JPH0830632B2 - Intermittent heater - Google Patents

Intermittent heater

Info

Publication number
JPH0830632B2
JPH0830632B2 JP12046788A JP12046788A JPH0830632B2 JP H0830632 B2 JPH0830632 B2 JP H0830632B2 JP 12046788 A JP12046788 A JP 12046788A JP 12046788 A JP12046788 A JP 12046788A JP H0830632 B2 JPH0830632 B2 JP H0830632B2
Authority
JP
Japan
Prior art keywords
container
temperature
hydrogen
heat
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12046788A
Other languages
Japanese (ja)
Other versions
JPH01291072A (en
Inventor
功 竹下
良夫 森脇
孝治 蒲生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12046788A priority Critical patent/JPH0830632B2/en
Publication of JPH01291072A publication Critical patent/JPH01291072A/en
Publication of JPH0830632B2 publication Critical patent/JPH0830632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、作動媒体の可逆的な吸脱着反応での発熱、
吸熱を利用したケミカルヒートポンプ装置による間欠作
動式加熱器に関するものである。特に本発明は限られた
空間又は部分を短時間に加熱する必要のある種々の機械
装置に適用した場合極めて有用である。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to heat generation in a reversible adsorption / desorption reaction of a working medium,
The present invention relates to an intermittent operation type heater using a chemical heat pump device utilizing heat absorption. In particular, the present invention is extremely useful when applied to various mechanical devices that need to heat a limited space or portion in a short time.

また大容量のエネルギー源が無いが、加熱の必要もあ
まり頻繁でない場合で、かつ急速な加熱が必要な場合に
用いるに適したものである。
Further, it is suitable for use when there is no large-capacity energy source but heating is not necessary frequently and rapid heating is required.

(従来の技術) ヒートポンプ装置は圧縮式,吸収式,ケミカルヒート
ポンプの三つに大別できる。このうちケミカルヒートポ
ンプは、近年エネルギー有効利用の観点から次第に関心
が高まりつつある。
(Prior Art) Heat pump devices can be roughly classified into compression type, absorption type, and chemical heat pumps. Of these, chemical heat pumps have been gradually gaining interest in recent years from the viewpoint of effective use of energy.

ケミカルヒートポンプの中で、物質の吸脱着反応を利
用した場合の吸着媒体としては、例えば金属水素化物
や、無機水和物、有機物、ゼオライト等があり、被吸着
媒体としては、例えば水素,水蒸気,アンモニア等があ
る。
In the chemical heat pump, examples of the adsorption medium when the adsorption / desorption reaction of the substance is used include metal hydrides, inorganic hydrates, organic substances, zeolites, and the like, and examples of the adsorption medium include hydrogen, water vapor, There is ammonia etc.

従来の間欠作動式加熱器の一般的な間欠式加熱サイク
ルの原理は第3図に示す温度(横軸)、平衡圧力(縦
軸)の関係(加熱サイクルA→B→C→D→A)で示さ
れる。以下金属水素化物−水素系を例にとって具体的に
説明する。
The principle of the general intermittent heating cycle of the conventional intermittent operation type heater is the relationship between temperature (horizontal axis) and equilibrium pressure (vertical axis) shown in FIG. 3 (heating cycle A → B → C → D → A). Indicated by. The metal hydride-hydrogen system will be specifically described below as an example.

温度平衡圧力特性の異なる二種類の金属水素化物を用
い、まず同一温度で平衡圧力の低い金属水素化物(MH
1)で十分に水素を吸着したものを再生加熱温度THまで
加熱し(Aの状態)、外気温度TA度で十分に水素を脱着
した、かつ同一温度で平衡圧力の高い金属水素化物(MH
2)と連通して水素の移動を行う(Bの状態)。この
際、MH2は発熱反応により熱を発生する。
Two types of metal hydrides with different temperature equilibrium pressure characteristics are used.
A metal hydride (1) that has sufficiently adsorbed hydrogen is heated to the regenerative heating temperature T H (state A), has sufficiently desorbed hydrogen at the outside air temperature T A , and has a high equilibrium pressure at the same temperature ( MH
2) Communicate with and transfer hydrogen (state B). At this time, MH2 generates heat by an exothermic reaction.

