JPH0830806B2 - Optically anisotropic and liquid crystal display device - Google Patents

Optically anisotropic and liquid crystal display device

Info

Publication number
JPH0830806B2
JPH0830806B2 JP62254020A JP25402087A JPH0830806B2 JP H0830806 B2 JPH0830806 B2 JP H0830806B2 JP 62254020 A JP62254020 A JP 62254020A JP 25402087 A JP25402087 A JP 25402087A JP H0830806 B2 JPH0830806 B2 JP H0830806B2
Authority
JP
Japan
Prior art keywords
liquid crystal
display device
crystal display
anisotropic body
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62254020A
Other languages
Japanese (ja)
Other versions
JPH0196623A (en
Inventor
周二 北村
豊和 岡田
啓志 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Sumitomo Chemical Co Ltd
Original Assignee
Seiko Epson Corp
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Sumitomo Chemical Co Ltd filed Critical Seiko Epson Corp
Priority to JP62254020A priority Critical patent/JPH0830806B2/en
Publication of JPH0196623A publication Critical patent/JPH0196623A/en
Publication of JPH0830806B2 publication Critical patent/JPH0830806B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/40Materials having a particular birefringence, retardation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/01Number of plates being 1
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/08Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates with a particular optical axis orientation

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液晶表示装置に用いられる光学的異方体に
関するものである。
TECHNICAL FIELD The present invention relates to an optical anisotropic body used for a liquid crystal display device.

〔従来技術〕[Prior art]

従来のツイステッドネマチック形液晶表示装置は、特
開昭60-50511号公報のように液晶分子のねじれ角が90度
以上であり、液晶セルの上下に一対の偏光板を設けこれ
らの偏光軸(吸収軸)と、電極基板に隣接する液晶分子
の分子軸方向とがなす挟角が30度から60度の範囲であっ
た。そのために、液晶セルに対し電圧無印加状態での外
観の色相が白ではなく緑色から黄赤色にかけての色相に
なっている。また選択電圧印加状態での外観の色相が黒
色ではなく青色となっている。
In the conventional twisted nematic liquid crystal display device, the twist angle of liquid crystal molecules is 90 degrees or more as disclosed in Japanese Patent Laid-Open No. 60-50511, and a pair of polarizing plates are provided above and below the liquid crystal cell so that the polarization axes (absorption Angle) and the molecular axis direction of the liquid crystal molecules adjacent to the electrode substrate are in the range of 30 to 60 degrees. Therefore, the hue of the appearance of the liquid crystal cell when no voltage is applied is not white but a hue from green to yellow-red. In addition, the hue of the appearance when the selection voltage is applied is blue instead of black.

このような色相は心理的に受け入れ難く表示装置とし
て好ましいものではなかった。また、従来の液晶表示装
置は光学的な色ムラが生じ易く表示品質は必ずしも満足
できるものではなかった。
Such a hue is psychologically unacceptable and is not preferable as a display device. Further, the conventional liquid crystal display device is apt to cause optical color unevenness, and the display quality is not always satisfactory.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

前述したように従来のスーパーツイステッドネマチッ
ク型液晶表示装置における色相は好ましいものではな
い。本発明はこの問題点を解決し、一層その表示品質を
改良するために用いる光学的異方体を提供するものであ
る。
As described above, the hue in the conventional super twisted nematic liquid crystal display device is not preferable. The present invention solves this problem and provides an optical anisotropic body used for further improving the display quality.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、対向して配置する2枚の電極基板間にねじ
れ角が160度以上になるようにねじれ配向したネマチッ
ク液晶を挟持してなる液晶セルと該液晶セルを挟んで両
側に配置された一対の偏光板からなる液晶表示装置の該
一対の偏光板の間への配置用であって、熱可塑性高分子
フィルム又はシートをネックイン率が10%以下となるよ
うに一軸方向に延伸して得られる0.4〜0.7μmの可視光
線波長域における平均の透過率が80%であり、複屈折率
(Δn)と厚み(d)の積で定義されるレターデーショ
ン(Δn×d)の測定値が0.2〜1.2μmの範囲にあり、
かつ、直交ニコル下にその光学的主軸が45度になるよう
に配置して測定したときの色差(ΔE*)が30以下であ
るフィルム又はシートからなる光学的異方体およびその
光学的異方体を用いた液晶表示装置に関する。本発明の
光学的異方体を用いた液晶表示装置は前記した問題点の
解決されたものであり色相においては電圧無印加時には
白色に近い色を呈し、電圧印加時は黒色もしくは黒色に
近い色を示すものとなりかつ光学的色ムラの少ない優れ
た表示品質を有する液晶表示装置となる。
According to the present invention, a liquid crystal cell formed by sandwiching nematic liquid crystals that are twisted and oriented so that a twist angle is 160 degrees or more is sandwiched between two electrode substrates that are arranged to face each other, and the liquid crystal cell is disposed on both sides of the liquid crystal cell. For arranging a liquid crystal display device comprising a pair of polarizing plates between the pair of polarizing plates, obtained by uniaxially stretching a thermoplastic polymer film or sheet so that the neck-in rate is 10% or less. The average transmittance in the visible light wavelength range of 0.4 to 0.7 μm is 80%, and the measured value of the retardation (Δn × d) defined by the product of the birefringence (Δn) and the thickness (d) is 0.2 to In the range of 1.2 μm,
Also, an optical anisotropic body made of a film or sheet having a color difference (ΔE * ) of 30 or less when measured by arranging it so that its optical principal axis is 45 degrees under a crossed Nicols and the optical anisotropic body thereof. The present invention relates to a liquid crystal display device using a body. The liquid crystal display device using the optical anisotropic body of the present invention is one in which the above-mentioned problems are solved, and the hue exhibits a color close to white when no voltage is applied, and a black color or a color close to black when a voltage is applied. And a liquid crystal display device having excellent display quality with little optical color unevenness.

