次励磁磁束推定値及び2次ト
ルク磁束推定値を取り込んで適応制御演算することによ
り、電動機速度推定値を求める速度適応機構とを備えた
誘導電動機の速度センサレスベクトル制御装置におい
て、 直流電圧、電動機の最高回転数、電動機定数を用いて予
め電圧方程式にて得られたリミット値を全回転域でのリ
ミット値として出力するトルクリミットを上記電流制御
部のトルク電流指令値入力端に備えたことを特徴とする
誘導電動機の速度センサレスベクトル制御装置。
2. The primary current supplied to the induction motor is three-phase-
Current control calculation for calculating and outputting the exciting axis voltage command value and the torque axis voltage command value so that the exciting current detection value and the torque current detection value obtained by the two-phase conversion are made equal to the exciting current command value and the torque current command value. Section, an inverter for supplying the induction motor with a primary current according to a primary voltage control command obtained by converting the excitation voltage command value and the torque voltage command value into two-phase to three-phase, the excitation current detection value, and The torque current detection value and the excitation voltage command value and the torque voltage command value are fetched and observer operation is performed to obtain the excitation current estimation value and the torque current estimation value, the secondary excitation magnetic flux estimation value and the secondary torque magnetic flux estimation value. The same-dimensional magnetic flux observer obtained and output, the excitation current detection value and the torque current detection value, the excitation current estimated value and the torque electric current obtained by the same-dimensional magnetic flux observer A speed sensorless vector control device for an induction motor, comprising: an estimated value; and a speed adaptive mechanism that obtains a motor speed estimated value by fetching the secondary excitation magnetic flux estimated value and the secondary torque magnetic flux estimated value and performing adaptive control calculation. , The DC current, the maximum rotation speed of the motor, and the motor constant, the torque limit that is obtained in advance as the limit value obtained by the voltage equation as the limit value in the entire rotation range is used as the torque current command value input terminal of the current control unit. A speed sensorless vector control device for an induction motor, characterized in that
【請求項3】 誘導電動機に供給する1次電流を3相−
2相変換してなる励磁電流検出値及びトルク電流検出値
を、励磁電流指令値及びトルク電流指令値に等しくさせ
るべく励磁軸電圧指令値及びトルク軸電圧指令値を演算
して出力する電流制御演算部と、 前記励磁電圧指令値及びトルク電圧指令値を2相−3相
変換してなる1次電圧制御指令に応じた1次電流を前記
誘導電動機に供給するインバータと、 前記励磁電流検出値及びトルク電流検出値と、前記励磁
電圧指令値及びトルク電圧指令値を取り込んでオブザー
バ演算することにより、励磁電流推定値及びトルク電流
推定値と、2次励磁磁束推定値及び2次トルク磁束推定
値を求めて出力する同一次元磁束オブザーバと、 前記励磁電流検出値及びトルク電流検出値と、前記同一
次元磁束オブザーバで求めた前記励磁電流推定値及びト
ルク電流推定値と、前記2次励磁磁束推定値及び2次ト
ルク磁束推定値を取り込んで適応制御演算することによ
り、電動機速度推定値を求める速度適応機構とを備えた
誘導電動機の速度センサレスベクトル制御装置におい
て、 直流電圧、電動機の最高回転数を用いて近似式にて得ら
れたリミット値を出力するトルクリミットを上記電流制
御部のトルク電流指令値入力端に備えたことを特徴とす
る誘導電動機の速度センサレルベクトル制御装置。
3. The primary current supplied to the induction motor is three-phase-
Current control calculation for calculating and outputting the exciting axis voltage command value and the torque axis voltage command value so that the exciting current detection value and the torque current detection value obtained by the two-phase conversion are made equal to the exciting current command value and the torque current command value. Section, an inverter for supplying the induction motor with a primary current according to a primary voltage control command obtained by converting the excitation voltage command value and the torque voltage command value into two-phase to three-phase, the excitation current detection value, and The torque current detection value and the excitation voltage command value and the torque voltage command value are fetched and observer operation is performed to obtain the excitation current estimation value and the torque current estimation value, the secondary excitation magnetic flux estimation value and the secondary torque magnetic flux estimation value. The same-dimensional magnetic flux observer obtained and output, the excitation current detection value and the torque current detection value, the excitation current estimated value and the torque electric current obtained by the same-dimensional magnetic flux observer A speed sensorless vector control device for an induction motor, comprising: an estimated value; and a speed adaptive mechanism that obtains a motor speed estimated value by fetching the secondary excitation magnetic flux estimated value and the secondary torque magnetic flux estimated value and performing adaptive control calculation. The speed of the induction motor is characterized in that a torque limit for outputting a limit value obtained by an approximate expression using the DC voltage and the maximum rotation speed of the motor is provided at the torque current command value input end of the current control unit. Sensorrel vector controller.
JP7114191A 1995-05-12 1995-05-12 Speed sensorless vector controller for induction motor Withdrawn JPH08308300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7114191A JPH08308300A (en) 1995-05-12 1995-05-12 Speed sensorless vector controller for induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7114191A JPH08308300A (en) 1995-05-12 1995-05-12 Speed sensorless vector controller for induction motor

Publications (1)

Publication Number Publication Date
JPH08308300A true JPH08308300A (en) 1996-11-22

Family

ID=14631488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7114191A Withdrawn JPH08308300A (en) 1995-05-12 1995-05-12 Speed sensorless vector controller for induction motor

Country Status (1)