次にMH1を冷却し(この熱は利用する)、MH2と連通す
ると、MH2の水素はMH1に移動し、MH1は発熱するのでこ
の熱も利用する。
Next, when MH1 is cooled (uses this heat) and communicates with MH2, hydrogen in MH2 moves to MH1 and MH1 generates heat, so this heat is also used.

この場合最初にMH1を加熱したときの熱量のほぼ二倍
の熱量がMH2とMH1で得られる。但しこの場合はMH2とMH1
の両者の熱を交互に取り出すための熱回路を別に設ける
必要がある。
In this case, almost twice the amount of heat when MH1 is first heated is obtained in MH2 and MH1. However, in this case MH2 and MH1
It is necessary to separately provide a heat circuit for alternately taking out the heat of both.

(発明が解決しようとする課題) 上述した一般的な間欠式加熱サイクルの場合は一回の
反応で利用出来る熱量が出来るだけ大きいことが肝要で
ある。そのためにMH1とその収容容器はできるだけ熱容
量の少ないものであることが望まれる。
(Problems to be Solved by the Invention) In the case of the general intermittent heating cycle described above, it is important that the amount of heat that can be used in one reaction is as large as possible. Therefore, it is desirable that the MH1 and its container have as little heat capacity as possible.

しかし先にも述べた如くMH1の水素をMH2に返すために
はMH1を加熱(再生)温度THとする必要がある。(以下
再生過程と呼ぶ)このような加熱手段を設けることによ
ってMH1の周辺の熱容量は大幅に増加する。
However, as described above, in order to return the hydrogen of MH1 to MH2, it is necessary to set MH1 to the heating (regeneration) temperature T H. By providing such heating means (hereinafter referred to as a regeneration process), the heat capacity around the MH1 is significantly increased.

又MH1とその容器は出来るだけ被加熱体に密着してい
ることが望ましいが、そのことは即ち再生過程における
熱が直接被加熱体に伝わってくることを意味する。この
加熱(再生)温度THは利用温度TUよりかなり高いため装
置が大掛かりとなり目的の場所に組込めない等いろいろ
不都合が生ずる場合が多い。
Further, it is desirable that the MH1 and its container are in close contact with the object to be heated as much as possible, which means that the heat in the regeneration process is directly transferred to the object to be heated. Since this heating (regeneration) temperature T H is considerably higher than the use temperature T U, there are many inconveniences in that the device becomes large and it cannot be installed in the intended place.

本発明の目的はこのような不都合を解決し、出来るだ
け有効に発生する熱を利用し再生時に温度が上がりすぎ
ると言った困難を生じない間欠作動式加熱器を提供する
ものである。
An object of the present invention is to solve such inconveniences and to provide an intermittent operation type heater which utilizes the heat generated as effectively as possible and does not cause the difficulty that the temperature rises too much during regeneration.

(課題を解決するための手段) 本発明は上記目的を達成するため、被加熱空間に置か
れた容器に収容された第一の吸着物質に、これより低温
の空間に置かれた容器に収容された第二の吸着物質に吸
着された被吸着物質を、弁及び配管を介して移動吸着せ
しめる間欠作動式加熱器に加えて、前記第一の吸着物質
ないしはそれにほぼ近い温度圧力特性を有する吸着物質
を前記第一の吸着物質より少ない量を収容しかつ加熱手
段を有する第三の容器を、前記第二の吸着物質を収容す
る容器の置かれた空間に設け、弁を介して配管により第
一及び第二の吸着物質を収容する容器と連結したことを
特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the present invention stores a first adsorbent substance contained in a container placed in a heated space, and a first adsorbent substance contained in a container placed in a lower temperature space. In addition to the intermittently actuated heater for moving and adsorbing the adsorbed substance adsorbed by the adsorbed second adsorbed substance through the valve and the pipe, the first adsorbed substance or an adsorbent having a temperature-pressure characteristic close to it. A third container containing a substance in a smaller amount than the first adsorbing substance and having a heating means is provided in the space in which the container containing the second adsorbing substance is placed, and the third container is provided with a pipe through a valve. It is characterized in that it is connected to a container containing the first and second adsorbent substances.