本発明の光学的異方体に用いられる熱可塑性高分子と
しては、透明性および適切なR値を得るために非晶性高
分子の方が好ましいが、延伸処理後、可視光線波長域に
おける平均の光線透過率が80%以上になるものであれ
ば、結晶性高分子、非晶性高分子を問わず、いずれも適
用可能である。例示するならばポリカーボネート系高分
子、ポリメチルメタクリレート系樹脂、ポリスチレン系
樹脂、ポリアクリロニトリル系樹脂、ポリエチレンテレ
フタレート等のポリエステル系樹脂、酢酸セルロース等
のセルロース系樹脂、ナイロン6およびナイロン66等の
ポリアミド系樹脂、ポリ塩化ビニール系樹脂、ポリビニ
ルアルコールおよびその誘導体、ポリエチレン・ポリプ
ロピレン等のポリオレフィン系樹脂、フッ素系樹脂、ポ
リサルフォン、ポリエーテルサルフォンおよびこれらの
変性物から選ばれる少なくとも1種以上の材料があげら
れる。なかでもポリカーボネート系樹脂からなる光学的
異方体は、透明性が良好であり、光学的な分散が小さ
く、低吸湿性であり、かつ100℃以上の耐熱性や耐衝撃
性が良好であって、かつ延伸性が良好であるために、本
発明には特に有効な高分子化合物である。
As the thermoplastic polymer used for the optically anisotropic substance of the present invention, an amorphous polymer is preferable in order to obtain transparency and an appropriate R value, but after stretching treatment, the average in the visible light wavelength range is used. Any of crystalline polymers and amorphous polymers can be applied as long as the light transmittance of is 80% or more. For example, polycarbonate-based polymer, polymethylmethacrylate-based resin, polystyrene-based resin, polyacrylonitrile-based resin, polyester-based resin such as polyethylene terephthalate, cellulose-based resin such as cellulose acetate, polyamide-based resin such as nylon 6 and nylon 66. At least one material selected from polyvinyl chloride resins, polyvinyl alcohol and its derivatives, polyolefin resins such as polyethylene and polypropylene, fluorine resins, polysulfones, polyether sulfones and modified products thereof. Among them, an optically anisotropic body made of a polycarbonate resin has good transparency, small optical dispersion, low hygroscopicity, and good heat resistance and impact resistance of 100 ° C. or higher. In addition, since it has good stretchability, it is a polymer compound that is particularly effective in the present invention.

本発明で使用されるポリカーボネート系重合体は、主
に、ビスフェノール骨格を有する直鎖状のポリカーボネ
ート又は共重合ポリカーボネート類等であって、4,4′
−ジヒドロキシジフェニルアルカン、又はこれらのハロ
ゲン置換体からホスゲン法、又はエステル交換法によっ
て得られるものである。4,4′−ジヒドロキシジフェニ
ルアルカン、又はこれらの置換体を例示するならば、4,
4′−ジヒドロキシジフェニルメタン、4,4′−ジヒドロ
キシジフェニルエタン、4,4′−ジヒドロキシジフェニ
ルブタン、4,4′−ジヒドロキシジフェニル−2,2−プロ
パン、3,3−ジブロモー−4,4′−ジヒドロキシジフェニ
ル−2,2−プロパン、3,3′−ジクロル−4,4′−ジヒド
ロキシジフェニル−2,2−プロパン、3,3′,5,5′−テト
ラブロモ−4,4′−ジヒドロキシジフェニル−2,2−プロ
パン等があげられる。
The polycarbonate-based polymer used in the present invention is mainly a linear polycarbonate having a bisphenol skeleton or copolymerized polycarbonates, and is 4,4 ′.
It is obtained from a dihydroxydiphenylalkane or a halogen-substituted product thereof by a phosgene method or a transesterification method. 4,4′-dihydroxydiphenylalkane, or a substitution product thereof, is exemplified as 4,4′-dihydroxydiphenylalkane.
4'-dihydroxydiphenylmethane, 4,4'-dihydroxydiphenylethane, 4,4'-dihydroxydiphenylbutane, 4,4'-dihydroxydiphenyl-2,2-propane, 3,3-dibromo-4,4'-dihydroxy Diphenyl-2,2-propane, 3,3'-dichloro-4,4'-dihydroxydiphenyl-2,2-propane, 3,3 ', 5,5'-tetrabromo-4,4'-dihydroxydiphenyl-2 , 2-propane and the like.

さらにこれらのポリカーボネート系重合体にスチレン
系樹脂およびその変性物等をブレンドしたものも、本発
明には有効である。
Furthermore, blends of these polycarbonate polymers with styrene resins and modified products thereof are also effective in the present invention.

これらのポリカーボネート系重合体を本発明の光学的
異方体とするには、ポリカーボネート系重合体を公知の
製膜手段すなわち溶剤キャスト法、カレンダー法、又は
押出法でフィルム又はシートに成形した後、一軸方向に
適度に延伸することによって達成される。
To form these polycarbonate-based polymers into the optically anisotropic substance of the present invention, the polycarbonate-based polymer is formed into a film or a sheet by a known film forming means, that is, a solvent casting method, a calendering method, or an extrusion method, This is achieved by moderately stretching in the uniaxial direction.

光学主軸が一定で、かつ光学的色ムラが少ない光学的
異方体を得るためには原反フィルム又はシートは、厚み
精度が良好であり、できるだけ光学的に均質なものが要
求される。フィルム又はシートに成形時にダイライン等
が発生することは好ましくない。通常、フィルム又はシ
ートを成形する際には、微小な配向が発生することが多
く、延伸に先立ってこれらの微小配向を減らすことも好
ましい方法である。延伸前に微小配向を減らす方法とし
ては、熱処理が有効である。本発明の光学的異方体を製
造するために、延伸前に熱可塑性高分子フィルム又はシ
ートをその加熱変形温度付近の温度で熱処理を実施す
る。ポリカーボネート系フィルム又はシートの場合は、
延伸前に100〜200℃の温度で0.1〜5分程度熱処理を実
施すると、原反フィルム又はシートの複屈折率は、実質
的に0となり、ほぼ完全な無配向フィルム又はシートと
なる。
In order to obtain an optical anisotropic body having a constant optical principal axis and little optical color unevenness, the raw film or sheet is required to have good thickness accuracy and be as optically uniform as possible. It is not preferable that a die line or the like is formed on the film or sheet during molding. Usually, when a film or sheet is molded, minute orientations often occur, and it is also a preferable method to reduce these minute orientations before stretching. Heat treatment is effective as a method of reducing the fine orientation before stretching. In order to produce the optically anisotropic body of the present invention, the thermoplastic polymer film or sheet is subjected to heat treatment at a temperature near its heat distortion temperature before stretching. In the case of polycarbonate film or sheet,
When heat treatment is performed at a temperature of 100 to 200 ° C. for about 0.1 to 5 minutes before stretching, the birefringence of the original film or sheet becomes substantially 0, and the film or sheet becomes almost completely non-oriented.