Country Link
JP (1) JPH08308300A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002136196A (en) * 2000-10-30 2002-05-10 Fuji Electric Co Ltd Method and apparatus for controlling induction motor
GB2377509A (en) * 2001-03-29 2003-01-15 Ford Global Tech Inc Sensorless control system for induction motor
JP2003052198A (en) * 2001-08-07 2003-02-21 Yaskawa Electric Corp Method and device for controlling induction motor
JPWO2002091558A1 (en) * 2001-04-24 2004-08-26 三菱電機株式会社 Control device for synchronous motor
JP2006254573A (en) * 2005-03-09 2006-09-21 Fuji Electric Holdings Co Ltd Control method of induction motor
JP2007244082A (en) * 2006-03-08 2007-09-20 Railway Technical Res Inst Apparatus and method for estimating rotor frequency
JP2009290962A (en) * 2008-05-28 2009-12-10 Fuji Electric Systems Co Ltd Controller of permanent magnet type synchronous motor
EP2228896A1 (en) * 2009-03-12 2010-09-15 Hitachi Car Engineering Co., Ltd. Torque controller for permanent magnet synchronous motor
JP2010273400A (en) * 2009-05-19 2010-12-02 Nippon Reliance Kk Device for control of induction motor
JP2016178814A (en) * 2015-03-20 2016-10-06 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Motor control device and electric apparatus
ES2690409A1 (en) * 2018-04-18 2018-11-20 Universitat Politècnica De València DEVICE AND PROCEDURE FOR DETERMINING THE TORQUE, SPEED AND ENERGY LOSSES OF THREE-PHASE ASYNCHRONOUS ELECTRIC MOTORS (Machine-translation by Google Translate, not legally binding)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002136196A (en) * 2000-10-30 2002-05-10 Fuji Electric Co Ltd Method and apparatus for controlling induction motor
GB2377509A (en) * 2001-03-29 2003-01-15 Ford Global Tech Inc Sensorless control system for induction motor
GB2377509B (en) * 2001-03-29 2004-12-29 Ford Global Tech Inc Sensorless control system for induction motor
JP4672236B2 (en) * 2001-04-24 2011-04-20 三菱電機株式会社 Control device for synchronous motor
JPWO2002091558A1 (en) * 2001-04-24 2004-08-26 三菱電機株式会社 Control device for synchronous motor
JP4697372B2 (en) * 2001-08-07 2011-06-08 株式会社安川電機 Induction motor control method and apparatus
JP2003052198A (en) * 2001-08-07 2003-02-21 Yaskawa Electric Corp Method and device for controlling induction motor
JP2006254573A (en) * 2005-03-09 2006-09-21 Fuji Electric Holdings Co Ltd Control method of induction motor
JP4710358B2 (en) * 2005-03-09 2011-06-29 富士電機株式会社 Induction motor control method
JP2007244082A (en) * 2006-03-08 2007-09-20 Railway Technical Res Inst Apparatus and method for estimating rotor frequency
JP4675264B2 (en) * 2006-03-08 2011-04-20 財団法人鉄道総合技術研究所 Rotor frequency estimation device and rotor frequency estimation method
JP2009290962A (en) * 2008-05-28 2009-12-10 Fuji Electric Systems Co Ltd Controller of permanent magnet type synchronous motor
EP2228896A1 (en) * 2009-03-12 2010-09-15 Hitachi Car Engineering Co., Ltd. Torque controller for permanent magnet synchronous motor
US8305019B2 (en) 2009-03-12 2012-11-06 Hitachi Car Engineering Co., Ltd. Torque controller for permanent magnet synchronous motor
JP2010273400A (en) * 2009-05-19 2010-12-02 Nippon Reliance Kk Device for control of induction motor
JP2016178814A (en) * 2015-03-20 2016-10-06 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Motor control device and electric apparatus
ES2690409A1 (en) * 2018-04-18 2018-11-20 Universitat Politècnica De València DEVICE AND PROCEDURE FOR DETERMINING THE TORQUE, SPEED AND ENERGY LOSSES OF THREE-PHASE ASYNCHRONOUS ELECTRIC MOTORS (Machine-translation by Google Translate, not legally binding)
WO2019202188A1 (en) * 2018-04-18 2019-10-24 Universitat Politècnica De València Device and method for determining torque, speed and energy losses of three-phase asynchronous electric motors

Similar Documents

Publication Publication Date Title
JP3520002B2 (en) Vector control device for induction motor
TW465171B (en) Apparatus and method for controlling a synchronous motor
US6674262B2 (en) Motor control apparatus and motor control method
JP3282541B2 (en) Motor control device
JPH07110160B2 (en) Induction motor controller
JPH08308300A (en) Speed sensorless vector controller for induction motor
JP3679246B2 (en) AC motor speed control device
JP3637209B2 (en) Power converter using speed sensorless vector control
JP4238646B2 (en) Speed sensorless vector controller for induction motor
JP3054521B2 (en) Induction motor control device
JP3067659B2 (en) Control method of induction motor
JP4596092B2 (en) Induction motor magnetic flux position estimation method and control apparatus
JP4161064B2 (en) Rotating machine control device
JPH06225574A (en) Method and apparatus for controlling motor
JPH07123799A (en) Speed sensorless vector control system for induction motor
JP4238652B2 (en) Speed sensorless vector control method and apparatus
JPH07123798A (en) Speed sensorless vector control system for induction motor
JP2856950B2 (en) Control device for synchronous motor
JP2003339193A (en) Driver of stepping motor
JPH0870599A (en) Sensorless vector control apparatus for induction motor speed
JP3226258B2 (en) Induction motor vector control device and method
JPH0570394B2 (en)
JPH08205599A (en) Speed estimation and drive device for induction motor
JP3074682B2 (en) Sensorless speed control method
JPH0870598A (en) Sensorless vector control apparatus for induction motor speed

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020806