(作用) 本発明は、従来例において述べた如く被加熱体に密着
して設けられたMH1に外部空間に置かれたMH2より水素を
移動し、MH1を発熱させた後の再生行程を本発明の着眼
点であるから、この部分の作用を特に説明する。
(Operation) As described in the conventional example, the present invention shows the regeneration process after the hydrogen is moved from the MH2 placed in the external space to the MH1 provided in close contact with the object to be heated to heat the MH1. Since this is the point of interest, the operation of this part will be described in particular.

MH1に吸蔵された水素をMH2に返すには、MH1を再生加
熱温度THに加熱する必要があることは先にも述べた。本
発明では再生行程においてMH1の水素を直接MH2に返すの
ではなく、まず外部空間に置かれた第三の容器と第一の
容器を弁を開いて連通することにより第一の容器内のMH
1に吸蔵された水素の一部を第三の容器内の金属水素化
物に吸蔵せしめることから始める。
As described above, in order to return the hydrogen stored in MH1 to MH2, it is necessary to heat MH1 to the regeneration heating temperature T H. In the present invention, hydrogen in MH1 is not directly returned to MH2 in the regeneration process, but first the MH in the first container is opened by opening a valve to connect the third container and the first container placed in the external space.
The process starts by causing a part of the hydrogen stored in 1 to be stored in the metal hydride in the third container.

第一の容器及び第三の容器内の金属水素化物は同一な
いしはほぼ類似の温度平衡圧力特性を有するものであ
り、第三の容器の置かれた空間は第一の容器の置かれた
空間よりも温度が低いため水素は徐々に第一の容器から
第三の容器に移動する。この反応は比較的緩慢であるか
ら、反応による第一の容器の吸熱速度も遅いので、被加
熱体の温度が急速に低下することはない。
The metal hydrides in the first container and the third container have the same or almost similar temperature equilibrium pressure characteristics, and the space where the third container is placed is smaller than the space where the first container is placed. Since the temperature is low, hydrogen gradually moves from the first container to the third container. Since this reaction is relatively slow, the endothermic rate of the first container due to the reaction is also slow, so that the temperature of the object to be heated does not drop rapidly.

第三の容器内の金属水素化物が飽和して水素の吸蔵反
応が停止したところで第一の容器との間の弁を閉じ、次
に第二の容器との間の弁を開き第三の容器を加熱し再生
加熱温度THにすると、第三の容器の水素は第二の容器に
移動する。移動が終われば弁を閉じ、第三の容器を外気
温度まで冷却し、再び第一の容器との間の弁を開くと残
っていた水素の一部が第三の容器に移動する。
When the metal hydride in the third container is saturated and the hydrogen storage reaction stops, the valve between the first container and the second container is closed, and then the valve between the second container and the third container is opened. Is heated to a regeneration heating temperature T H , hydrogen in the third container moves to the second container. When the transfer is completed, the valve is closed, the third container is cooled to the outside air temperature, and when the valve between the first container and the first container is opened again, a part of the remaining hydrogen moves to the third container.

以下同様の操作を繰り返し第一の容器内のMH1がほぼ
水素を放出し終われば、再生行程は終了する。
The same operation is repeated thereafter, and when MH1 in the first container has almost released hydrogen, the regeneration process ends.

(実施例) 例えば寒冷地において放置された自動車のハンドルは
非常に冷たくなっているので、エンジンを起動しても直
ぐには暖まらないため、起動早々の車のハンドルをしっ
かりと握って車を運転することは苦痛である。こういう
ときにハンドルを即熱する方法が強く求められている。
本実施例はこのような自動車のステアリングハンドルの
急速加熱に応用した例であるが、勿論用途は他にいろい
ろ考えられ、用途に応じて使用される金属水素化物の量
や合金組成を変わる。更には吸着材、被吸着媒体の種類
も変わる。
(Example) For example, the steering wheel of a car left in a cold region is very cold, so it will not warm up immediately after the engine is started. Therefore, hold the steering wheel of the car firmly before starting and drive the car. That is a pain. There is a strong demand for a way to heat the steering wheel immediately.
The present embodiment is an example applied to such rapid heating of the steering wheel of an automobile, but of course, there are various other possible uses, and the amount of metal hydride used and the alloy composition are changed depending on the use. Further, the types of adsorbent and adsorbed medium also change.