このようにして得られた原反フィルム又はシートを一
軸方向に延伸する方法としてはテンター法による横一軸
延伸法、ロール間圧縮延伸法、周速の異なるロールを利
用する縦一軸延伸法等公知の一軸延伸方法を採用するこ
とができる。
As a method of uniaxially stretching the raw film or sheet thus obtained, known methods such as a transverse uniaxial stretching method by a tenter method, a roll-to-roll compression stretching method, and a longitudinal uniaxial stretching method using rolls having different peripheral speeds are known. A uniaxial stretching method can be adopted.

本発明において光学的に色ムラが小さく、レターデー
ションの振れ幅の小さい光学的異方体を得るためには、
延伸前のフィルム幅Aと延伸後のフィルム幅Bとから定
義されるネックイン率(100×(A−B)/A)を10%以
下、好ましくは5%以下、さらに好ましくは実質的に0
に抑える必要がある。従って、本発明において最も有効
な延伸方法は、実質的にネックインの生じないテンター
法による横一軸延伸方法である。本方式は、他の熱可塑
性樹脂においても有用である。
In the present invention, in order to obtain an optically anisotropic body having a small color unevenness optically and a small swing range of retardation,
The neck-in ratio (100 × (A−B) / A) defined by the film width A before stretching and the film width B after stretching is 10% or less, preferably 5% or less, and more preferably substantially 0.
Need to be kept to. Therefore, the most effective stretching method in the present invention is the lateral uniaxial stretching method by the tenter method in which neck-in does not substantially occur. This method is also useful for other thermoplastic resins.

テンター法による横一軸延伸においては、一般に予熱
工程、延伸工程、熱処理工程の3工程から成る。予熱工
程は、必ずしも必要ではないが、フィルム又はシートの
複屈折率を実質的に0にする熱処理工程と同じ役割を有
するので有用である。延伸工程は均質な光学的異方体と
するための最も大切な工程であり、用いる熱可塑性高分
子の種類、フィルム又はシートの厚み、目的とするR値
等によって条件は異なる。ポリカーボネート系重合体の
場合には、R値を0.2〜1.2μmとするためには、延伸温
度130〜200℃、延伸倍率1.1〜3.0倍程度である。延伸後
の熱処理工程は必ずしも必要ではないが、得られた延伸
フィルム又はシートの寸法安定性の向上、およびレター
デーションの均一性向上のためには、有用な工程とな
る。ポリカーボネート系重合体以外の前記熱可塑性高分
子を用いる場合には、その熱可塑性高分子の特性に応じ
た延伸条件を設定して延伸を行う必要がある。
The transverse uniaxial stretching by the tenter method generally includes three steps of a preheating step, a stretching step and a heat treatment step. The preheating step is not necessarily required, but is useful because it has the same role as the heat treatment step for making the birefringence of the film or sheet substantially zero. The stretching step is the most important step for obtaining a homogeneous optically anisotropic body, and the conditions vary depending on the type of thermoplastic polymer used, the thickness of the film or sheet, the target R value, and the like. In the case of a polycarbonate-based polymer, the stretching temperature is 130 to 200 ° C. and the stretching ratio is about 1.1 to 3.0 times so that the R value is 0.2 to 1.2 μm. A heat treatment step after stretching is not always necessary, but it is a useful step for improving the dimensional stability of the obtained stretched film or sheet and improving the uniformity of retardation. When the thermoplastic polymer other than the polycarbonate polymer is used, it is necessary to set the stretching conditions according to the characteristics of the thermoplastic polymer and perform the stretching.

本発明において、0.4〜0.7μmの可視光線波長域にお
ける平均の透過率は以下のように定義する。すなわち分
光光度計又は分光計等により0.4〜0.7μmの範囲におい
て0.01μm毎の透過率を測定し、得られた31点の透過率
を平均した値である。本発明の光学的異方体は、光学的
な用途に用いる為、平均の光線透過率は、できるだけ大
きいことが好ましく、通常80%以上、好ましくは85%以
上必要である。ポリカーボネート系フィルム又はシート
を延伸して得られる光学的異方体は通常88%以上の平均
光線透過率を有する。
In the present invention, the average transmittance in the visible light wavelength range of 0.4 to 0.7 μm is defined as follows. That is, it is a value obtained by measuring the transmittance at every 0.01 μm in the range of 0.4 to 0.7 μm with a spectrophotometer or a spectrometer and averaging the transmittances at 31 points obtained. Since the optical anisotropic body of the present invention is used for optical applications, it is preferable that the average light transmittance is as high as possible, usually 80% or more, preferably 85% or more. The optically anisotropic substance obtained by stretching a polycarbonate film or sheet usually has an average light transmittance of 88% or more.

本発明でいう光学的な色ムラは、以下に定義される色
差ΔE*で定量的に表示することができる。すなわち、
直交ニコル下にその光学的主軸が45度になるように配置
したときのL*、a*、b*の値をJIS・Z・8729(L*a*、b*表色
系およびL*、u*、v*表色系による物体色の表示方法)に従
って分光光度計又は分光計等により測定する。n個の異
なった場所のサンプルの上記L*、a*、b*から以下の式によ
り(ΔE*)i、jを計算する。
The optical color unevenness referred to in the present invention can be quantitatively displayed by the color difference ΔE * defined below. That is,
The values of L * , a * , and b * when placed so that their optical principal axes are at 45 degrees under orthogonal Nicols are JIS Z 8729 (L * a * , b * color system and L * , u * , v * The color of the object is displayed by the color system) and measured with a spectrophotometer or spectrometer. Calculate (ΔE * ) i, j from the above L * , a * , b * of n samples at different locations by the following equation.

(ΔE*)i,j=((ΔL*)i,j)+((Δa*)i,j)
+((Δb*)i,j)1/2 ただし (ΔL*)i,j=(L*)i−(L*)j (Δa*)i,j=(a*)i−(a*)j (Δb*)i,j=(b*)i−(b*)j i=1〜n j=1〜n i≠j この(ΔE*)i,jのなかで最大の値をΔE*とする。
測定数nは多い方が好ましいが、通常はたて、よこ30cm
角のサンプルから無作為に10点のサンプルをとって測定
し、上式により計算する。このΔE*が30以上では直交
ニコル下で色ムラ、虹模様が肉眼で観察され、光学用フ
ィルムとしては使用できない。ΔE*は30以下、好まし
くは20以下にする必要がある。
(ΔE * ) i, j = ((ΔL * ) i, j) 2 + ((Δa * ) i, j)
2 + ((Δb * ) i, j) 2 ) 1/2 However, (ΔL * ) i, j = (L * ) i− (L * ) j (Δa * ) i, j = (a * ) i− (A * ) j (Δb * ) i, j = (b * ) i− (b * ) j i = 1 to n j = 1 to n i ≠ j The largest of these (ΔE * ) i, j Let the value be ΔE * .
It is preferable that the number of measurements n is large, but it is usually vertical and horizontal 30 cm.
Randomly sample 10 points from the corner sample and measure, and calculate by the above formula. When this ΔE * is 30 or more, color unevenness and a rainbow pattern are observed with the naked eye under crossed Nicols, and it cannot be used as an optical film. ΔE * should be 30 or less, preferably 20 or less.