今ハンドルホイールの熱容量が約400cal/℃であると
して、これを0℃から35℃まで温度上昇させる。又金属
水素化物収容容器の重量は金属水素化物の重量と等しい
とする。
Now, assuming that the heat capacity of the handle wheel is about 400 cal / ℃, raise the temperature from 0 ℃ to 35 ℃. The weight of the metal hydride storage container is equal to the weight of the metal hydride.

使用する金属水素化物は以下の如くにした。 The metal hydride used was as follows.

MH1:Ti0.55 Zr0.45 Mn0.8 Cr1.0 Cu0.2 MH2:Ti0.81 Zr0.19 Mn0.8 Cr1.0 Cu0.2 又これら金属水素化物の反応熱量及び分子量は夫々以
下の如くである。
MH1: Ti 0.55 Zr 0.45 Mn 0.8 Cr 1.0 Cu 0.2 MH2: Ti 0.81 Zr 0.19 Mn 0.8 Cr 1.0 Cu 0.2 The reaction heat and molecular weight of these metal hydrides are as follows.

MH1:−6.8kcal/mol,176.0 MH2:−5.6kcal/mol,164.8 有効水素移動量ΔHx=1.5 この前提にしたがって必要金属水素化物量を計算する
とMH1は657g,MH2は615g必要であることがわかる。MH1の
量はステアリングホイールの中に十分入りうる程度の量
である。
MH1: −6.8 kcal / mol, 176.0 MH2: −5.6 kcal / mol, 164.8 Effective hydrogen transfer amount ΔHx = 1.5 Calculating the required metal hydride amount according to this assumption, it is found that MH1 needs 657 g and MH2 needs 615 g. . The amount of MH1 is large enough to fit inside the steering wheel.

この組合せによるMH1,MH2の基本サイクル図は第3図
であり、この時の加熱(再生)温度THは100度,利用温
度TUは35度,外気温度TAは7度,吸熱温度TCは−10度で
ある。
The basic cycle diagram of MH1 and MH2 by this combination is shown in Fig. 3. At this time, the heating (regeneration) temperature T H is 100 degrees, the utilization temperature T U is 35 degrees, the outside air temperature T A is 7 degrees, and the endothermic temperature T is C is -10 degrees.

第1図は自動車に実施した本発明の一実施例の構成図
であり、図に示すごとくMH1は自動車のステアリングホ
イール1の中に、MH2は自動車の室外容器2に設置し、
弁6を介して配管接続されている。又MH1に近いがやや
低い温度よりの温度圧力特性を有する金属水素化物 Ti0.57 Zr0.43 Mn0.8 Cr1.0 Cu0.2(MH3)を100g、内管
を温水通路とする二重管型の容器に収容し、これを自動
車の室外容器3に設置すると共に、それぞれ弁4,5を介
してMH1,MH2と連通する水素配管を設けてある。
FIG. 1 is a configuration diagram of an embodiment of the present invention applied to an automobile. As shown in the drawing, MH1 is installed in a steering wheel 1 of the automobile, MH2 is installed in an outer container 2 of the automobile,
It is connected by piping through the valve 6. Also, 100 g of metal hydride Ti 0.57 Zr 0.43 Mn 0.8 Cr 1.0 Cu 0.2 (MH3), which is close to MH1 but has a temperature-pressure characteristic lower than a certain temperature, is stored in a double-tube type container with an inner tube serving as a hot water passage. This is installed in the outdoor container 3 of the automobile, and hydrogen pipes are provided which communicate with MH1 and MH2 via valves 4 and 5, respectively.