本発明の光学的異方体は、偏光顕微鏡あるいは、分光
光度計等によるレターデーションの測定値が0.2μm〜
1.2μmの最適な値に調整したものである。
The optically anisotropic substance of the present invention has a retardation measured value of 0.2 μm by a polarization microscope or a spectrophotometer.
It is adjusted to an optimum value of 1.2 μm.

上記本発明の光学的異方体はスーパーツイステッドネ
マチック型液晶表示装置に用いることによりその色相及
び表示品質を改良することができる。本発明の光学的異
方体の使用に適したスーパーツイステッドネマチック型
液晶表示装置とはより具体的に言えば、対向して配置す
る2枚の電極基盤間にねじれ配向したネマチック液晶を
狭持してなる液晶セルと前記液晶セルを挟んで両側に配
置された一対の偏光板を備え、前記ネマチック液晶はね
じれ角が160度以上である液晶表示装置である。この液
晶表示装置において本発明の光学的異方体は前記一対の
偏光板の間に少なくとも1層配置して用いる。ここで、
前記ネマチック液晶のねじれ角は160度以上が好まし
い。その理由は、160度未満の場合でも白黒表示が得ら
れるのだが、表示装置として見た場合に充分なコントラ
ストが得られないからである。詳細は実施例にて説明す
る。
The optical anisotropic body of the present invention can be used in a super twisted nematic liquid crystal display device to improve its hue and display quality. More specifically, the super twisted nematic type liquid crystal display device suitable for use of the optically anisotropic substance of the present invention includes a nematic liquid crystal which is twisted and aligned between two electrode base plates arranged facing each other. The nematic liquid crystal is a liquid crystal display device having a liquid crystal cell and a pair of polarizing plates arranged on both sides of the liquid crystal cell, with the twist angle being 160 degrees or more. In this liquid crystal display device, the optical anisotropic body of the present invention is used by arranging at least one layer between the pair of polarizing plates. here,
The twist angle of the nematic liquid crystal is preferably 160 degrees or more. The reason is that black and white display can be obtained even when the angle is less than 160 degrees, but sufficient contrast cannot be obtained when viewed as a display device. Details will be described in Examples.

〔実施例〕〔Example〕

以下実施例により、本発明を説明する。本発明はこれ
らに限定されるものではない。
The present invention will be described below with reference to examples. The present invention is not limited to these.

なお実施例におけるR値の測定は偏光顕微鏡に備えつ
けたセナルモンコンペンセーターを使用し、光源にはハ
ロゲンランプを用いた。ΔE*は分光光度計を用い、前
述の方法で測定、計算した。
In the examples, the R value was measured using a Senarmont compensator equipped with a polarization microscope, and a halogen lamp was used as a light source. ΔE * was measured and calculated by the above method using a spectrophotometer.

さらに実施例に示す本発明の光学的異方体を用いた液
晶表示装置について説明する。
Further, a liquid crystal display device using the optically anisotropic substance of the present invention shown in Examples will be described.

第1図は、本発明の光学的異方体を用いた液晶表示装
置の構造をモデル的に示した断面図である。同図におい
て、1は上側偏光板、2は光学的異方体、3は液晶セ
ル、4は上側電極基板、5は下側電極基板、6は下側偏
光板、7は液晶を示したものである。第2図は本発明の
光学的異方体を用いた液晶表示装置の各軸の関係を示し
た図である。同図において、8は液晶セルの下側電極基
板のラビング方向、9は液晶セルの上側電極基板のラビ
ング方向、10は光学的異方体の光軸の方向、11は下側偏
光板の偏光軸の方向、12は上側偏光板の偏光軸の方向、
13は液晶セル内の液晶分子のねじれ方向(上から下に向
かう)とその角度、14は光学的異方体の光軸の方向10に
対する液晶セルの上側電極基板のラビング方向9のなす
角度、15は光学的異方体の光軸の方向10に対する上側偏
光板の偏光軸の方向12のなす角度、16は液晶セルの下側
電極基板のラビング方向8に対する下側偏光板の偏光軸
の方向11のなす角度を示したものである。なおそれぞれ
の偏光板の偏光軸の方向の代わりに吸収軸の方向を用い
てもよい。また角度13から16までは左回りを正とする。
さらに以下の実施例において、用いた液晶セル3のねじ
れ角は約200度でありΔn×dは約0.9μmである。
FIG. 1 is a cross-sectional view schematically showing the structure of a liquid crystal display device using the optically anisotropic body of the present invention. In the figure, 1 is an upper polarizing plate, 2 is an optically anisotropic body, 3 is a liquid crystal cell, 4 is an upper electrode substrate, 5 is a lower electrode substrate, 6 is a lower polarizing plate, and 7 is a liquid crystal. Is. FIG. 2 is a diagram showing the relationship of each axis of a liquid crystal display device using the optically anisotropic body of the present invention. In the figure, 8 is the rubbing direction of the lower electrode substrate of the liquid crystal cell, 9 is the rubbing direction of the upper electrode substrate of the liquid crystal cell, 10 is the direction of the optical axis of the optically anisotropic body, and 11 is the polarization of the lower polarizing plate. Axis direction, 12 is the direction of the polarization axis of the upper polarizing plate,
13 is the twist direction of liquid crystal molecules in the liquid crystal cell (from top to bottom) and its angle, 14 is the angle formed by the rubbing direction 9 of the upper electrode substrate of the liquid crystal cell with respect to the optical axis direction 10 of the optically anisotropic body, Reference numeral 15 is an angle formed by the direction 12 of the polarization axis of the upper polarization plate with respect to the direction 10 of the optical axis of the optically anisotropic body, and 16 is the direction of the polarization axis of the lower polarization plate with respect to the rubbing direction 8 of the lower electrode substrate of the liquid crystal cell. It shows the angle made by 11. Note that the absorption axis direction may be used instead of the polarization axis direction of each polarizing plate. For angles 13 to 16, the counterclockwise direction is positive.
Further, in the following examples, the twist angle of the liquid crystal cell 3 used is about 200 degrees and Δn × d is about 0.9 μm.

実施例1 厚さ200μm、幅300mmの透明ポリカーボネートフィル
ム(平均分子量約27,000、押出製膜品)を190℃の温度
であらかじめ予熱したあと175℃の温度でテンター法に
よる横一軸延伸(延伸速度6m/分)を行い、厚さ約100μ
m、幅600mmの延伸フィルムを得た。該延伸フィルムは
R値が約0.56μm、ΔE*は8.3で均質な品質を有し、光
学的色ムラは、ほとんど観察されず、本発明の光学的異
方体として有用である。
Example 1 A transparent polycarbonate film having a thickness of 200 μm and a width of 300 mm (average molecular weight of about 27,000, extruded film product) was preheated at a temperature of 190 ° C., and then uniaxially stretched by a tenter method at a temperature of 175 ° C. (stretching speed 6 m / Min) and thickness is about 100μ
A stretched film having a width of m and a width of 600 mm was obtained. The stretched film has an R value of about 0.56 μm and a ΔE * of 8.3 and has a uniform quality. Optical color unevenness is hardly observed, and the stretched film is useful as the optical anisotropic body of the present invention.

該光学的異方体を第1図に示す位置に光学主軸が上偏
光板の偏光軸と約−45度になるように装着した。さらに
第2図において角度14は約90度、角度16は約45度とし
た。この液晶表示装置の電圧無印加状態の外観スペクト
ルを第3図のカーブ1に示す。又1/100duty駆動による
選択電圧印加状態での外観のスペクトルを第3図のカー
ブIIに示す。第3図から明らかなように本発明の光学的
異方体を用いた液晶表示装置では電圧無印加状態では外
観が白色になり、選択電圧印加状態では外観が黒色とな
っている。そのために表示品質が著しく向上した。
The optically anisotropic member was mounted at the position shown in FIG. 1 such that the optical principal axis was about −45 ° with the polarization axis of the upper polarizing plate. Further, in FIG. 2, the angle 14 is about 90 degrees and the angle 16 is about 45 degrees. The external appearance spectrum of this liquid crystal display device when no voltage is applied is shown by curve 1 in FIG. The curve II in Fig. 3 shows the appearance spectrum under the condition that the selected voltage is applied by 1/100 duty driving. As is apparent from FIG. 3, the liquid crystal display device using the optical anisotropic body of the present invention has a white appearance when no voltage is applied, and a black appearance when a selection voltage is applied. Therefore, the display quality is remarkably improved.

実施例2 実施例1と同様にして、厚さ70μm、幅800mmの延伸
フィルムを得た。該延伸フィルムは、R値が約0.58μ
m、ΔE*は5.0で均質な品質を有し、光学的色ムラはほ
とんど観察されず、本発明の光学的異方体として有用で
ある。
Example 2 In the same manner as in Example 1, a stretched film having a thickness of 70 μm and a width of 800 mm was obtained. The stretched film has an R value of about 0.58μ.
m and ΔE * are 5.0 and have a uniform quality, and optical color unevenness is hardly observed, which is useful as the optical anisotropic body of the present invention.

実施例1と同様にして液晶表示装置に装着したとこ
ろ、実施例1と同様の結果が得られ、液晶表示装置の表
示品質が著しく向上した。
When the liquid crystal display device was mounted in the same manner as in Example 1, the same results as in Example 1 were obtained, and the display quality of the liquid crystal display device was significantly improved.

実施例3 実施例1と同じ原反を用いて、180℃の温度であらか
じめ予熱したあと175℃の温度でテンター法による横一
軸延伸を行い、厚さ約120μmの延伸フィルムを得た。
該延伸フィルムはR値が約0.57μm、ΔE*は20.8でほ
ぼ均質な品質を有し、光学的色ムラはほとんど観察され
ず、本発明の光学的異方体として有用である。
Example 3 Using the same raw material as in Example 1, preheating was performed at a temperature of 180 ° C. and then transverse uniaxial stretching was performed at a temperature of 175 ° C. by a tenter method to obtain a stretched film having a thickness of about 120 μm.
The stretched film has an R value of about 0.57 μm and a ΔE * of 20.8 and has a substantially uniform quality, and almost no optical color unevenness is observed. Therefore, the stretched film is useful as the optical anisotropic body of the present invention.

実施例1と同様にして液晶表示装置に装着したとこ
ろ、実施例1と同様の結果が得られ、液晶表示装置の表
示品質が向上した。
When the liquid crystal display device was mounted in the same manner as in Example 1, the same results as in Example 1 were obtained, and the display quality of the liquid crystal display device was improved.

実施例4 実施例1と同じ原反を用いて、165℃の一対のロール
間を通過させ縦一軸に圧縮延伸をおこない、厚さ約120
μm、幅285mm(ネックイン率5%)の延伸フィルムを
得た。該延伸フィルムはR値が約0.57μm、ΔE*は、
9.2で均質な品質を有し、光学的色ムラはほとんど観察
されず、本発明の光学的異方体として有用である。
Example 4 The same raw material as in Example 1 was used to pass between a pair of rolls at 165 ° C. for uniaxial compression and stretching to obtain a thickness of about 120.
A stretched film having a width of 285 mm (neck-in rate of 5%) was obtained. The stretched film has an R value of about 0.57 μm and ΔE * is
It has a uniform quality of 9.2, and hardly shows optical color unevenness, and is useful as the optical anisotropic body of the present invention.

実施例1と同様にして液晶表示装置に装着したとこ
ろ、実施例1と同様の結果が得られ、液晶表示装置の表
示品質が著しく向上した。
When the liquid crystal display device was mounted in the same manner as in Example 1, the same results as in Example 1 were obtained, and the display quality of the liquid crystal display device was significantly improved.

実施例5 厚さ200μm、幅300mmの透明ポリカーボネートフィル
ム(平均分子量約23,000、押出製膜品)を185℃の温度
であらかじめ予熱したあと170℃の温度でテンター法に
よる横一軸延伸を行い、厚さ約90μm、幅660mmの延伸
フィルムを得た。該延伸フィルムはR値が約0.54μm、
ΔE*は7.2で均質な品質を有し、光学的色ムラはほとん
ど観察されず、本発明の光学的異方体として有用であ
る。
Example 5 A transparent polycarbonate film having a thickness of 200 μm and a width of 300 mm (average molecular weight of about 23,000, extruded film product) was preheated at a temperature of 185 ° C. and then laterally uniaxially stretched by a tenter method at a temperature of 170 ° C. A stretched film having a width of about 90 μm and a width of 660 mm was obtained. The stretched film has an R value of about 0.54 μm,
ΔE * is 7.2 and has a uniform quality, and almost no optical color unevenness is observed, which is useful as the optical anisotropic body of the present invention.