又前記内管は弁7を介してエンジン冷却水配管8に接
続されており、必要に応じてエンジン冷却水を用いて、
80度以上にMH3を加熱することができるようになってい
るが、外壁面は十分には断熱してはいないので加熱を停
止すると自然放冷で外気温度まで低下する。
Further, the inner pipe is connected to an engine cooling water pipe 8 through a valve 7 and, if necessary, engine cooling water is used,
Although it is possible to heat MH3 to 80 degrees or more, the outer wall surface is not sufficiently insulated, and if heating is stopped, it will naturally cool to the outside air temperature.

第2図はMH1,MH2,MH3を付加した本発明の場合の加熱
サイクル図(A→B→C→D→E→A)である。その働
きについては既に作用の項目で述べた如くであり、MH2
にほとんどの水素が吸蔵されているスタンバイの状態か
ら説明を始めると、急速加熱を必要とするとき弁6を開
けば水素は急速にMH2からMH1に移動し、MH1は約19kcal
の発熱をする。この際MH2は吸熱温度TC(−10度)まで
温度が下がるので、十分外気から吸熱することができ
る。
FIG. 2 is a heating cycle diagram (A → B → C → D → E → A) in the case of the present invention in which MH1, MH2, and MH3 are added. Its function is as described in the item of function already.
Starting from the standby state where most of the hydrogen is stored, the hydrogen moves rapidly from MH2 to MH1 when valve 6 is opened when rapid heating is required, and MH1 is about 19 kcal.
Generate fever. At this time, since the temperature of MH2 drops to the endothermic temperature T C (−10 degrees), heat can be sufficiently absorbed from the outside air.

反応終了後はまず弁6を閉じ、弁4を開くとMH1の水
素の一部がMH3へ移動する。この反応によってMH1は冷却
するので、せっかく暖めたものを又冷やすことになるか
ら、室内温度が上がってから徐々に水素をMH3に移動す
るよう弁の開度などを調整する必要がある。
After completion of the reaction, first, the valve 6 is closed and the valve 4 is opened, so that part of the hydrogen of MH1 moves to MH3. Since MH1 is cooled by this reaction, what has been warmed up will be cooled again. Therefore, it is necessary to adjust the opening degree of the valve so that hydrogen is gradually moved to MH3 after the room temperature rises.

MH3の量はMH1の量に比べて、15%程度であるから当然
全水素移動量の15%程度しか移動しない。反応の終わっ
たところで弁4を閉じ、弁5を開くと共に温水弁7を開
きMH3の加熱を始める。MH3がほぼ80度にまで暖められる
と、水素はMH2に移動し、やがてMH3は空の状態になる。
そこで今度は弁5を閉じ弁4を開き、温水弁7を閉じる
とMH3は次第に冷却し再びMH1からMH3への水素の移動が
始まる。
Since the amount of MH3 is about 15% compared to the amount of MH1, naturally only about 15% of the total hydrogen transfer amount is transferred. At the end of the reaction, valve 4 is closed, valve 5 is opened and hot water valve 7 is opened to start heating MH3. When MH3 is warmed up to almost 80 degrees, hydrogen moves to MH2 and eventually MH3 becomes empty.
Then, this time, when the valve 5 is closed and the valve 4 is opened and the hot water valve 7 is closed, the MH3 is gradually cooled and the transfer of hydrogen from MH1 to MH3 starts again.

以下同様な手順を7〜8回繰り返すと、MH1の水素は
ほとんど完全にMH2に移動し、元のスタンバイの常態に
戻る。
When the same procedure is repeated 7 to 8 times, the hydrogen in MH1 almost completely moves to MH2 and returns to the original standby state.

以上一実施例について説明したが、MH3の加熱方法や
容器の形態等については、ここにあげた例に拘束される
ものではない。又MH3の量をさらに少なくすることもも
ちろん可能である。
Although one embodiment has been described above, the method of heating MH3, the form of the container, and the like are not limited to the examples given here. It is of course possible to further reduce the amount of MH3.

またMH3とMH1を幾分異なる材料としたが、これは加熱
温度の都合上こうしたもので、同一材料でも勿論この発
明は成立する。又金属水素化物−水素系の例を挙げた
が、他の吸着材−被吸着気体の組合せでも良い事はいう
までもない。
Also, MH3 and MH1 are made of slightly different materials, but this is because of the heating temperature, and the same material can of course be applied to the present invention. Further, although the example of the metal hydride-hydrogen system is given, it goes without saying that another adsorbent-adsorbed gas combination may be used.

(発明の効果) 以上説明したように、通常の2種類の吸着媒体の間を
被吸着媒体が移動して、吸熱、発熱を繰り返すシステム
では、第一の容器(MH1)に加熱装置が付加されなけれ
ばならない。しかし本発明による第一の容器は金属水素
化物を収容している以外に何等の付属物をも持たないた
め熱容量が小さく反応熱が有効に利用できるばかりでな
く加熱速度も早く、急速加熱器としての特性をいかんな
く発揮することができる。
(Effects of the Invention) As described above, in the system in which the medium to be adsorbed moves between the two ordinary types of adsorption medium to repeat heat absorption and heat generation, a heating device is added to the first container (MH1). There must be. However, since the first container according to the present invention does not have any accessories other than containing the metal hydride, it has a small heat capacity, the reaction heat can be effectively utilized, and the heating rate is fast, so that it can be used as a rapid heater. The characteristics of can be exhibited without any limitation.

また第一の容器(MH1)に加熱装置を設け再生時に加
熱を行う様にすると、装置が大掛かりとなり目的の場所
に組み込めない可能性があるばかりでなく、被加熱部の
温度が上がりすぎて不都合を生ずる場合が多い。例えば
先に述べた実施例の場合、ハンドルが熱くなりすぎて使
用できなくなる。しかし本発明によれば再生時にはむし
ろ逆に幾分温度が低下するが、室温が上がってから徐々
に水素を移動させるように調整して置けば、なんら使用
に差し支えない。
Also, if a heating device is installed in the first container (MH1) and heating is performed during regeneration, not only may the device become too large to be installed in the intended location, but the temperature of the heated part will rise too much, which is inconvenient. Often occurs. For example, in the case of the embodiment described above, the handle becomes too hot to be used. However, according to the present invention, the temperature is rather lowered during regeneration, but if the temperature is adjusted so that hydrogen is gradually moved after the temperature rises, it may be used.

本発明はMH1とMH2以外にMH3を使用するのでその分コ
スト高になるが、MH3の使用量はMH1より十分少なくして
あるので、全体のコストに及ぼす影響は少ない。
In the present invention, since MH3 is used in addition to MH1 and MH2, the cost increases accordingly, but since the amount of MH3 used is sufficiently smaller than that of MH1, it has little effect on the overall cost.