実施例1と同様にして液晶表示装置に装着したとこ
ろ、実施例1と同様の結果が得られ、液晶表示装置の表
示品質が著しく向上した。
When the liquid crystal display device was mounted in the same manner as in Example 1, the same results as in Example 1 were obtained, and the display quality of the liquid crystal display device was significantly improved.

比較例1 実施例1と同じ原反フィルムを177℃の温度であらか
じめ予熱したあと、周速度の異なるロール間で縦一軸に
引張延伸をおこない厚さ約110μm、幅435mm(ネックイ
ン率13%)の延伸フィルムを得た。該フィルムはR値が
約0.54μm、ΔE*は34であり、直交ニコル下で色ム
ラ、虹模様が観察された。
Comparative Example 1 The same raw film as in Example 1 was preheated at a temperature of 177 ° C. and then stretched uniaxially between rolls having different peripheral speeds to a thickness of about 110 μm and a width of 435 mm (neck-in ratio 13%). To obtain a stretched film. The film had an R value of about 0.54 μm and a ΔE * of 34, and color unevenness and a rainbow pattern were observed under crossed Nicols.

実施例1と同様にして液晶表示装置に装着したとこ
ろ、実施例1と異なり色ムラ、虹模様が観察された。
When the liquid crystal display device was mounted in the same manner as in Example 1, color unevenness and a rainbow pattern were observed unlike in Example 1.

本発明の光学的異方体としては使用出来ない。 It cannot be used as the optical anisotropic body of the present invention.

実施例6 実施例1と同じ原反を用いて、190℃の温度であらか
じめ予熱したあと170℃の温度でテンター法による横一
軸延伸を行い、厚さ約120μmの延伸フィルムを得た。
該延伸フィルムはR値が約0.75μm、ΔE*は7.1で均質
な品質を有し、光学的色ムラはほとんど観察されず、本
発明の光学的異方体として有用である。該光学的異方体
を第1図に示す位置に光学主軸が上偏光板の偏光軸と約
45度になるように装着した。さらに第2図において角度
14は、約90度、角度16は約45度とした。この液晶表示装
置の電圧無印加状態の外観スペクトルを第4図のカーブ
Iに示す。また1/100duty駆動による選択電圧印加状態
での外観のスペクトルを第4図のカーブIIに示す。第4
図から電圧無印加状態の外観が完全に白色となってい
る。そのために表示品質が著しく向上した。
Example 6 Using the same raw material as in Example 1, preheating was carried out at a temperature of 190 ° C. and then transverse uniaxial stretching was carried out at a temperature of 170 ° C. by a tenter method to obtain a stretched film having a thickness of about 120 μm.
The stretched film has an R value of about 0.75 μm and a ΔE * of 7.1 and has a uniform quality. Almost no optical color unevenness is observed, and the stretched film is useful as the optical anisotropic body of the present invention. At the position shown in FIG. 1, the optical principal axis of the optically anisotropic body is approximately the same as the polarization axis of the upper polarizing plate.
I installed it at 45 degrees. Furthermore, in FIG. 2, the angle
14 is about 90 degrees and angle 16 is about 45 degrees. The external appearance spectrum of this liquid crystal display device when no voltage is applied is shown by the curve I in FIG. The curve II of Fig. 4 shows the external appearance spectrum under the selected voltage application by 1/100 duty driving. Fourth
From the figure, the appearance of no voltage applied is completely white. Therefore, the display quality is remarkably improved.

実施例7 実施例5と同じ原反を用いて、190℃の温度であらか
じめ予熱したあと175℃の温度でテンター法による横一
軸延伸を行い、厚さ約130μmの延伸フィルムを得た。
該延伸フィルムはR値が約0.35μm、ΔE*は12.4で均
質な品質を有し、光学的色ムラはほとんど観察されず、
本発明の光学的異方体として有用である。該光学的異方
体を第1図に示す位置に光学主軸が上偏光板の偏光軸と
約45度になるように装着した。さらに第2図において角
度14は、約90度、角度16は約45度とした。この液晶表示
装置の電圧無印加状態の外観スペクトルを第5図のカー
ブIに示す。また1/100duty駆動による選択電圧印加状
態での外観のスペクトルを第5図のカーブIIに示す。第
5図から選択電圧印加状態の外観が完全に黒色となって
いる。そのために表示品質が著しく向上した。
Example 7 Using the same raw material as in Example 5, preheating was carried out at a temperature of 190 ° C. and then transverse uniaxial stretching by a tenter method at a temperature of 175 ° C. to obtain a stretched film having a thickness of about 130 μm.
The stretched film had an R value of about 0.35 μm and a ΔE * of 12.4 and had a uniform quality, and optical color unevenness was hardly observed.
It is useful as the optical anisotropic body of the present invention. The optically anisotropic member was mounted at the position shown in FIG. 1 such that the optical principal axis was about 45 ° with the polarization axis of the upper polarizing plate. Further, in FIG. 2, the angle 14 is about 90 degrees and the angle 16 is about 45 degrees. The appearance spectrum of this liquid crystal display device in the state where no voltage is applied is shown by the curve I in FIG. The curve II of FIG. 5 shows the external appearance spectrum under the selected voltage application by 1/100 duty driving. From FIG. 5, the appearance of the selected voltage applied state is completely black. Therefore, the display quality is remarkably improved.

実施例8 液晶セル3のねじれ角を約250度とした以外は全く実
施例1と同様に実施したところ、外観のスペクトルは電
圧無印加状態で白色となり、選択電圧印加状態で黒色と
なる。そのため表示品質は著しく向上した。
Example 8 The same operation as in Example 1 was carried out except that the twist angle of the liquid crystal cell 3 was set to about 250 degrees, and the appearance spectrum was white when no voltage was applied and black when a selected voltage was applied. Therefore, the display quality is remarkably improved.

〔発明の効果〕〔The invention's effect〕

このようにして得られた光学的異方体は、従来のよう
に0.135μmのレターデーションを生じる1/4λ板と異な
り、0.2〜1.2μmのレターデーションを生じる光学的異
方体であり、しかも、光学主軸が一定し、かつ光学的に
色ムラの少ないものであるからスーパーツイステッドネ
マチック型液晶表示装置の一対の偏光板の間に用いるこ
とが可能となる。適切なレターデーション値を有する本
発明の光学的異方体を適切に用いた該液晶表示装置は、
電圧無印加時に外観の色相は白もしくは白に近い色を示
し、電圧印加時に外観の色相は黒もしくは黒に近い色を
示すものとなり、かつ光学的な色ムラ等はないので、従
来のスーパーツイステッドネマチック型液晶表示装置に
比べて著しく表示品質が向上する。
The optical anisotropic body thus obtained is an optical anisotropic body which produces a retardation of 0.2 to 1.2 μm, unlike a 1 / 4λ plate which produces a retardation of 0.135 μm as in the conventional case, and Since the optical axis is constant and there is little color unevenness optically, it can be used between a pair of polarizing plates of a super twisted nematic liquid crystal display device. The liquid crystal display device appropriately using the optical anisotropic body of the present invention having an appropriate retardation value,
The appearance hue shows white or a color close to white when no voltage is applied, and the appearance hue shows black or a color close to black when a voltage is applied, and there is no optical color unevenness. The display quality is remarkably improved as compared with the nematic liquid crystal display device.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の光学的異方体を用いた液晶表示装置
の構造をモデル的に説明した断面図。同図において、1
は上側偏光板、2は光学的異体、3は液晶セル、4は上
側電極基板、5は下側電極基板、6は下側偏光板、7は
液晶を示す。 第2図は本発明の液晶表示装置の各軸の関係を示した
図。同図において、8は液晶セルの下側電極基板のラビ
ング方向、9は液晶セルの上側電極基板のラビング方
向、10は光学的異方体の光軸の方向、11は下側偏光板の
偏光軸の方向、12は上側偏光板の偏光軸の方向、13は液
晶セル内の液晶分子のねじれ方向とその角度、14は光学
的異方体の光軸の方向10に対する液晶セルの上側電極基
板のラビング方向9のなす角度、15は光学的異方体の光
軸の方向10に対する上側偏光板の偏光軸の方向12のなす
角度、16は液晶セルの下側電極基板のラビング方向8に
対する下側偏光板の偏光軸の方向11のなす角度を示す。
なお偏光板は偏光軸の代わりに吸収軸を用いてもよい。
また、角度13から16までは左回りを正とする。 第3図は、本発明の実施例1による波長と透過率特性の
関係を示した図。 第4図は、本発明の実施例6による波長と透過率特性の
関係を示した図。 第5図は、本発明の実施例7による波長と透過率特性の
関係を示した図。
FIG. 1 is a cross-sectional view illustrating a model of the structure of a liquid crystal display device using the optically anisotropic body of the present invention. In the figure, 1
Is an upper polarizing plate, 2 is an optical foreign substance, 3 is a liquid crystal cell, 4 is an upper electrode substrate, 5 is a lower electrode substrate, 6 is a lower polarizing plate, and 7 is a liquid crystal. FIG. 2 is a diagram showing the relationship of each axis of the liquid crystal display device of the present invention. In the figure, 8 is the rubbing direction of the lower electrode substrate of the liquid crystal cell, 9 is the rubbing direction of the upper electrode substrate of the liquid crystal cell, 10 is the direction of the optical axis of the optically anisotropic body, and 11 is the polarization of the lower polarizing plate. Axis direction, 12 is the direction of the polarization axis of the upper polarizing plate, 13 is the twist direction and the angle of liquid crystal molecules in the liquid crystal cell, and 14 is the upper electrode substrate of the liquid crystal cell with respect to the optical axis direction 10 of the optically anisotropic body. Is formed by the rubbing direction 9, 15 is an angle formed by the direction 12 of the polarization axis of the upper polarizing plate with respect to the direction 10 of the optical axis of the optically anisotropic body, and 16 is downward by the rubbing direction 8 of the lower electrode substrate of the liquid crystal cell. The angle formed by the direction 11 of the polarization axis of the side polarizing plate is shown.
The polarizing plate may use an absorption axis instead of the polarization axis.
Also, for angles 13 to 16, the counterclockwise direction is positive. FIG. 3 is a diagram showing the relationship between wavelength and transmittance characteristics according to Example 1 of the present invention. FIG. 4 is a diagram showing the relationship between wavelength and transmittance characteristics according to Example 6 of the present invention. FIG. 5 is a diagram showing the relationship between wavelength and transmittance characteristics according to Example 7 of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 和田 啓志 長野県諏訪市大和3丁目3番5号 セイコ ーエプソン株式会社内 (56)参考文献 特開 昭63−271415(JP,A) 特開 昭63−279229(JP,A) 特開 昭64−519(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Wada 3-3-5 Yamato, Suwa City, Nagano Seiko Epson Corporation (56) References JP 63-271415 (JP, A) JP 63 -279229 (JP, A) JP-A-64-519 (JP, A)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】対向して配置する2枚の電極基板間にねじ
れ角が160度以上になるようにねじれ配向したネマチッ
ク液晶を挟持してなる液晶セルと該液晶セルを挟んで両
側に配置された一対の偏光板からなる液晶表示装置の該
一対の偏光板の間への配置用であって、熱可塑性高分子
フィルム又はシートをネックイン率が10%以下となるよ
うに一軸方向に延伸して得られる0.4〜0.7μmの可視光
線波長域における平均の透過率が80%以上であり、複屈
折率(Δn)と厚み(d)の積で定義されるレターデー
ション(Δn×d)の測定値が0.2〜1.2μmの範囲にあ
り、かつ、直交ニコル下にその光学的主軸が45度になる
ように配置して測定したときの色差(ΔE*)が30以下
であるフィルム又はシートからなることを特徴とする光
学的異方体。
1. A liquid crystal cell in which a nematic liquid crystal that is twisted and oriented so that a twist angle is 160 degrees or more is sandwiched between two electrode substrates that are disposed opposite to each other, and the liquid crystal cell is disposed on both sides of the liquid crystal cell. For arranging a liquid crystal display device comprising a pair of polarizing plates between the pair of polarizing plates, a thermoplastic polymer film or sheet is obtained by uniaxially stretching so that the neck-in rate is 10% or less. The average transmittance in the visible light wavelength range of 0.4 to 0.7 μm is 80% or more, and the measured value of the retardation (Δn × d) defined by the product of the birefringence (Δn) and the thickness (d) is A film or sheet having a color difference (ΔE * ) of 30 or less in the range of 0.2 to 1.2 μm and arranged so that its optical principal axis is 45 degrees under a crossed Nicols. A characteristic optical anisotropic body.
【請求項2】熱可塑性高分子がポリカーボネート系重合
体である特許請求の範囲第1項記載の光学的異方体。
2. The optical anisotropic body according to claim 1, wherein the thermoplastic polymer is a polycarbonate polymer.
【請求項3】一軸方向に延伸する方法が、テンター法に
よる横一軸延伸方法を用いる特許請求の範囲第1項記載
の光学的異方体。
3. The optically anisotropic body according to claim 1, wherein the uniaxial stretching method uses a transverse uniaxial stretching method by a tenter method.
【請求項4】液晶表示装置に用いられる光学的異方体で
あって、熱可塑性高分子フィルム又はシートをネックイ
ン率が10%以下となるように一軸方向に延伸して得られ
る0.4〜0.7μmの可視光線波長域における平均の透過率
が80%以上であり、複屈折率(Δn)と厚み(d)の積
で定義されるレターデーション(Δn×d)の測定値が
0.2〜1.2μmの範囲にあり、かつ、直交ニコル下にその
光学的主軸が45度になるように配置して測定したときの
色差(ΔE*)が30以下であるフィルム又はシートが、
対向して配置する2枚の電極基板間にねじれ角が160度
以上になるようにねじれ配向したネマチック液晶を挟持
してなる液晶セルの前記電極基板の外側に配置された一
対の偏光板の間に少なくとも1層配置されたことを特徴
とする液晶表示装置。
4. An optically anisotropic body used in a liquid crystal display device, which is obtained by uniaxially stretching a thermoplastic polymer film or sheet so as to have a neck-in ratio of 10% or less. The average transmittance in the visible light wavelength range of μm is 80% or more, and the measured value of the retardation (Δn × d) defined by the product of the birefringence (Δn) and the thickness (d) is
A film or sheet having a color difference (ΔE * ) of 30 or less, which is in the range of 0.2 to 1.2 μm and is arranged under an orthogonal Nicol so that its optical principal axis is 45 degrees,
At least between a pair of polarizing plates arranged on the outer side of the electrode substrate of a liquid crystal cell in which a nematic liquid crystal twisted and oriented so that a twist angle is 160 degrees or more is sandwiched between two electrode substrates arranged facing each other. A liquid crystal display device having a single layer.
JP62254020A 1987-10-07 1987-10-07 Optically anisotropic and liquid crystal display device Expired - Lifetime JPH0830806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62254020A JPH0830806B2 (en) 1987-10-07 1987-10-07 Optically anisotropic and liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62254020A JPH0830806B2 (en) 1987-10-07 1987-10-07 Optically anisotropic and liquid crystal display device

Publications (2)

Publication Number Publication Date
JPH0196623A JPH0196623A (en) 1989-04-14
JPH0830806B2 true JPH0830806B2 (en) 1996-03-27

Family

ID=17259134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62254020A Expired - Lifetime JPH0830806B2 (en) 1987-10-07 1987-10-07 Optically anisotropic and liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH0830806B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2552167B2 (en) * 1988-03-10 1996-11-06 セイコーエプソン株式会社 Liquid crystal display device condition setting method
DE3914526A1 (en) * 1989-05-02 1990-11-08 Licentia Gmbh Liquid crystal display of twisted nematic type - has angles less 90 degrees and uses double refractive material between polarising filters and liquid crystal display
DE69124911T2 (en) * 1990-10-24 1997-06-19 Nitto Denko Corp Birefringent film, process for its production, retarding film, elliptical polarizer and liquid crystal display device
JPH04365002A (en) * 1991-06-12 1992-12-17 Sekisui Chem Co Ltd Phase difference compensating plate
DE69209008T2 (en) * 1991-06-17 1996-09-05 Seiko Epson Corp PHASE DIFFERENTIAL FILM, PHASE DIFFERENTIAL PLATE AND LIQUID CRYSTAL DISPLAY
US5337174A (en) * 1991-06-17 1994-08-09 Seiko Epson Corporation Optical compensator and liquid crystal display
JP2723400B2 (en) * 1991-10-16 1998-03-09 積水化学工業株式会社 Phase difference compensator and method of manufacturing the same
JP3163146B2 (en) * 1992-02-28 2001-05-08 出光石油化学株式会社 Method for producing retardation compensation film

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6125105A (en) * 1984-07-13 1986-02-04 Nitto Electric Ind Co Ltd Reflection type phase difference plate
JPS61231503A (en) * 1985-04-05 1986-10-15 Nitto Electric Ind Co Ltd Polarizing phase plate
JPS64519A (en) * 1986-05-19 1989-01-05 Seiko Epson Corp Liquid crystal display device
JPH07115258B2 (en) * 1986-12-23 1995-12-13 フアナツク株式会社 Tapping processing control device
JPS63271415A (en) * 1987-04-30 1988-11-09 Seiko Epson Corp Liquid crystal display device
JP2595537B2 (en) * 1987-05-12 1997-04-02 旭硝子株式会社 Liquid crystal display
JPH0713683A (en) * 1993-06-25 1995-01-17 Ricoh Co Ltd Multiwindow display device

Also Published As

Publication number Publication date
JPH0196623A (en) 1989-04-14

Similar Documents

Publication Publication Date Title
US5138474A (en) Liquid crystal display with compensator having two films with positive and negative intrinsic birefringence, respectively
US5559618A (en) Liquid crystal compensator satisfying nx>nz>ny having ny and nz inclined
US5213852A (en) Phase difference film and liquid crystal display having the same
EP1743915A1 (en) Oriented film, process for producing the same and laminate thereof
US5244713A (en) Optical film
US20110176093A1 (en) Optical film and liquid crystal display
JP2765066B2 (en) Liquid crystal display
JPH0242406A (en) Phase difference plate and composite polarizing plate formed by using this plate and liquid crystal display device
JP3184975B2 (en) Optical film
JP5632625B2 (en) VA liquid crystal display device
JPH0830806B2 (en) Optically anisotropic and liquid crystal display device
EP0376696A1 (en) Optical film
JPH04215602A (en) Phase difference film and liquid crystal display device using it
JP3474618B2 (en) Elliptical polarizing plate and liquid crystal display device using the same
JP2841377B2 (en) Phase difference plate
JPH0259702A (en) Phase difference plate
JPH06194646A (en) Tn type liquid crystal display element provided with optical compensation film
JPH04245202A (en) Phase difference plate
JPH01225916A (en) Phase difference plate and composite polarizing plate and liquid crystal display device using phase difference plate
JPH0688909A (en) Production of double refraction film and liquid crystal display device using the double refraction film
JP2000111732A (en) Production of three-dimensional double refractive film
JPH04265906A (en) Phase difference film and liquid crystal display device using this film
JPH03206422A (en) Liquid crystal display device
JPH063653A (en) Manufacture of double refraction film and liquid crystal display device using the film
JPH05346507A (en) Production of double refractive film and liquid crystal display device using the same

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080327

Year of fee payment: 12