このように気体の吸脱着加熱サイクルの蓄熱性を利用
した急速加熱器の再生過程を簡単な補助吸着部(MH3)
の付加で実用性を高めることができるので、種々の分野
に応用ができる。
In this way, the regeneration process of the rapid heater utilizing the heat storage property of the gas adsorption / desorption heating cycle can be used as a simple auxiliary adsorption part (MH3).
Since it is possible to enhance the practicality by adding, it can be applied to various fields.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の構成を示す図、第2図は本
発明の一実施例の加熱サイクル図、第3図は間欠式加熱
サイクルの原理図である。 1……第1の金属水素化物収容容器(MH1)、2……第
2の金属水素化物収容容器(MH2)、3……第3の金属
水素化物収容容器(MH2)、4,5,6……弁(水素ガス
用)、7……弁(温水用)、8……エンジン冷却水管、
TH……加熱(再生)温度、TA……外気温度、TU……利用
温度、TC……吸熱温度。
FIG. 1 is a diagram showing the structure of an embodiment of the present invention, FIG. 2 is a heating cycle diagram of an embodiment of the present invention, and FIG. 3 is a principle diagram of an intermittent heating cycle. 1 ... First metal hydride container (MH1), 2 ... Second metal hydride container (MH2), 3 ... Third metal hydride container (MH2), 4, 5, 6 ...... Valve (for hydrogen gas), 7 ... Valve (for hot water), 8 ... Engine cooling water pipe,
T H: heating (regeneration) temperature, T A: outside air temperature, T U: operating temperature, T C: endothermic temperature.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】被加熱空間に置かれた容器に収容された第
一の吸着物質に、これより低温の空間に置かれた容器に
収容された第二の吸着物質に吸着された被吸着物質を、
弁及び配管を介して移動吸着せしめる間欠作動式加熱器
に加えて、前記第一の吸着物質ないしはそれにほぼ近い
温度圧力特性を有する吸着物質の前記第一の吸着物質よ
り少ない量を収容しかつ加熱手段を有する第三の容器
を、前記第二の吸着物質を収容する容器の置かれた空間
に設け、弁を介して配管により第一及び第二の吸着物質
を収容する容器と連結したことを特徴とする間欠作動式
加熱器。
1. An adsorbed substance adsorbed on a first adsorbed substance contained in a container placed in a space to be heated and a second adsorbed substance contained in a container placed in a space having a lower temperature than the adsorbed substance. To
In addition to an intermittently operated heater that moves and adsorbs through a valve and a pipe, it contains and heats a smaller amount of the first adsorbent or an adsorbent having a temperature-pressure characteristic close to that of the first adsorbent. A third container having means is provided in the space where the container for containing the second adsorbent is placed, and is connected to the container for accommodating the first and second adsorbent by a pipe through a valve. Characteristic intermittent operation type heater.
JP12046788A 1988-05-19 1988-05-19 Intermittent heater Expired - Fee Related JPH0830632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12046788A JPH0830632B2 (en) 1988-05-19 1988-05-19 Intermittent heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12046788A JPH0830632B2 (en) 1988-05-19 1988-05-19 Intermittent heater

Publications (2)

Publication Number Publication Date
JPH01291072A JPH01291072A (en) 1989-11-22
JPH0830632B2 true JPH0830632B2 (en) 1996-03-27

Family

ID=14786892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12046788A Expired - Fee Related JPH0830632B2 (en) 1988-05-19 1988-05-19 Intermittent heater

Country Status (1)

Country Link
JP (1) JPH0830632B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5351493A (en) * 1991-12-10 1994-10-04 Sanyo Electric Co., Ltd. Thermally driven refrigeration system utilizing metal hydrides
US5469913A (en) * 1992-12-18 1995-11-28 Matsushita Electric Industrial Co., Ltd. Vehicle using hydrogen absorbing alloys

Also Published As

Publication number Publication date
JPH01291072A (en) 1989-11-22

Similar Documents

Publication Publication Date Title
JP2596169B2 (en) Cooler
Meunier Solid sorption heat powered cycles for cooling and heat pumping applications
Tatlıer et al. A novel approach to enhance heat and mass transfer in adsorption heat pumps using the zeolite–water pair
CA1078633A (en) Hydride heat pump
Li et al. A combined double-way chemisorption refrigeration cycle based on adsorption and resorption processes
Cacciola et al. Influence of the adsorber heat exchanger design on the performance of the heat pump system
JPH0830632B2 (en) Intermittent heater
EP1550830A1 (en) Heat pump system
JP3934738B2 (en) Method for managing solid / gas adsorption and thermochemical reactions
Vasil’ev et al. Multisalt-carbon chemical cooler for space applications
JPH0220912B2 (en)
JP2568484B2 (en) Multi-effect heat pump device
JP4423722B2 (en) Hydrogen supply device
JPH0665943B2 (en) Intermittent operation type multi-stage cooling device
JPH0573984B2 (en)
JPS6222883A (en) Rapid heating device
JPS6331715B2 (en)
JPS63143468A (en) Heat pump type air conditioner
JPH01239389A (en) Chemical regenerative device
JPS61134551A (en) Metallic hydride heat pump device
JPS60226678A (en) Intermittent operation type multistage second class heat pump device
JPH0650629A (en) Different kind gas sensor device in system utilizing heat
JPH0472142B2 (en)
FR2629575A1 (en) CHEMICAL PIPE, METHOD FOR REGENERATING SUCH A PIPE AND USE OF THE SAME
JPS60226675A (en) Intermittent operation type multistage cooling device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees