JPH08304704A - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JPH08304704A
JPH08304704A JP8020930A JP2093096A JPH08304704A JP H08304704 A JPH08304704 A JP H08304704A JP 8020930 A JP8020930 A JP 8020930A JP 2093096 A JP2093096 A JP 2093096A JP H08304704 A JPH08304704 A JP H08304704A
Authority
JP
Japan
Prior art keywords
lens group
lens
distance
wide
telephoto end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8020930A
Other languages
Japanese (ja)
Inventor
Atsushi Shibayama
敦史 芝山
Masatoshi Suzuki
正敏 鈴木
Takanori Fujita
貴徳 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP8020930A priority Critical patent/JPH08304704A/en
Priority to US08/613,254 priority patent/US5668668A/en
Priority to US08/736,673 priority patent/US5721642A/en
Priority to US08/736,674 priority patent/US5798871A/en
Publication of JPH08304704A publication Critical patent/JPH08304704A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1435Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative
    • G02B15/143507Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative arranged -++
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1445Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative
    • G02B15/144507Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative arranged -++-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1455Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being negative
    • G02B15/145523Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being negative arranged -++-+

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

PURPOSE: To make the extension distance of a focusing lens group constant regardless of zoom positions by specifying the movement and imaging magnifications of plural lens groups having negative, positive and positive refracting power successively from an object side. CONSTITUTION: This zoom lens consists of, successively from the object side, the first lens group G1 having the negative refracting power, the second lens group G2 having the positive refracting power and the third lens group G3 having the positive refracting power. The first lens group G1 stays still and both of the second lens group G2 and the third lens group G3 move to an object direction and the air spacing between the first lens group G1 and the second lens group G2 decreases at the time of variable magnification from the wide angle end to the telephoto end. The air spacing between the second lens group G2 and the third lens group G3 increases near the wide angle end and decreases near the telephoto end. Further, the imaging magnification of the second lens group G2 is so controlled as not to attain -1 times in any focal length state from the wide angle end to the telephoto end. As a result, the extension length of the lens groups is kept constant even with the inner focus system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はズームレンズの変倍方式
に関し、特にインナーフォーカス方式に適したズームレ
ンズの変倍方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens zooming system, and more particularly to a zoom lens zooming system suitable for an inner focus system.

【0002】[0002]

【従来の技術】ズームレンズのフォーカシング方式は、
第1レンズ群を繰り出す、いわゆる1群繰り出し方式が
一般的である。この1群繰り出し方式は、同一距離の被
写体へのフォーカシングに要する第1レンズ群の繰り出
し量が、ズームポジションに依存しないという利点があ
り広く用いられている。
2. Description of the Related Art Focusing systems for zoom lenses are
A so-called one-group moving-out method of moving out the first lens group is general. This one-group extension method is widely used because it has the advantage that the extension amount of the first lens group required for focusing on a subject at the same distance does not depend on the zoom position.

【0003】また、第1レンズ群より像面側に位置する
レンズ群を移動させるインナーフォーカス方式、または
リアーフォーカス方式のズームレンズも特開昭57−5
012号公報等で提案されている。
Further, an inner focus type or rear focus type zoom lens for moving a lens unit positioned on the image plane side of the first lens unit is also disclosed in Japanese Patent Laid-Open No. 57-5.
No. 012 publication and the like are proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、1群繰
り出し方式では、比較的大きく重い第1レンズ群を動か
してフォーカシングを行うため、オートフォーカスを行
う場合のフォーカシング速度は、インナーフォーカス方
式やリアーフォーカス方式に比べて遅いという問題があ
った。また、最も外側のレンズ群が移動するため、防滴
または防水カメラには不向きであった。
However, in the first group extension method, focusing is performed by moving the relatively large and heavy first lens group. Therefore, the focusing speed in performing autofocus is the inner focus method or the rear focus method. There was a problem that it was slow compared to. Further, since the outermost lens group moves, it is not suitable for a drip-proof or waterproof camera.

【0005】一方、特開昭57−5012号公報で提案
されているリアーフォーカス方式のズームレンズでは、
同一距離の被写体へのフォーカシングに要するフォーカ
シングレンズ群の繰り出し量が、ズームポジションによ
って大きく異なり、近距離物体にフォーカシングした後
にズーミングを行うと、ピントがはずれるという問題が
あった。
On the other hand, in the rear focus type zoom lens proposed in Japanese Patent Laid-Open No. 57-5012,
There is a problem that the amount of extension of the focusing lens group required for focusing on a subject at the same distance greatly varies depending on the zoom position, and when focusing is performed on an object at a short distance and then zooming is performed, the focus is out of focus.

【0006】本発明においては、インナーフォーカス方
式を採用しても、同一距離の被写体へのフォーカシング
に要するフォーカシングレンズ群の繰り出し量が、ズー
ムポジションによらずほぼ一定とすることが可能なズー
ムレンズの提供を目的としている。
According to the present invention, even if the inner focus system is adopted, the amount of extension of the focusing lens group required for focusing on a subject at the same distance can be made substantially constant regardless of the zoom position. It is intended to be provided.

【0007】[0007]

【課題を解決するための手段】本発明のズームレンズ
は、物体側から順に、負の屈折力を有する第1レンズ群
と、正の屈折力を有する第2レンズ群と、正の屈折力を
有する第3レンズ群からなり、広角端から望遠端へのズ
ーミングに際して、第1レンズ群が静止し、第2レンズ
群と第3レンズ群が物体方向に移動し、第2レンズ群と
第3レンズ群との間隔が変化し、さらに、広角端から望
遠端までのいずれの焦点距離状態においても、第2レン
ズ群の結像倍率が−1倍とならない構成である。
A zoom lens according to the present invention has a first lens group having a negative refracting power, a second lens group having a positive refracting power, and a positive refracting power in order from the object side. The first lens group is stationary, the second lens group and the third lens group move in the object direction, and the second lens group and the third lens are configured to move during zooming from the wide-angle end to the telephoto end. The distance between the lens unit and the second lens unit changes, and the imaging magnification of the second lens unit does not become -1 in any focal length state from the wide-angle end to the telephoto end.

【0008】あるいは、物体側から順に、負の屈折力を
有する第1レンズ群と、正の屈折力を有する第2レンズ
群と、正の屈折力を有する第3レンズ群を有し、広角端
から望遠端へのズーミングに際して、前記第1レンズ群
と第2レンズ群との間隔が変化し、前記第2レンズ群と
第3レンズ群との間隔が変化し、前記第2レンズ群を像
面方向に移動させて遠距離物体から近距離物体へのフォ
ーカシングを行う構成である。
Alternatively, in order from the object side, a first lens group having a negative refracting power, a second lens group having a positive refracting power, and a third lens group having a positive refracting power are provided, and the wide-angle end is provided. From the telephoto end to the telephoto end, the distance between the first lens group and the second lens group changes, the distance between the second lens group and the third lens group changes, and the second lens group is changed to the image plane. It is configured to move in a direction to perform focusing from a long-distance object to a short-distance object.

【0009】あるいは、物体側から順に、負の屈折力を
有する第1レンズ群と、正の屈折力を有する第2レンズ
群と、正の屈折力を有する第3レンズ群と、負の屈折力
を有する第4レンズ群とを有し、広角端から望遠端への
ズーミングに際して、第1レンズ群と第2レンズ群との
間隔が狭まり、第2レンズ群と第3レンズ群との間隔が
広がり、第3レンズ群と第4レンズ群との間隔が広がる
構成である。
Alternatively, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a positive refractive power, and a negative refractive power. And a fourth lens group having a zoom lens, the distance between the first lens group and the second lens group is narrowed, and the distance between the second lens group and the third lens group is widened during zooming from the wide-angle end to the telephoto end. , The distance between the third lens group and the fourth lens group is widened.

【0010】あるいは、物体側から順に、負の屈折力を
有する第1レンズ群と、正の屈折力を有する第2レンズ
群と、正の屈折力を有する第3レンズ群と、負の屈折力
を有する第4レンズ群とを有し、広角端から望遠端への
ズーミングに際して、第1レンズ群が静止し、第1レン
ズ群と第2レンズ群との間隔が狭まり、第2レンズ群と
第3レンズ群との間隔が変化し、第3レンズ群と第4レ
ンズ群との間隔が広がる構成である。
Alternatively, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a positive refractive power, and a negative refractive power. And a fourth lens unit having a second lens unit, the first lens unit is stationary during zooming from the wide-angle end to the telephoto end, and the distance between the first lens unit and the second lens unit is narrowed. The distance between the third lens group and the third lens group changes, and the distance between the third lens group and the fourth lens group widens.

【0011】あるいは、物体側から順に、負の屈折力を
有する第1レンズ群と、正の屈折力を有する第2レンズ
群と、正の屈折力を有する第3レンズ群と、負の屈折力
を有する第4レンズ群と、正の屈折力を有する第5レン
ズ群とを有し、広角端から望遠端へのズーミングに際し
て、第1レンズ群と第2レンズ群との間隔が狭まり、第
2レンズ群と第3レンズ群との間隔が変化し、第3レン
ズ群と第4レンズ群との間隔が広がり、第4レンズ群と
第5レンズ群の間隔が狭まる構成である。
Alternatively, in order from the object side, the first lens group having a negative refractive power, the second lens group having a positive refractive power, the third lens group having a positive refractive power, and the negative refractive power. And a fifth lens group having a positive refracting power, the distance between the first lens group and the second lens group is narrowed during zooming from the wide-angle end to the telephoto end, and the second lens group The distance between the lens group and the third lens group changes, the distance between the third lens group and the fourth lens group increases, and the distance between the fourth lens group and the fifth lens group decreases.

【0012】あるいは、物体側から順に、負の屈折力を
有する第1レンズ群と、正の屈折力を有する第2レンズ
群と、正の屈折力を有する第3レンズ群と、正の屈折力
を有する第4レンズ群を有し、広角端から望遠端へのズ
ーミングに際して、前記第1レンズ群と前記第2レンズ
群との間隔が縮小し、前記第2レンズ群と前記第3レン
ズ群との間隔が変化し、前記第3レンズ群と前記第4レ
ンズ群との間隔が変化し、前記第2レンズ群を像面方向
に移動させて遠距離物体から近距離物体へのフォーカシ
ングを行う構成である。
Alternatively, in order from the object side, the first lens group having a negative refractive power, the second lens group having a positive refractive power, the third lens group having a positive refractive power, and the positive refractive power. And a fourth lens group having a second lens group, the distance between the first lens group and the second lens group is reduced during zooming from the wide-angle end to the telephoto end, and the second lens group and the third lens group are The distance between the third lens group and the fourth lens group is changed, and the second lens group is moved in the image plane direction to perform focusing from a long-distance object to a short-distance object. Is.

【0013】上記構成のもとで、以下の条件のうち少な
くとも一つを満足するのが好ましい。 (1) |β2t|>2 (2) |β2w|>2 (3) β2t>2 (4) β2w<−2 (5) 0.5 < f2/f3 < 2 (6) f2/(|f1|+e1t) > 0.8 (f1<0) (7) f2/(|f1|+e1w) < 1.2 但し、β2t:望遠端における第2レンズ群の結像倍
率、 β2w:広角端における第2レンズ群の結像倍率、 f1:第1レンズ群の焦点距離、 f2:第2レンズ群の焦点距離、 f3:第3レンズ群の焦点距離、 e1w:広角端における第1レンズ群の像側主点から第
2レンズ群の物側主点までの距離、 e1t:望遠端における第1レンズ群の像側主点から第
2レンズ群の物側主点までの距離である また、負の第1レンズ群と、正の第2レンズ群と、正の
第3レンズ群からなるズームレンズの場合には、以下の
条件を満足するのが望ましい。 (8) f3/e3w > 0.8 (9) f3/e3t < 1.2 但し、e3w:広角端における第3レンズ群の像側主点
から像面までの距離、 e3t:望遠端における第3レンズ群の像側主点から像
面までの距離である。
Under the above structure, it is preferable that at least one of the following conditions is satisfied. (1) | β2t |> 2 (2) | β2w |> 2 (3) β2t> 2 (4) β2w <-2 (5) 0.5 <f2 / f3 <2 (6) f2 / (| f1 | + E1t)> 0.8 (f1 <0) (7) f2 / (| f1 | + e1w) <1.2 where β2t is the imaging magnification of the second lens group at the telephoto end, and β2w is the second lens at the wide-angle end. Imaging magnification of the group, f1: focal length of the first lens group, f2: focal length of the second lens group, f3: focal length of the third lens group, e1w: image-side principal point of the first lens group at the wide-angle end To the object-side principal point of the second lens group, e1t: distance from the image-side principal point of the first lens group to the object-side principal point of the second lens group at the telephoto end, and the negative first lens In the case of a zoom lens including a group, a positive second lens group, and a positive third lens group, It is desirable to satisfy the matter. (8) f3 / e3w> 0.8 (9) f3 / e3t <1.2 where e3w: distance from the image-side principal point of the third lens group to the image plane at the wide-angle end, e3t: third at the telephoto end It is the distance from the image-side principal point of the lens group to the image plane.

【0014】[0014]

【作用】本発明のズームレンズにおいては、物体側から
順に、負の第1レンズ群と正の第2レンズ群と正の第3
レンズ群を有する構成とし、第2レンズ群での結像倍率
が広角端から望遠端までのズーム全域で大きな拡大倍率
となるように構成する。このような構成のもとで、第2
レンズ群を像面方向に移動させてフォーカシングを行う
と、第2レンズ群のフォーカシング移動量Δは以下の近
似式で与えられる。
In the zoom lens of the present invention, in order from the object side, the negative first lens group, the positive second lens group, and the positive third lens group.
The lens group is included, and the image formation magnification in the second lens group is set to be a large enlargement magnification in the entire zoom range from the wide-angle end to the telephoto end. With such a configuration, the second
When focusing is performed by moving the lens unit in the image plane direction, the focusing movement amount Δ of the second lens unit is given by the following approximate expression.

【0015】 Δ≒{β2/(β2−1)}・{f12/(D0−f1)} (10) 但し、β:第2レンズ群の結像倍率、 f1:第1レンズ群の焦点距離、 D0:物点から第1レンズ群の物側主点までの距離であ
る。 式(10)の右辺のf1は定数であり、D0はズーミン
グによって全長の変化しないズームレンズでは定数とな
る。一方、βはズーミングによって変化するが、βの絶
対値が大きくなるよう構成すると、{β2/(β2
1)}は1に近い値となりズーミング時の変化は小さく
なる。また、第2レンズ群の結像倍率βが−1となる場
合には、フォーカシングが不可能となる。
Δ≈ {β 2 / (β 2 −1)} · {f1 2 / (D0-f1)} (10) where β is the image formation magnification of the second lens group, and f1: is the image formation ratio of the first lens group. Focal length, D0: Distance from the object point to the object-side principal point of the first lens group. F1 on the right side of Expression (10) is a constant, and D0 is a constant for a zoom lens whose total length does not change due to zooming. On the other hand, β changes due to zooming, but if it is configured so that the absolute value of β becomes large, {β 2 / (β 2
1)} becomes a value close to 1 and the change during zooming becomes small. Further, when the imaging magnification β of the second lens group becomes -1, focusing becomes impossible.

【0016】このことから、第2レンズ群のフォーカシ
ング移動量のズーミングによる変化を小さくするには、
|β|を大きくすることが必要である。また、D0がズ
ーミング時に変化しないこと、すなわち、第1レンズ群
がズーミング時に移動しないことが望ましい。条件
(1)および条件(2)は、広角端と望遠端における|
β|の値を規定している。条件(1)および条件(2)
の下限を越えると、第2レンズ群のフォーカシング移動
量のズーミングによる変化が大きくなり好ましくない。
なお、条件(1)および条件(2)の下限値を3とする
と、第2レンズ群のフォーカシング移動量のズーミング
による変化をより小さくすることが可能となる。
From this, in order to reduce the change in the focusing movement amount of the second lens unit due to zooming,
It is necessary to increase | β |. It is also desirable that D0 does not change during zooming, that is, the first lens group does not move during zooming. Condition (1) and condition (2) are | at the wide-angle end and the telephoto end.
It defines the value of β |. Condition (1) and condition (2)
When the value exceeds the lower limit, the change in focusing movement amount of the second lens unit due to zooming becomes large, which is not preferable.
If the lower limit values of the conditions (1) and (2) are set to 3, it is possible to further reduce the change in the focusing movement amount of the second lens group due to zooming.

【0017】また、広角端と望遠端とで|β|の値をほ
ぼ等しくすると、広角端と望遠端での第2レンズ群のフ
ォーカシング移動量をほぼ等しくすることができる。こ
の場合、広角端での第2レンズ群の結像倍率β2wを負
の値、望遠端での第2レンズ群の結像倍率β2tを正の
値とするのが、ズーミングを効率よく行うために望まし
く、条件(3)および条件(4)を満足することが望ま
しい。
Further, if the values of | β | are substantially equal at the wide-angle end and the telephoto end, the focusing movement amount of the second lens group at the wide-angle end and the telephoto end can be made substantially equal. In this case, the imaging magnification β2w of the second lens group at the wide-angle end is set to a negative value, and the imaging magnification β2t of the second lens group at the telephoto end is set to a positive value in order to efficiently perform zooming. It is desirable that the conditions (3) and (4) are satisfied.

【0018】また、第2レンズ群または第3レンズ群を
コンペンセーターとすることにより、第1レンズ群を固
定することが可能である。条件(5)は、その際の第2
レンズ群と第3レンズ群の焦点距離の適切な比を規定す
る。条件(5)の下限を越えると第2レンズ群の屈折力
が大きくなり、球面収差の補正が困難となる。反対に条
件(5)の上限を越えると、バックフォーカスの確保
と、ズームレンズ全長の小型化が困難となる。
The first lens group can be fixed by using the second lens group or the third lens group as a compensator. Condition (5) is the second
It defines an appropriate ratio of the focal lengths of the lens group and the third lens group. When the value goes below the lower limit of the condition (5), the refractive power of the second lens unit becomes large, and it becomes difficult to correct spherical aberration. On the other hand, when the value exceeds the upper limit of the condition (5), it becomes difficult to secure the back focus and reduce the overall length of the zoom lens.

【0019】また、第2レンズ群または第3レンズ群を
コンペンセーターとして、広角端から望遠端へのズーミ
ングの際に第2レンズ群と第3レンズ群の間隔を変化さ
せる場合には、広角端近傍では第2レンズ群と第3レン
ズ群の間隔を拡大とし、望遠端近傍では縮小とすると、
レンズ全長を小型化するのに有効である。条件(6)と
条件(7)は、第2レンズ群でフォーカシングする場合
の第1レンズ群と第2レンズ群の焦点距離の適切な関係
を規定する。条件(6)の下限・条件(7)の上限のい
づれを外れても、第2レンズ群のフォーカシング移動量
のズーミングによる変化が大きくなり好ましくない。
When the second lens group or the third lens group is used as a compensator and the distance between the second lens group and the third lens group is changed during zooming from the wide-angle end to the telephoto end, the wide-angle end is used. If the distance between the second lens group and the third lens group is increased in the vicinity and reduced in the vicinity of the telephoto end,
This is effective in reducing the overall length of the lens. The conditions (6) and (7) define an appropriate relationship between the focal lengths of the first lens group and the second lens group when focusing with the second lens group. If either the lower limit of the condition (6) or the upper limit of the condition (7) is deviated, a change in the focusing movement amount of the second lens unit due to zooming becomes large, which is not preferable.

【0020】条件(8)と条件(9)は、負の第1レン
ズ群と正の第2レンズ群と正の第3レンズ群からなるズ
ームレンズにおいて、第2レンズ群でフォーカシングす
る場合の第3レンズ群の焦点距離の適切な範囲を規定す
る。条件(8)の下限・条件(9)の上限のいづれを外
れても、第2レンズ群のフォーカシング移動量のズーミ
ングによる変化が大きくなり好ましくない。
The conditions (8) and (9) are the conditions for focusing with the second lens group in the zoom lens including the negative first lens group, the positive second lens group, and the positive third lens group. The appropriate range of the focal length of the three lens groups is defined. If either the lower limit of the condition (8) or the upper limit of the condition (9) is deviated, a change in the focusing movement amount of the second lens unit due to zooming becomes large, which is not preferable.

【0021】また、本発明は、負の第1レンズ群と正の
第2レンズ群と正の第3レンズ群からなる3群ズームレ
ンズを基本としているが、この3群ズームレンズの像側
に正または負の第4レンズ群を付加して、大口径比化ま
たは小型化をはかってもよく、負の第4レンズ群と正の
第5レンズ群を付加して、高ズーム比化あるいは大口径
比化をはかってもよい。その際、広角端から望遠端への
ズーミング時に、第3レンズ群と第4レンズ群の間隔を
拡大し、第4レンズ群と第5レンズ群の間隔を縮小する
のが望ましい。
The present invention is based on a three-group zoom lens composed of a negative first lens group, a positive second lens group, and a positive third lens group. A positive or negative fourth lens group may be added to achieve a large aperture ratio or downsizing, and a negative fourth lens group and a positive fifth lens group may be added to increase the zoom ratio or increase the zoom ratio. A ratio of apertures may be measured. At this time, it is desirable to increase the distance between the third lens group and the fourth lens group and reduce the distance between the fourth lens group and the fifth lens group during zooming from the wide-angle end to the telephoto end.

【0022】[0022]

【実施例】以下に,本発明による各実施例について説明
する。 〔実施例1〕図1は、実施例1のレンズ構成図であり、
上部に広角端、下部に望遠端でのレンズ構成を示してい
る。物体側から順に、負の第1レンズ群G1と、正の第
2レンズ群G2と、正の第3レンズ群G3とから構成
し、広角端から望遠端への変倍に際して、第1レンズ群
は静止し、第2レンズ群と第3レンズ群はいずれも物体
方向に移動し、第1レンズ群と第2レンズ群との空気間
隔は減少し、第2レンズ群と第3レンズ群との空気間隔
は広角端近傍では拡大し、望遠端近傍では縮小する。
EXAMPLES Each example according to the present invention will be described below. Example 1 FIG. 1 is a lens configuration diagram of Example 1,
The lens configuration at the wide-angle end is shown at the top and at the telephoto end at the bottom. The first lens group G1 includes a negative first lens group G1, a positive second lens group G2, and a positive third lens group G3 in order from the object side, and the first lens group G1 is used during zooming from the wide-angle end to the telephoto end. Is stationary, both the second lens group and the third lens group move in the object direction, the air gap between the first lens group and the second lens group decreases, and the second lens group and the third lens group The air spacing increases near the wide-angle end and decreases near the telephoto end.

【0023】第1レンズ群の物体側から4番目のレンズ
面は非球面であり、非球面形状は次の式で与えられる。 X(y)=y2/[r・{1+(1−k・y2/r21/2}] +C2・y2+C4・y4+C6・y6+C8・y8+C10・y10 但し、X(y)は非球面の頂点における接平面から高さ
yにおける非球面上の位置までの光軸方向に沿った距
離、rは近軸の曲率半径、kは円錐定数、Ciは第i次の
非球面係数である。
The fourth lens surface of the first lens group from the object side is an aspherical surface, and the aspherical shape is given by the following equation. X (y) = y 2 / [r · {1+ (1-k · y 2 / r 2) 1/2}] + C2 · y 2 + C4 · y 4 + C6 · y 6 + C8 · y 8 + C10 · y 10 where , X (y) is the distance along the optical axis from the tangent plane at the apex of the aspherical surface to the position on the aspherical surface at the height y, r is the paraxial radius of curvature, k is the conic constant, and Ci is the i-th The following aspherical coefficients.

【0024】また、遠距離物体から近距離物体へのフォ
ーカシングは、第2レンズ群を像面側に移動させて行な
う。以下の表1に、本発明における実施例1の諸元の値
を掲げる。実施例の諸元表中のfは焦点距離、FはFナ
ンバー、 2ωは画角を表す。そして、左端の数字は物体
側からの順序を表し、rはレンズ面の曲率半径、dはレ
ンズ面間隔、n及びνは屈折率及びアッベ数のd線(λ
=587.6nm)に対する値である。また、可変間隔表中のR
は撮影距離である。
Focusing from a long-distance object to a short-distance object is performed by moving the second lens group to the image plane side. Table 1 below lists values of specifications of the first embodiment of the present invention. In the specification table of the embodiment, f is the focal length, F is the F number, and 2ω is the angle of view. The number at the left end represents the order from the object side, r is the radius of curvature of the lens surface, d is the distance between the lens surfaces, n and ν are the refractive index and the Abbe number d line (λ
= 587.6 nm). Also, R in the variable interval table
Is the shooting distance.

【0025】[0025]

【表1】 図2、図3は、それぞれ実施例1の撮影距離R=inf
における広角端での諸収差図、望遠端での諸収差図を示
し、図4、図5は、それぞれ実施例1の撮影距離R=5
00における広角端での諸収差図、望遠端での諸収差図
を示す。各収差図において、FNOはFナンバー、NAは
開口数、Yは像高、dはd線(λ=587.6nm)及びgはg
線(λ=435.6nm)を示している。非点収差図において、
実線はサジタル像面を、破線はメリジオナル像面をそれ
ぞれ示す。
[Table 1] 2 and 3, the shooting distance R of the first embodiment is R = inf.
FIGS. 4A and 4B are graphs showing various aberrations at the wide-angle end and at the telephoto end in FIGS. 4 and 5, respectively.
00 shows various aberration diagrams at the wide-angle end and at 00 at the telephoto end. In each aberration diagram, FNO is the F number, NA is the numerical aperture, Y is the image height, d is the d line (λ = 587.6 nm), and g is g.
The line (λ = 435.6 nm) is shown. In the astigmatism diagram,
The solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane.

【0026】各収差図から、本実施例は諸収差が良好に
補正され、優れた結像性能を有していることが明らかで
ある。 〔実施例2〕図6は、実施例2のレンズ構成図であり、
上部に広角端、下部に望遠端でのレンズ構成を示してい
る。物体側から順に、負の第1レンズ群G1と、正の第
2レンズ群G2と、正の第3レンズ群G3と、負の第4
レンズ群G4と正の第5レンズ群G5から構成し、広角
端から望遠端への変倍に際して、第1レンズ群は静止
し、第2乃至第5レンズ群はいずれも物体方向に移動
し、第1レンズ群と第2レンズ群との空気間隔は減少
し、第2レンズ群と第3レンズ群との空気間隔は増大
し、第3レンズ群と第4レンズ群との空気間隔は増大
し、第4レンズ群と第5レンズ群との空気間隔は減少す
る。
From each aberration diagram, it is apparent that various aberrations are satisfactorily corrected and that this example has excellent imaging performance. Example 2 FIG. 6 is a lens configuration diagram of Example 2,
The lens configuration at the wide-angle end is shown at the top and at the telephoto end at the bottom. In order from the object side, the negative first lens group G1, the positive second lens group G2, the positive third lens group G3, and the negative fourth lens group G2.
It is composed of a lens group G4 and a positive fifth lens group G5, and during zooming from the wide-angle end to the telephoto end, the first lens group is stationary, and the second to fifth lens groups are all moved in the object direction, The air gap between the first lens group and the second lens group decreases, the air gap between the second lens group and the third lens group increases, and the air gap between the third lens group and the fourth lens group increases. , The air gap between the fourth lens group and the fifth lens group decreases.

【0027】また、遠距離物体から近距離物体へのフォ
ーカシングは、第2レンズ群を像面側に移動させて行な
う。第1レンズ群の最も物体側のレンズ面は非球面であ
り、非球面形状は次の式で与えられる。 X(y)=y2/[r・{1+(1−k・y2/r21/2}] +C2・y2+C4・y4+C6・y6+C8・y8+C10・y10 但し、X(y)は非球面の頂点における接平面から高さ
yにおける非球面上の位置までの光軸方向に沿った距
離、rは近軸の曲率半径、kは円錐定数、Ciは第i次の
非球面係数である。
Focusing from a long-distance object to a short-distance object is performed by moving the second lens group to the image plane side. The most object-side lens surface of the first lens group is an aspherical surface, and the aspherical shape is given by the following equation. X (y) = y 2 / [r · {1+ (1-k · y 2 / r 2) 1/2}] + C2 · y 2 + C4 · y 4 + C6 · y 6 + C8 · y 8 + C10 · y 10 where , X (y) is the distance along the optical axis from the tangent plane at the apex of the aspherical surface to the position on the aspherical surface at the height y, r is the paraxial radius of curvature, k is the conic constant, and Ci is the i-th The following aspherical coefficients.

【0028】以下の表2に、本発明における実施例2の
諸元の値を掲げる。実施例の諸元表中のfは焦点距離、
FはFナンバー、 2ωは画角を表す。そして、左端の数
字は物体側からの順序を表し、rはレンズ面の曲率半
径、dはレンズ面間隔、n及びνは屈折率及びアッベ数
のd線(λ=587.6nm)に対する値である。また、可変間
隔表中のRは撮影距離である。
Table 2 below lists values of specifications of the second embodiment of the present invention. F in the specification table of the embodiment is the focal length,
F is the F number and 2ω is the angle of view. The leftmost number represents the order from the object side, r is the radius of curvature of the lens surface, d is the distance between the lens surfaces, and n and ν are the values of the refractive index and Abbe number for the d line (λ = 587.6 nm). . Further, R in the variable interval table is a shooting distance.

【0029】[0029]

【表2】 f=20.50〜24.00〜28.00〜34.00 F/2.88 2ω=95.36〜84.20〜74.79〜64.41゜ r d ν n 1 42.8646 2.5000 49.5 1.77279 2 19.0563 12.2538 3 -89.7386 2.0000 47.5 1.78797 4 43.6226 3.0774 5 -1278.6770 2.7808 31.6 1.75692 6 -114.4184 0.2000 7 37.2342 3.5000 31.6 1.75692 8 70.6430 (d 8) 9 58.7658 1.2000 29.5 1.71736 10 27.8095 7.7426 70.0 1.51860 11 -62.9952 (d11) 12 40.9312 2.9396 53.9 1.71300 13 178.2683 (d13) 14 (絞り) 2.0000 15 -40.2685 1.2000 52.3 1.74810 16 28.7416 3.3073 25.4 1.80518 17 203.9851 (d17) 18 59.1968 3.8000 50.8 1.65844 19 -63.0449 1.5000 20 79.5746 2.0000 26.1 1.78470 21 30.6815 1.8153 22 121.6247 3.3377 45.4 1.79668 23 -76.5204 0.2000 24 275.3981 6.1577 57.0 1.62280 25 -21.9059 1.7000 23.0 1.86074 26 -60.5026 第1面非球面係数 k = 1.0000 C2 = 0.0000 C4 = 3.9551E-6 C6 = 7.4971E-9 C8 =-1.2898E-11 C10= 2.0419E-14 可変間隔表 f 20.50 24.00 28.00 34.00 R inf inf inf inf d 8 19.53510 12.68258 7.15140 1.00000 d 11 3.53475 7.61249 9.66310 9.97063 d 13 1.54528 4.05890 7.08276 9.83202 d 17 9.73143 7.26988 4.61998 2.00000 f 20.50 24.00 28.00 34.00 R 500.00 500.00 500.00 500.00 d 8 22.07078 15.26240 9.79958 3.76429 d 11 0.99907 5.03267 7.01491 7.20634 d 13 1.54528 4.05890 7.08276 9.83202 d 17 9.73143 7.26988 4.61998 2.00000 条件対応値 β2t= 3.410 β2w=19.601 f2/f3=1.036 f2/(|f1|+e1t)=1.414 f2/(|f1|+e1w)=1.054 図7、図8は、それぞれ実施例2の撮影距離R=inf
における広角端での諸収差図、望遠端での諸収差図を示
し、図9、図10は、それぞれ実施例2の撮影距離R=
500における広角端での諸収差図、望遠端での諸収差
図を示す。各収差図において、FNOはFナンバー、NA
は開口数、Yは像高、dはd線(λ=587.6nm)及びgは
g線(λ=435.6nm)を示している。非点収差図におい
て、実線はサジタル像面を、破線はメリジオナル像面を
それぞれ示す。
[Table 2] f = 20.50 to 24.00 to 28.00 to 34.00 F / 2.88 2ω = 95.36 to 84.20 to 74.79 to 64.41 ° rd ν n 1 42.8646 2.5000 49.5 1.77279 2 19.0563 12.2538 3 -89.7386 2.0000 47.5 1.78797 4 43.6226 3.0774 5 -1278.6770 2.7808 31.6 1.75692 6 -114.4184 0.2000 7 37.2342 3.5000 31.6 1.75692 8 70.6430 (d 8) 9 58.7658 1.2000 29.5 1.71736 10 27.8095 7.7426 70.0 1.51860 11 -62.9952 ) 12 40.9312 2.9396 53.9 1.71300 13 178.2683 (d13) 14 (aperture) 2.0000 15 -40.2685 1.2000 52.3 1.74810 16 28.7416 3.3073 25.4 1.80518 17 203.9851 (d17) 18 59.1968 3.8000 50.8 1.65844 19 -63.0449 1.5000 20 79.5746 2.0000 26.1 1.78470 21 30.6815 1.8153 22 121.6247 3.3377 45.4 1.79668 23 -76.5204 0.2000 24 275.3981 6.1577 57.0 1.62280 25 -21.9059 1.7000 23.0 1.86074 26 -60.5026 First surface aspherical coefficient k = 1.0000 C2 = 0.0000 C4 = 3.9551E-6 C6 = 7.4971E-9 C8 = -1.2898 E-11 C10 = 2.0419 E-14 Variable spacing table f 20.50 24.00 28.00 3 4.00 R inf inf inf inf d 8 19.53510 12.68258 7.15140 1.00000 d 11 3.53475 7.61249 9.66310 9.97063 d 13 1.54528 4.05890 7.08276 9.83202 d 17 9.73143 7.26988 4.61998 2.00000 f 20.50 24.00 28.00 34.00 R 500.00 500.00 500.00 500.0029 811 9.78 7.01491 7.20634 d 13 1.54528 4.05890 7.08276 9.83202 d 17 9.73143 7.26988 4.61998 2.00000 Condition corresponding value β2t = 3.410 β2w = 19.601 f2 / f3 = 1.036 f2 / (| f1 | + e1t) = 1.414 f2 / (| f1 | + e1w) = 1.054 FIGS. 7 and 8 show the shooting distance R = inf of the second embodiment.
Various aberration diagrams at the wide angle end and various aberration diagrams at the telephoto end are shown in FIGS. 9 and 10, respectively, and FIG. 9 and FIG.
The various aberration diagrams at the wide-angle end and the various aberration diagrams at the telephoto end in 500 are shown. In each aberration diagram, FNO is F number, NA
Is the numerical aperture, Y is the image height, d is the d-line (λ = 587.6 nm) and g is the g-line (λ = 435.6 nm). In the astigmatism diagram, the solid line shows the sagittal image plane, and the broken line shows the meridional image plane.

【0030】各収差図から、本実施例は諸収差が良好に
補正され、優れた結像性能を有していることが明らかで
ある。 〔実施例3〕図11は、実施例3のレンズ構成図であ
り、上部に広角端、下部に望遠端でのレンズ構成を示し
ている。物体側から順に、負の第1レンズ群G1と、正
の第2レンズ群G2と、正の第3レンズ群G3と、負の
第4レンズ群G4と正の第5レンズ群G5から構成し、
広角端から望遠端への変倍に際して、第1レンズ群は静
止し、第2乃至第5レンズ群はいずれも物体方向に移動
し、第1レンズ群と第2レンズ群との空気間隔は減少
し、第2レンズ群と第3レンズ群との空気間隔は増大
し、第3レンズ群と第4レンズ群との空気間隔は増大
し、第4レンズ群と第5レンズ群との空気間隔は減少す
る。
From each aberration diagram, it is clear that various aberrations are satisfactorily corrected and that this embodiment has excellent imaging performance. [Third Embodiment] FIG. 11 is a lens configuration diagram of a third embodiment, in which the upper part shows the lens structure at the wide-angle end and the lower part shows the lens structure at the telephoto end. In order from the object side, a negative first lens group G1, a positive second lens group G2, a positive third lens group G3, a negative fourth lens group G4, and a positive fifth lens group G5. ,
Upon zooming from the wide-angle end to the telephoto end, the first lens group is stationary, all the second to fifth lens groups move in the object direction, and the air gap between the first lens group and the second lens group decreases. However, the air distance between the second lens group and the third lens group increases, the air distance between the third lens group and the fourth lens group increases, and the air distance between the fourth lens group and the fifth lens group increases. Decrease.

【0031】また、遠距離物体から近距離物体へのフォ
ーカシングは、第2レンズ群を像面側に移動させて行な
う。第1レンズ群の最も物体側のレンズ面は非球面であ
り、非球面形状は次の式で与えられる。 X(y)=y2/[r・{1+(1−k・y2/r21/2}] +C2・y2+C4・y4+C6・y6+C8・y8+C10・y10 但し、X(y)は非球面の頂点における接平面から高さ
yにおける非球面上の位置までの光軸方向に沿った距
離、rは近軸の曲率半径、kは円錐定数、Ciは第i次の
非球面係数である。
Focusing from a long-distance object to a short-distance object is performed by moving the second lens group to the image plane side. The most object-side lens surface of the first lens group is an aspherical surface, and the aspherical shape is given by the following equation. X (y) = y 2 / [r · {1+ (1-k · y 2 / r 2) 1/2}] + C2 · y 2 + C4 · y 4 + C6 · y 6 + C8 · y 8 + C10 · y 10 where , X (y) is the distance along the optical axis from the tangent plane at the apex of the aspherical surface to the position on the aspherical surface at the height y, r is the paraxial radius of curvature, k is the conic constant, and Ci is the i-th The following aspherical coefficients.

【0032】以下の表3に、本発明における実施例3の
諸元の値を掲げる。実施例の諸元表中のfは焦点距離、
FはFナンバー、 2ωは画角を表す。そして、左端の数
字は物体側からの順序を表し、rはレンズ面の曲率半
径、dはレンズ面間隔、n及びνは屈折率及びアッベ数
のd線(λ=587.6nm)に対する値である。また、可変間
隔表中のRは撮影距離である。
Table 3 below lists values of specifications of the third embodiment of the present invention. F in the specification table of the embodiment is the focal length,
F is the F number and 2ω is the angle of view. The leftmost number represents the order from the object side, r is the radius of curvature of the lens surface, d is the distance between the lens surfaces, and n and ν are the values of the refractive index and Abbe number for the d line (λ = 587.6 nm). . Further, R in the variable interval table is a shooting distance.

【0033】[0033]

【表3】 f=20.50〜24.00〜28.00〜34.00 F/2.88 2ω=95.32〜84.13〜74.68〜64.33゜ r d ν n 1 42.2348 2.5000 49.5 1.77279 2 18.6087 12.6784 3 -85.0463 2.0000 47.5 1.78797 4 42.8849 3.4377 5 -281.6993 2.8294 31.6 1.75692 6 -91.5606 0.2000 7 37.8425 3.5687 31.6 1.75692 8 79.7702 (d 8) 9 49.3392 1.2000 29.5 1.71736 10 25.1981 8.9627 70.0 1.51860 11 -57.2394 (d11) 12 38.8324 2.9313 53.9 1.71300 13 141.4542 (d13) 14 (絞り) 2.0000 15 -45.2367 1.2000 52.3 1.74810 16 25.3136 3.2146 25.4 1.80518 17 86.3355 (d17) 18 49.6845 3.7880 50.8 1.65844 19 -66.2974 1.5000 20 52.9095 2.0000 26.1 1.78470 21 26.8530 1.9865 22 134.4554 2.8736 45.4 1.79668 23 -107.7591 0.2000 24 540.8718 5.9855 57.0 1.62280 25 -19.9107 1.7000 23.0 1.86074 26 -49.3725 第1面非球面係数 k = 1.0000 C2 = 0.0000 C4 = 3.9665E-6 C6 = 7.7825E-9 C8 =-1.3483E-11 C10= 2.1699E-14 可変間隔表 f 20.50 24.00 28.00 34.00 R inf inf inf inf d 8 19.81245 13.19465 7.54540 1.00000 d 11 3.53277 8.03935 10.95058 12.18067 d 13 1.30000 3.06781 5.05089 6.45949 d 17 9.12737 6.88872 4.40569 2.00000 f 20.50 24.00 28.00 34.00 R 500.00 500.00 500.00 500.00 d 8 22.34554 15.67965 10.03095 3.53360 d 11 0.99968 5.55435 8.46503 9.64707 d 13 1.30000 3.06781 5.05089 6.45949 d 17 9.12737 6.88872 4.40569 2.00000 条件対応値 β2t= 6.895 β2w=−6.967 f2/f3=0.879 f2/(|f1|+e1t)=1.170 f2/(|f1|+e1w)=0.874 図12、図13は、それぞれ実施例3の撮影距離R=i
nfにおける広角端での諸収差図、望遠端での諸収差図
を示し、図14、図15は、それぞれ実施例3の撮影距
離R=500における広角端での諸収差図、望遠端での
諸収差図を示す。各収差図において、FNOはFナンバ
ー、NAは開口数、Yは像高、dはd線(λ=587.6nm)
及びgはg線(λ=435.6nm)を示している。非点収差図
において、実線はサジタル像面を、破線はメリジオナル
像面をそれぞれ示す。
[Table 3] f = 20.50 to 24.00 to 28.00 to 34.00 F / 2.88 2ω = 95.32 to 84.13 to 74.68 to 64.33 ° rd ν n 1 42.2348 2.5000 49.5 1.77279 2 18.6087 12.6784 3 -85.0463 2.0000 47.5 1.78797 4 42.8849 3.4377 5 -281.6993 2.8294 31.6 1.75692 6 -91.5606 0.2000 7 37.8425 3.5687 31.6 1.75692 8 79.7702 (d 8) 9 49.3392 1.2000 29.5 1.71736 10 25.1981 8.911 77.2 1.51860 117.2 ) 12 38.8324 2.9313 53.9 1.71300 13 141.4542 (d13) 14 (Aperture) 2.0000 15 -45.2367 1.2000 52.3 1.74810 16 25.3136 3.2146 25.4 1.80518 17 86.3355 (d17) 18 49.6845 3.7880 50.8 1.65844 19 -66.2974 1.5000 20 52.9095 2.0000 26.1 1.78470 21 26.8530 1.9865 134.4554 2.8736 45.4 1.79668 23 -107.7591 0.2000 24 540.8718 5.9855 57.0 1.62280 25 -19.9107 1.7000 23.0 1.86074 26 -49.3725 First surface aspherical coefficient k = 1.0000 C2 = 0.0000 C4 = 3.9665E-6 C6 = 7.7825E-9 C8 = -1.3483 E-11 C10 = 2.1699 E-14 Variable interval table f 20.50 24.00 28.00 34. 00 R inf inf inf inf d 8 19.81245 13.19465 7.54540 1.00000 d 11 3.53277 8.03935 10.95058 12.18067 d 13 1.30000 3.06781 5.05089 6.45949 d 17 9.12737 6.88872 4.40569 2.00000 f 20.50 24.00 28.00 34.00 R. 50.00 500.00 500.00 500.0035 8.46503 9.64707 d 13 1.30000 3.06781 5.05089 6.45949 d 17 9.12737 6.88872 4.40569 2.00000 Condition corresponding value β2t = 6.895 β2w = −6.967 f2 / f3 = 0.879 f2 / (| f1 | + e1t) = 1.170 f2 / ( | F1 | + e1w) = 0.874 FIG. 12 and FIG. 13 show the shooting distance R = i of the third embodiment, respectively.
FIGS. 14 and 15 show various aberration diagrams at the wide-angle end and the telephoto end at nf, and FIGS. 14 and 15 show various aberration diagrams at the wide-angle end and the telephoto end at the shooting distance R = 500 of Example 3, respectively. The various aberration figures are shown. In each aberration diagram, FNO is the F number, NA is the numerical aperture, Y is the image height, and d is the d line (λ = 587.6 nm).
And g are g lines (λ = 435.6 nm). In the astigmatism diagram, the solid line shows the sagittal image plane, and the broken line shows the meridional image plane.

【0034】各収差図から、本実施例は諸収差が良好に
補正され、優れた結像性能を有していることが明らかで
ある。 〔実施例4〕図16は、実施例4のレンズ構成図であ
り、上部に広角端、下部に望遠端でのレンズ構成を示し
ている。物体側から順に、負の第1レンズ群G1と、正
の第2レンズ群G2と、正の第3レンズ群G3とから構
成し、広角端から望遠端への変倍に際して、第1レンズ
群は静止し、第2レンズ群と第3レンズ群はいずれも物
体方向に移動し、第1レンズ群と第2レンズ群との空気
間隔は減少し、第2レンズ群と第3レンズ群との空気間
隔は広角端近傍では拡大し、望遠端近傍では縮小する。
From each aberration diagram, it is apparent that various aberrations are satisfactorily corrected and that this example has excellent imaging performance. [Embodiment 4] FIG. 16 is a lens configuration diagram of Embodiment 4, in which the lens configuration at the wide-angle end is shown at the upper portion and at the telephoto end at the lower portion. The first lens group G1 includes a negative first lens group G1, a positive second lens group G2, and a positive third lens group G3 in order from the object side, and the first lens group G1 is used during zooming from the wide-angle end to the telephoto end. Is stationary, both the second lens group and the third lens group move in the object direction, the air gap between the first lens group and the second lens group decreases, and the second lens group and the third lens group The air spacing increases near the wide-angle end and decreases near the telephoto end.

【0035】第1レンズ群の物体側から4番目のレンズ
面は非球面であり、非球面形状は次の式で与えられる。
また、遠距離物体から近距離物体へのフォーカシング
は、第2レンズ群を像面側に移動させて行なう。以下の
表4に、本発明における実施例4の諸元の値を掲げる。
実施例の諸元表中のfは焦点距離、FはFナンバー、 2
ωは画角を表す。そして、左端の数字は物体側からの順
序を表し、rはレンズ面の曲率半径、dはレンズ面間
隔、n及びνは屈折率及びアッベ数のd線(λ=587.6n
m)に対する値である。また、可変間隔表中のRは撮影
距離である。
The fourth lens surface of the first lens group from the object side is an aspherical surface, and the aspherical shape is given by the following equation.
Focusing from a long-distance object to a short-distance object is performed by moving the second lens group to the image plane side. Table 4 below lists values of specifications of the fourth embodiment of the present invention.
In the specification table of the embodiment, f is the focal length, F is the F number, and 2
ω represents the angle of view. The leftmost number represents the order from the object side, r is the radius of curvature of the lens surface, d is the lens surface spacing, and n and ν are the refractive index and the Abbe number d line (λ = 587.6n
This is the value for m). Further, R in the variable interval table is a shooting distance.

【0036】[0036]

【表4】 図17、図18は、それぞれ実施例4の撮影距離R=i
nfにおける広角端での諸収差図、望遠端での諸収差図
を示し、図19、図20は、それぞれ実施例4の撮影距
離R=500における広角端での諸収差図、望遠端での
諸収差図を示す。各収差図において、FNOはFナンバ
ー、NAは開口数、Yは像高、dはd線(λ=587.6nm)
及びgはg線(λ=435.6nm)を示している。非点収差図
において、実線はサジタル像面を、破線はメリジオナル
像面をそれぞれ示す。
[Table 4] 17 and 18 show the shooting distance R = i of the fourth embodiment, respectively.
Various aberration diagrams at the wide-angle end at nf and various aberration diagrams at the telephoto end are shown, and FIGS. 19 and 20 show various aberration diagrams at the wide-angle end and the telephoto end at the shooting distance R = 500 of Example 4, respectively. The various aberration figures are shown. In each aberration diagram, FNO is the F number, NA is the numerical aperture, Y is the image height, and d is the d line (λ = 587.6 nm).
And g are g lines (λ = 435.6 nm). In the astigmatism diagram, the solid line shows the sagittal image plane, and the broken line shows the meridional image plane.

【0037】各収差図から、本実施例は諸収差が良好に
補正され、優れた結像性能を有していることが明らかで
ある。 〔実施例5〕図21は、実施例5のレンズ構成図であ
り、上部に広角端、下部に望遠端でのレンズ構成を示し
ている。物体側から順に、負の第1レンズ群G1と、正
の第2レンズ群G2と、正の第3レンズ群G3と、負の
第4レンズ群G4から構成し、広角端から望遠端への変
倍に際して、第1レンズ群と第4レンズ群は静止し、第
2レンズ群と第3レンズ群はいずれも物体方向に移動
し、第1レンズ群と第2レンズ群との空気間隔は減少
し、第2レンズ群と第3レンズ群との空気間隔は広角端
近傍では拡大し、望遠端近傍では縮小し、第3レンズ群
と第4レンズ群の空気間隔は拡大する。
From each aberration diagram, it is apparent that various aberrations are satisfactorily corrected and that this embodiment has excellent imaging performance. [Embodiment 5] FIG. 21 is a lens configuration diagram of Embodiment 5, showing the lens configuration at the wide-angle end at the upper portion and at the telephoto end at the lower portion. It is composed of a negative first lens group G1, a positive second lens group G2, a positive third lens group G3, and a negative fourth lens group G4 in order from the object side, and from the wide-angle end to the telephoto end. Upon zooming, the first lens group and the fourth lens group are stationary, the second lens group and the third lens group both move toward the object, and the air gap between the first lens group and the second lens group decreases. The air distance between the second lens group and the third lens group increases near the wide-angle end, decreases near the telephoto end, and the air distance between the third lens group and the fourth lens group increases.

【0038】第1レンズ群の物体側から2番目のレンズ
面は非球面であり、非球面形状は次の式で与えられる。 X(y)=y2/[r・{1+(1−k・y2/r21/2}] +C2・y2+C4・y4+C6・y6+C8・y8+C10・y10 但し、X(y)は非球面の頂点における接平面から高さ
yにおける非球面上の位置までの光軸方向に沿った距
離、rは近軸の曲率半径、kは円錐定数、Ciは第i次の
非球面係数である。
The second lens surface from the object side of the first lens group is an aspherical surface, and the aspherical shape is given by the following equation. X (y) = y 2 / [r · {1+ (1-k · y 2 / r 2) 1/2}] + C2 · y 2 + C4 · y 4 + C6 · y 6 + C8 · y 8 + C10 · y 10 where , X (y) is the distance along the optical axis from the tangent plane at the apex of the aspherical surface to the position on the aspherical surface at the height y, r is the paraxial radius of curvature, k is the conic constant, and Ci is the i-th The following aspherical coefficients.

【0039】また、遠距離物体から近距離物体へのフォ
ーカシングは、第2レンズ群を像面側に移動させて行な
う。以下の表5に、本発明における実施例5の諸元の値
を掲げる。実施例の諸元表中のfは焦点距離、FはFナ
ンバー、 2ωは画角を表す。そして、左端の数字は物体
側からの順序を表し、rはレンズ面の曲率半径、dはレ
ンズ面間隔、n及びνは屈折率及びアッベ数のd線(λ
=587.6nm)に対する値である。また、可変間隔表中のR
は撮影距離である。
Focusing from a long-distance object to a short-distance object is performed by moving the second lens unit to the image plane side. Table 5 below lists values of specifications of the fifth embodiment of the present invention. In the specification table of the embodiment, f is the focal length, F is the F number, and 2ω is the angle of view. The number at the left end represents the order from the object side, r is the radius of curvature of the lens surface, d is the distance between the lens surfaces, n and ν are the refractive index and the Abbe number d line (λ
= 587.6 nm). Also, R in the variable interval table
Is the shooting distance.

【0040】[0040]

【表5】 図22、図23は、それぞれ実施例5の撮影距離R=i
nfにおける広角端での諸収差図、望遠端での諸収差図
を示し、図24、図25は、それぞれ実施例5の撮影距
離R=500における広角端での諸収差図、望遠端での
諸収差図を示す。各収差図において、FNOはFナンバ
ー、NAは開口数、Yは像高、dはd線(λ=587.6nm)
及びgはg線(λ=435.6nm)を示している。非点収差図
において、実線はサジタル像面を、破線はメリジオナル
像面をそれぞれ示す。
[Table 5] 22 and 23 show the shooting distance R = i of the fifth embodiment, respectively.
Various aberration diagrams at the wide-angle end at nf and various aberration diagrams at the telephoto end are shown. FIGS. 24 and 25 show various aberration diagrams at the wide-angle end and the telephoto end at the shooting distance R = 500 of Example 5, respectively. The various aberration figures are shown. In each aberration diagram, FNO is the F number, NA is the numerical aperture, Y is the image height, and d is the d line (λ = 587.6 nm).
And g are g lines (λ = 435.6 nm). In the astigmatism diagram, the solid line shows the sagittal image plane, and the broken line shows the meridional image plane.

【0041】各収差図から、本実施例は諸収差が良好に
補正され、優れた結像性能を有していることが明らかで
ある。 〔実施例6〕図26は、実施例6のレンズ構成図であ
り、上部に広角端、下部に望遠端でのレンズ構成を示し
ている。物体側から順に、負の第1レンズ群G1と、正
の第2レンズ群G2と、正の第3レンズ群G3と、負の
第4レンズ群G4から構成し、広角端から望遠端への変
倍に際して、第1レンズ群と第4レンズ群は静止し、第
2レンズ群と第3レンズ群はいずれも物体方向に移動
し、第1レンズ群と第2レンズ群との空気間隔は減少
し、第2レンズ群と第3レンズ群との空気間隔は広角端
近傍では拡大し、望遠端近傍では縮小し、第3レンズ群
と第4レンズ群の空気間隔は拡大する。
From each aberration diagram, it is apparent that various aberrations are satisfactorily corrected and that this example has excellent imaging performance. [Sixth Embodiment] FIG. 26 is a lens configuration diagram of a sixth embodiment, in which the lens configuration at the wide-angle end is shown at the upper portion and at the telephoto end at the lower portion. It is composed of a negative first lens group G1, a positive second lens group G2, a positive third lens group G3, and a negative fourth lens group G4 in order from the object side, and from the wide-angle end to the telephoto end. Upon zooming, the first lens group and the fourth lens group are stationary, the second lens group and the third lens group both move toward the object, and the air gap between the first lens group and the second lens group decreases. The air distance between the second lens group and the third lens group increases near the wide-angle end, decreases near the telephoto end, and the air distance between the third lens group and the fourth lens group increases.

【0042】また、遠距離物体から近距離物体へのフォ
ーカシングは、第2レンズ群を像面側に移動させて行な
う。以下の表6に、本発明における実施例6の諸元の値
を掲げる。実施例の諸元表中のfは焦点距離、FはFナ
ンバー、 2ωは画角を表す。そして、左端の数字は物体
側からの順序を表し、rはレンズ面の曲率半径、dはレ
ンズ面間隔、n及びνは屈折率及びアッベ数のd線(λ
=587.6nm)に対する値である。また、可変間隔表中のR
は撮影距離である。
Focusing from a long-distance object to a short-distance object is performed by moving the second lens group to the image plane side. Table 6 below lists values of specifications of the sixth embodiment of the present invention. In the specification table of the embodiment, f is the focal length, F is the F number, and 2ω is the angle of view. The number at the left end represents the order from the object side, r is the radius of curvature of the lens surface, d is the distance between the lens surfaces, n and ν are the refractive index and the Abbe number d line (λ
= 587.6 nm). Also, R in the variable interval table
Is the shooting distance.

【0043】[0043]

【表6】 図27、図28は、それぞれ実施例6の撮影距離R=i
nfにおける広角端での諸収差図、望遠端での諸収差図
を示し、図29、図30は、それぞれ実施例6の撮影距
離R=500における広角端での諸収差図、望遠端での
諸収差図を示す。各収差図において、FNOはFナンバ
ー、NAは開口数、Yは像高、dはd線(λ=587.6nm)
及びgはg線(λ=435.6nm)を示している。非点収差図
において、実線はサジタル像面を、破線はメリジオナル
像面をそれぞれ示す。
[Table 6] 27 and 28 show the shooting distance R = i of the sixth embodiment, respectively.
FIGS. 29 and 30 show various aberration diagrams at the wide-angle end and the telephoto end at nf, and FIGS. 29 and 30 show various aberration diagrams at the wide-angle end and the telephoto end at the shooting distance R = 500 of Example 6, respectively. The various aberration figures are shown. In each aberration diagram, FNO is the F number, NA is the numerical aperture, Y is the image height, and d is the d line (λ = 587.6 nm).
And g are g lines (λ = 435.6 nm). In the astigmatism diagram, the solid line shows the sagittal image plane, and the broken line shows the meridional image plane.

【0044】各収差図から、本実施例は諸収差が良好に
補正され、優れた結像性能を有していることが明らかで
ある。 〔実施例7〕図31は、実施例7のレンズ構成図であ
り、上部に広角端、下部に望遠端でのレンズ構成を示し
ている。物体側から順に、負の第1レンズ群G1と、正
の第2レンズ群G2と、正の第3レンズ群G3と、正の
第4レンズ群G4から構成し、広角端から望遠端への変
倍に際して、第1レンズ群と第4レンズ群は静止し、第
2レンズ群と第3レンズ群はいずれも物体方向に移動
し、第1レンズ群と第2レンズ群との空気間隔は減少
し、第2レンズ群と第3レンズ群との空気間隔は広角端
近傍では拡大し、望遠端近傍では縮小し、第3レンズ群
と第4レンズ群の空気間隔は拡大する。
From each aberration diagram, it is apparent that various aberrations are satisfactorily corrected and the image forming performance is excellent in the present embodiment. [Embodiment 7] FIG. 31 is a lens configuration diagram of Embodiment 7, showing the lens configuration at the wide-angle end at the upper portion and at the telephoto end at the lower portion. It is composed of, in order from the object side, a negative first lens group G1, a positive second lens group G2, a positive third lens group G3, and a positive fourth lens group G4, from the wide-angle end to the telephoto end. Upon zooming, the first lens group and the fourth lens group are stationary, the second lens group and the third lens group both move toward the object, and the air gap between the first lens group and the second lens group decreases. The air distance between the second lens group and the third lens group increases near the wide-angle end, decreases near the telephoto end, and the air distance between the third lens group and the fourth lens group increases.

【0045】第4レンズ群の最も物体側のレンズ面は非
球面であり、非球面形状は次の式で与えられる。 X(y)=y2/[r・{1+(1−k・y2/r21/2}] +C2・y2+C4・y4+C6・y6+C8・y8+C10・y10 但し、X(y)は非球面の頂点における接平面から高さ
yにおける非球面上の位置までの光軸方向に沿った距
離、rは近軸の曲率半径、kは円錐定数、Ciは第i次の
非球面係数である。
The most object side lens surface of the fourth lens group is an aspherical surface, and the aspherical shape is given by the following equation. X (y) = y 2 / [r · {1+ (1-k · y 2 / r 2) 1/2}] + C2 · y 2 + C4 · y 4 + C6 · y 6 + C8 · y 8 + C10 · y 10 where , X (y) is the distance along the optical axis from the tangent plane at the apex of the aspherical surface to the position on the aspherical surface at the height y, r is the paraxial radius of curvature, k is the conic constant, and Ci is the i-th The following aspherical coefficients.

【0046】また、遠距離物体から近距離物体へのフォ
ーカシングは、第2レンズ群を像面側に移動させて行な
う。以下の表7に、本発明における実施例7の諸元の値
を掲げる。実施例の諸元表中のfは焦点距離、FはFナ
ンバー、 2ωは画角を表す。そして、左端の数字は物体
側からの順序を表し、rはレンズ面の曲率半径、dはレ
ンズ面間隔、n及びνは屈折率及びアッベ数のd線(λ
=587.6nm)に対する値である。また、可変間隔表中のR
は撮影距離である。
Focusing from a long-distance object to a short-distance object is performed by moving the second lens group to the image plane side. Table 7 below lists values of specifications of Example 7 in the present invention. In the specification table of the embodiment, f is the focal length, F is the F number, and 2ω is the angle of view. The number at the left end represents the order from the object side, r is the radius of curvature of the lens surface, d is the distance between the lens surfaces, n and ν are the refractive index and the Abbe number d line (λ
= 587.6 nm). Also, R in the variable interval table
Is the shooting distance.

【0047】[0047]

【表7】 図32、図33は、それぞれ実施例7の撮影距離R=i
nfにおける広角端での諸収差図、望遠端での諸収差図
を示し、図34、図35は、それぞれ実施例7の撮影距
離R=600における広角端での諸収差図、望遠端での
諸収差図を示す。各収差図において、FNOはFナンバ
ー、NAは開口数、Yは像高、dはd線(λ=587.6nm)
及びgはg線(λ=435.6nm)を示している。非点収差図
において、実線はサジタル像面を、破線はメリジオナル
像面をそれぞれ示す。
[Table 7] 32 and 33 show the shooting distance R = i of the seventh embodiment, respectively.
Various aberration diagrams at the wide-angle end at nf and various aberration diagrams at the telephoto end are shown in FIGS. 34 and 35, respectively, and FIGS. 34 and 35 show various aberration diagrams at the wide-angle end and the telephoto end at the shooting distance R = 600 of Example 7, respectively. The various aberration figures are shown. In each aberration diagram, FNO is the F number, NA is the numerical aperture, Y is the image height, and d is the d line (λ = 587.6 nm).
And g are g lines (λ = 435.6 nm). In the astigmatism diagram, the solid line shows the sagittal image plane, and the broken line shows the meridional image plane.

【0048】各収差図から、本実施例は諸収差が良好に
補正され、優れた結像性能を有していることが明らかで
ある。
From each aberration diagram, it is apparent that various aberrations are satisfactorily corrected and that this embodiment has excellent image forming performance.

【0049】[0049]

【発明の効果】このように本発明によれば、インナーフ
ォーカス方式を採用しても、同一距離の被写体へのフォ
ーカシングに要するフォーカシングレンズ群の繰り出し
量が、ズームポジションによらずほぼ一定とすることが
可能なズームレンズの提供が可能となり、オートフォー
カス時のレンズ駆動の高速化とマニュアルフォーカス時
の操作性の両立が可能である。また、インナーフォーカ
スの採用により、最も物体側のレンズ群を固定にでき、
防滴カメラ、防水カメラ、防塵カメラ等の撮影レンズと
して利用できる。
As described above, according to the present invention, even if the inner focus method is adopted, the amount of extension of the focusing lens group required for focusing on a subject at the same distance is substantially constant regardless of the zoom position. It becomes possible to provide a zoom lens capable of achieving high speed, and it is possible to achieve both high-speed lens drive during autofocus and operability during manual focus. Also, by adopting the inner focus, the lens group closest to the object can be fixed,
It can be used as a shooting lens for drip-proof cameras, waterproof cameras, dust-proof cameras, etc.

【0050】さらに、いずれかのレンズ群を光軸と直交
する方向に移動させることにより、ぶれの補正が可能で
ある。なお、ぶれ補正レンズ群として、比較的小型の第
2レンズ群、あるいは第3レンズ群を選択すると、駆動
機構が小型化でき、好ましい。
Further, the blur can be corrected by moving any one of the lens groups in the direction orthogonal to the optical axis. It is preferable to select the relatively small second lens group or the third lens group as the blur correction lens group because the drive mechanism can be downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1のレンズ構成図である。FIG. 1 is a lens configuration diagram of a first embodiment of the present invention.

【図2】実施例1の撮影距離R=infにおける広角端
での諸収差図。
FIG. 2 is a diagram of various types of aberration at the wide-angle end at the shooting distance R = inf of Example 1.

【図3】実施例1の撮影距離R=infにおける望遠端
での諸収差図。
FIG. 3 is a diagram of various types of aberration at the telephoto end at a shooting distance R = inf of Example 1.

【図4】実施例1の撮影距離R=500における広角端
での諸収差図。
FIG. 4 is a diagram of various types of aberration at the wide-angle end at the shooting distance R = 500 according to the first exemplary embodiment.

【図5】実施例1の撮影距離R=500における望遠端
での諸収差図。
FIG. 5 is a diagram of various types of aberration at the telephoto end at a shooting distance R = 500 according to the first embodiment.

【図6】本発明の実施例2のレンズ構成図である。FIG. 6 is a lens configuration diagram of a second embodiment of the present invention.

【図7】実施例2の撮影距離R=infにおける広角端
での諸収差図。
FIG. 7 is a diagram of various types of aberration at the wide-angle end at the shooting distance R = inf of Example 2.

【図8】実施例2の撮影距離R=infにおける望遠端
での諸収差図。
FIG. 8 is a diagram of various types of aberration at the telephoto end at a shooting distance R = inf of Example 2;

【図9】実施例2の撮影距離R=500における広角端
での諸収差図。
FIG. 9 is a diagram of various types of aberration at the wide-angle end at the shooting distance R = 500 according to the second embodiment.

【図10】実施例2の撮影距離R=500における望遠
端での諸収差図。
FIG. 10 is a diagram of various types of aberration at the telephoto end at a shooting distance R = 500 according to the second embodiment.

【図11】本発明の実施例3のレンズ構成図である。FIG. 11 is a lens configuration diagram of Example 3 of the present invention.

【図12】実施例3の撮影距離R=infにおける広角
端での諸収差図。
FIG. 12 is a diagram of various types of aberration at the wide-angle end at the shooting distance R = inf of Example 3.

【図13】実施例3の撮影距離R=infにおける望遠
端での諸収差図。
FIG. 13 is a diagram of various types of aberration at the telephoto end at a shooting distance R = inf of Example 3;

【図14】実施例3の撮影距離R=500における広角
端での諸収差図。
FIG. 14 is a diagram of various types of aberration at the wide-angle end at the shooting distance R = 500 according to the third embodiment.

【図15】実施例3の撮影距離R=500における望遠
端での諸収差図。
FIG. 15 is a diagram of various types of aberration at the telephoto end at a shooting distance R = 500 according to the third embodiment.

【図16】本発明の実施例4のレンズ構成図である。FIG. 16 is a lens configuration diagram of Example 4 of the present invention.

【図17】実施例4の撮影距離R=infにおける広角
端での諸収差図。
FIG. 17 is a diagram of various types of aberration at the wide-angle end at the shooting distance R = inf of Example 4.

【図18】実施例4の撮影距離R=infにおける望遠
端での諸収差図。
FIG. 18 is a diagram of various types of aberration at the telephoto end at the shooting distance R = inf of Example 4.

【図19】実施例4の撮影距離R=500における広角
端での諸収差図。
FIG. 19 is a diagram of various types of aberration at the wide-angle end at the shooting distance R = 500 according to the fourth embodiment.

【図20】実施例4の撮影距離R=500における望遠
端での諸収差図。
FIG. 20 is a diagram of various types of aberration at the telephoto end at the shooting distance R = 500 according to the fourth embodiment.

【図21】本発明の実施例5のレンズ構成図である。FIG. 21 is a lens configuration diagram of Example 5 of the present invention.

【図22】実施例5の撮影距離R=infにおける広角
端での諸収差図。
FIG. 22 is a diagram of various types of aberration at the wide-angle end at the shooting distance R = inf of Example 5.

【図23】実施例5の撮影距離R=infにおける望遠
端での諸収差図。
23 is a diagram of various types of aberration at the telephoto end at the shooting distance R = inf of Example 5. FIG.

【図24】実施例5の撮影距離R=500における広角
端での諸収差図。
FIG. 24 is a diagram of various types of aberration at the wide-angle end at the shooting distance R = 500 according to the fifth embodiment.

【図25】実施例5の撮影距離R=500における望遠
端での諸収差図。
FIG. 25 is a diagram of various types of aberration at the telephoto end at a shooting distance R = 500 according to the fifth embodiment.

【図26】本発明の実施例6のレンズ構成図である。FIG. 26 is a lens configuration diagram of Example 6 of the present invention.

【図27】実施例6の撮影距離R=infにおける広角
端での諸収差図。
27 is a diagram of various types of aberration at the wide-angle end at the shooting distance R = inf of Example 6. FIG.

【図28】実施例6の撮影距離R=infにおける望遠
端での諸収差図。
28 is a diagram of various types of aberration at the telephoto end at the shooting distance R = inf of Example 6. FIG.

【図29】実施例6の撮影距離R=500における広角
端での諸収差図。
FIG. 29 is a diagram of various types of aberration at the wide-angle end at the shooting distance R = 500 according to the sixth embodiment.

【図30】実施例6の撮影距離R=500における望遠
端での諸収差図。
FIG. 30 is a diagram of various types of aberration at the telephoto end at a shooting distance R = 500 according to the sixth embodiment.

【図31】本発明の実施例7のレンズ構成図である。FIG. 31 is a lens configuration diagram of Example 7 of the present invention.

【図32】実施例7の撮影距離R=infにおける広角
端での諸収差図。
FIG. 32 is a diagram of various types of aberration at the wide-angle end at the shooting distance R = inf of Example 7.

【図33】実施例7の撮影距離R=infにおける望遠
端での諸収差図。
FIG. 33 is a diagram of various types of aberration at the telephoto end at the shooting distance R = inf of Example 7.

【図34】実施例7の撮影距離R=500における広角
端での諸収差図。
FIG. 34 is a diagram of various types of aberration at the wide-angle end at the shooting distance R = 500 according to the seventh embodiment.

【図35】実施例7の撮影距離R=500における望遠
端での諸収差図。
FIG. 35 is a diagram of various types of aberration at the telephoto end at a shooting distance R = 500 according to the seventh embodiment.

【符合の説明】[Description of sign]

G1 ・・・ 第1レンズ群 G2 ・・・ 第2レンズ群 G3 ・・・ 第3レンズ群 G4 ・・・ 第4レンズ群 G5 ・・・ 第5レンズ群 S ・・・ 絞り G1 ... First lens group G2 ... Second lens group G3 ... Third lens group G4 ... Fourth lens group G5 ... Fifth lens group S ...

Claims (27)

【特許請求の範囲】[Claims] 【請求項1】 物体側から順に、負の屈折力を有する第
1レンズ群と、正の屈折力を有する第2レンズ群と、正
の屈折力を有する第3レンズ群からなり、広角端から望
遠端へのズーミングに際して、前記第1レンズ群が静止
し、前記第2レンズ群と前記第3レンズ群が物体方向に
移動し、前記第2レンズ群と前記第3レンズ群との間隔
が変化し、広角端から望遠端までのいずれの焦点距離状
態においても、第2レンズ群の結像倍率が−1倍となら
ないことを特徴とするズームレンズ。
1. A first lens unit having a negative refracting power, a second lens unit having a positive refracting power, and a third lens unit having a positive refracting power, which are arranged in this order from the object side. During zooming to the telephoto end, the first lens group is stationary, the second lens group and the third lens group move toward the object, and the distance between the second lens group and the third lens group changes. A zoom lens characterized in that the image forming magnification of the second lens group does not become -1 in any focal length state from the wide-angle end to the telephoto end.
【請求項2】 前記第2レンズ群を像面方向に移動させ
て遠距離物体から近距離物体へのフォーカシングを行う
ことを特徴とする請求項1に記載のズームレンズ。
2. The zoom lens according to claim 1, wherein the second lens group is moved in the image plane direction to perform focusing from a long-distance object to a short-distance object.
【請求項3】 さらに以下の条件を満足する請求項1に
記載のズームレンズ。 |β2t|>2 |β2w|>2 但し、β2t:望遠端における前記第2レンズ群の結像
倍率、 β2w:広角端における前記第2レンズ群の結像倍率で
ある。
3. The zoom lens according to claim 1, further satisfying the following condition. | Β2t |> 2 | β2w |> 2 where β2t is the imaging magnification of the second lens group at the telephoto end, and β2w is the imaging magnification of the second lens group at the wide-angle end.
【請求項4】 さらに以下の条件を満足する請求項3に
記載のズームレンズ。 β2t>2 β2w<−2 但し、β2t:望遠端における前記第2レンズ群の結像
倍率、 β2w:広角端における前記第2レンズ群の結像倍率で
ある。
4. The zoom lens according to claim 3, further satisfying the following condition. β2t> 2 β2w <-2 where β2t is the imaging magnification of the second lens group at the telephoto end, and β2w is the imaging magnification of the second lens group at the wide-angle end.
【請求項5】 さらに以下の条件を満足する請求項1に
記載のズームレンズ。 f3/e3w > 0.8 f3/e3t < 1.2 但し、e3w:広角端における前記第3レンズ群の像側
主点から像面までの距離、 e3t:望遠端における前記第3レンズ群の像側主点か
ら像面までの距離、 f3:前記第3レンズ群の焦点距離である。
5. The zoom lens according to claim 1, further satisfying the following condition. f3 / e3w> 0.8 f3 / e3t <1.2, where e3w: distance from the image-side principal point of the third lens group to the image plane at the wide-angle end, e3t: image of the third lens group at the telephoto end Distance from side principal point to image plane, f3: focal length of the third lens group.
【請求項6】 さらに以下の条件を満足する請求項1に
記載のズームレンズ。 0.5 < f2/f3 < 2 但し、f2:前記第2レンズ群の焦点距離、 f3:前記第3レンズ群の焦点距離である。
6. The zoom lens according to claim 1, further satisfying the following condition. 0.5 <f2 / f3 <2 where f2 is the focal length of the second lens group, and f3 is the focal length of the third lens group.
【請求項7】 さらに以下の条件を満足する請求項1に
記載のズームレンズ。 f2/(|f1|+e1t) > 0.8 (f1<0) f2/(|f1|+e1w) < 1.2 但し、f1:前記第1レンズ群の焦点距離、 f2:前記第2レンズ群の焦点距離、 e1w:広角端における前記第1レンズ群の像側主点か
ら前記第2レンズ群の物側主点までの距離、 e1t:望遠端における前記第1レンズ群の像側主点か
ら前記第2レンズ群の物側主点までの距離である
7. The zoom lens according to claim 1, further satisfying the following conditions. f2 / (| f1 | + e1t)> 0.8 (f1 <0) f2 / (| f1 | + e1w) <1.2, where f1: the focal length of the first lens group, and f2: the second lens group. Focal length, e1w: distance from the image-side principal point of the first lens group at the wide-angle end to the object-side principal point of the second lens group, e1t: from the image-side principal point of the first lens group at the telephoto end Distance to the object side principal point of the second lens group
【請求項8】 前記第2レンズ群と前記第3レンズ群の
間に絞りを有することを特徴とする請求項1に記載のズ
ームレンズ。
8. The zoom lens according to claim 1, further comprising a diaphragm between the second lens group and the third lens group.
【請求項9】 広角端から望遠端へのズーミングに際し
て、前記第2レンズ群と前記第3レンズ群の間隔は、広
角端近傍では拡大し、望遠端近傍では縮小することを特
徴とする請求項1に記載のズームレンズ。
9. When zooming from the wide-angle end to the telephoto end, the interval between the second lens group and the third lens group increases near the wide-angle end and decreases near the telephoto end. The zoom lens according to 1.
【請求項10】 物体側から順に、負の屈折力を有する
第1レンズ群と、正の屈折力を有する第2レンズ群と、
正の屈折力を有する第3レンズ群を有し、広角端から望
遠端へのズーミングに際して、前記第1レンズ群と前記
第2レンズ群との間隔が縮小し、前記第2レンズ群と前
記第3レンズ群との間隔が変化し、前記第2レンズ群を
像面方向に移動させて遠距離物体から近距離物体へのフ
ォーカシングを行うことを特徴とするズームレンズ。
10. A first lens group having a negative refracting power and a second lens group having a positive refracting power in order from the object side,
A third lens group having a positive refractive power is provided, and during zooming from the wide-angle end to the telephoto end, the distance between the first lens group and the second lens group is reduced, and the second lens group and the second lens group. A zoom lens characterized in that the distance from the third lens group is changed and the second lens group is moved in the image plane direction to perform focusing from a long-distance object to a short-distance object.
【請求項11】 さらに以下の条件を満足する請求項1
0に記載のズームレンズ。 |β2t|>2 |β2w|>2 但し、β2t:望遠端における前記第2レンズ群の結像
倍率、 β2w:広角端における前記第2レンズ群の結像倍率で
ある。
11. The method according to claim 1, further satisfying the following condition.
0 zoom lens. | Β2t |> 2 | β2w |> 2 where β2t is the imaging magnification of the second lens group at the telephoto end, and β2w is the imaging magnification of the second lens group at the wide-angle end.
【請求項12】 さらに以下の条件を満足する請求項1
1に記載のズームレンズ。 β2t>2 β2w<−2 但し、β2t:望遠端における前記第2レンズ群の結像
倍率、 β2w:広角端における前記第2レンズ群の結像倍率で
ある。
12. The method according to claim 1, further satisfying the following condition.
The zoom lens according to 1. β2t> 2 β2w <-2 where β2t is the imaging magnification of the second lens group at the telephoto end, and β2w is the imaging magnification of the second lens group at the wide-angle end.
【請求項13】 さらに以下の条件を満足する請求項1
0に記載のズームレンズ。 f3/e3w > 0.8 f3/e3t < 1.2 但し、e3w:広角端における前記第3レンズ群の像側
主点位置から像面までの距離、 e3t:望遠端における前記第3レンズ群の像側主点位
置から像面までの距離、 f3:前記第3レンズ群の焦点距離である。
13. The method according to claim 1, further satisfying the following condition.
0 zoom lens. f3 / e3w> 0.8 f3 / e3t <1.2, where e3w: distance from the image-side principal point position of the third lens group at the wide-angle end to the image plane, e3t: of the third lens group at the telephoto end Distance from the image side principal point position to the image plane, f3: Focal length of the third lens group.
【請求項14】 さらに以下の条件を満足する請求項1
0に記載のズームレンズ。 0.5 < f2/f3 < 2 但し、f2:前記第2レンズ群の焦点距離、 f3:前記第3レンズ群の焦点距離である。
14. The method according to claim 1, further satisfying the following condition.
0 zoom lens. 0.5 <f2 / f3 <2 where f2 is the focal length of the second lens group, and f3 is the focal length of the third lens group.
【請求項15】 さらに以下の条件を満足する請求項1
0に記載のズームレンズ。 f2/(|f1|+e1t) > 0.8 (f1<0) f2/(|f1|+e1w) < 1.2 但し、f1:前記第1レンズ群の焦点距離、 f2:前記第2レンズ群の焦点距離、 e1w:広角端における前記第1レンズ群の像側主点か
ら前記第2レンズ群の物側主点までの距離、 e1t:望遠端における前記第1レンズ群の像側主点か
ら前記第2レンズ群の物側主点までの距離である
15. The method according to claim 1, further satisfying the following condition.
0 zoom lens. f2 / (| f1 | + e1t)> 0.8 (f1 <0) f2 / (| f1 | + e1w) <1.2 where f1: focal length of the first lens group, f2: of the second lens group Focal length, e1w: distance from the image-side principal point of the first lens group at the wide-angle end to the object-side principal point of the second lens group, e1t: from the image-side principal point of the first lens group at the telephoto end Distance to the object side principal point of the second lens group
【請求項16】 ズーミングの際に、前記第1レンズ群
が静止していることを特徴とする請求項10に記載のズ
ームレンズ。
16. The zoom lens according to claim 10, wherein the first lens group is stationary during zooming.
【請求項17】 広角端から望遠端へのズーミングの際
に、前記第2レンズ群と前記第3レンズ群がともに物体
方向へ移動することを特徴とする請求項16に記載のズ
ームレンズ。
17. The zoom lens according to claim 16, wherein both the second lens group and the third lens group move in the object direction during zooming from the wide-angle end to the telephoto end.
【請求項18】 前記第2レンズ群と前記第3レンズ群
の間に絞りを有することを特徴とする請求項10に記載
のズームレンズ。
18. The zoom lens according to claim 10, further comprising a diaphragm between the second lens group and the third lens group.
【請求項19】 広角端から望遠端へのズーミングに際
して、前記第2レンズ群と前記第3レンズ群の間隔は、
広角端近傍では拡大し、望遠端近傍では縮小することを
特徴とする請求項10に記載のズームレンズ。
19. When zooming from the wide-angle end to the telephoto end, a distance between the second lens group and the third lens group is
The zoom lens according to claim 10, wherein the zoom lens expands near the wide-angle end and contracts near the telephoto end.
【請求項20】 物体側から順に、負の屈折力を有する
第1レンズ群と、正の屈折力を有する第2レンズ群と、
正の屈折力を有する第3レンズ群と、負の屈折力を有す
る第4レンズ群とを有し、広角端から望遠端へのズーミ
ングに際して、前記第1レンズ群と前記第2レンズ群と
の間隔が狭まり、前記第2レンズ群と前記第3レンズ群
との間隔が広がり、前記第3レンズ群と前記第4レンズ
群との間隔が広がることを特徴とするズームレンズ。
20. A first lens group having a negative refracting power and a second lens group having a positive refracting power in order from the object side.
It has a third lens group having a positive refractive power and a fourth lens group having a negative refractive power, and when zooming from the wide-angle end to the telephoto end, the first lens group and the second lens group A zoom lens characterized in that an interval is narrowed, an interval between the second lens group and the third lens group is expanded, and an interval between the third lens group and the fourth lens group is expanded.
【請求項21】 前記第2レンズ群を像面方向に移動さ
せて遠距離物体から近距離物体へのフォーカシングを行
うことを特徴とする請求項20に記載のズームレンズ。
21. The zoom lens according to claim 20, wherein the second lens group is moved in the image plane direction to perform focusing from a long-distance object to a short-distance object.
【請求項22】 ズーミングの際に、前記第1レンズ群
が静止していることを特徴とする請求項20に記載のズ
ームレンズ。
22. The zoom lens according to claim 20, wherein the first lens group is stationary during zooming.
【請求項23】 物体側から順に、負の屈折力を有する
第1レンズ群と、正の屈折力を有する第2レンズ群と、
正の屈折力を有する第3レンズ群と、負の屈折力を有す
る第4レンズ群と、正の屈折力を有する第5レンズ群と
を有し、広角端から望遠端へのズーミングに際して、前
記第1レンズ群と前記第2レンズ群との間隔が狭まり、
前記第2レンズ群と前記第3レンズ群との間隔が変化
し、前記第3レンズ群と前記第4レンズ群との間隔が広
がり、前記第4レンズ群と前記第5レンズ群の間隔が狭
まることを特徴とするズームレンズ。
23. A first lens group having a negative refractive power and a second lens group having a positive refractive power in order from the object side.
In zooming from the wide-angle end to the telephoto end, the third lens group having a positive refractive power, the fourth lens group having a negative refractive power, and the fifth lens group having a positive refractive power are provided. The distance between the first lens group and the second lens group is narrowed,
The distance between the second lens group and the third lens group changes, the distance between the third lens group and the fourth lens group increases, and the distance between the fourth lens group and the fifth lens group decreases. This is a zoom lens.
【請求項24】 前記第2レンズ群を像面方向に移動さ
せて遠距離物体から近距離物体へのフォーカシングを行
うことを特徴とする請求項23に記載のズームレンズ。
24. The zoom lens according to claim 23, wherein the second lens group is moved in the image plane direction to perform focusing from a long-distance object to a short-distance object.
【請求項25】 ズーミングの際に、前記第1レンズ群
が静止していることを特徴とする請求項23に記載のズ
ームレンズ。
25. The zoom lens according to claim 23, wherein the first lens group is stationary during zooming.
【請求項26】 物体側から順に、負の屈折力を有する
第1レンズ群と、正の屈折力を有する第2レンズ群と、
正の屈折力を有する第3レンズ群と、正の屈折力を有す
る第4レンズ群を有し、広角端から望遠端へのズーミン
グに際して、前記第1レンズ群と前記第2レンズ群との
間隔が縮小し、前記第2レンズ群と前記第3レンズ群と
の間隔が変化し、前記第3レンズ群と前記第4レンズ群
との間隔が変化し、前記第2レンズ群を像面方向に移動
させて遠距離物体から近距離物体へのフォーカシングを
行うことを特徴とするズームレンズ。
26. A first lens group having a negative refracting power and a second lens group having a positive refracting power in order from the object side,
A third lens group having a positive refracting power and a fourth lens group having a positive refracting power are provided, and the distance between the first lens group and the second lens group during zooming from the wide-angle end to the telephoto end. Is reduced, the distance between the second lens group and the third lens group is changed, the distance between the third lens group and the fourth lens group is changed, and the second lens group is moved in the image plane direction. A zoom lens that is moved to perform focusing from a long-distance object to a short-distance object.
【請求項27】 ズーミングの際に、前記第1レンズ群
が静止していることを特徴とする請求項26に記載のズ
ームレンズ。
27. The zoom lens according to claim 26, wherein the first lens group is stationary during zooming.
JP8020930A 1995-03-08 1996-02-07 Zoom lens Pending JPH08304704A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP8020930A JPH08304704A (en) 1995-03-08 1996-02-07 Zoom lens
US08/613,254 US5668668A (en) 1995-03-08 1996-03-08 Zoom lens with five lens groups
US08/736,673 US5721642A (en) 1995-03-08 1996-10-25 Zoom lens
US08/736,674 US5798871A (en) 1995-03-08 1996-10-25 Zoom lens

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-48340 1995-03-08
JP4834095 1995-03-08
JP8020930A JPH08304704A (en) 1995-03-08 1996-02-07 Zoom lens

Publications (1)

Publication Number Publication Date
JPH08304704A true JPH08304704A (en) 1996-11-22

Family

ID=26357940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8020930A Pending JPH08304704A (en) 1995-03-08 1996-02-07 Zoom lens

Country Status (1)

Country Link
JP (1) JPH08304704A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311872A (en) * 2000-04-27 2001-11-09 Nitto Kogaku Kk Zoom lens for projection and projector device
JP2002090624A (en) * 2000-07-10 2002-03-27 Olympus Optical Co Ltd Electronic imaging device
JP2004053993A (en) * 2002-07-22 2004-02-19 Nidec Copal Corp Zoom lens
US6813091B2 (en) 2002-05-21 2004-11-02 Canon Kabushiki Kaisha Zoom lens system and photographing apparatus having the same
JP2006065026A (en) * 2004-08-27 2006-03-09 Canon Inc Zoom lens and image projection device having the same
WO2006115107A1 (en) * 2005-04-22 2006-11-02 Konica Minolta Opto, Inc. Variable power optical system, imaging lens system and digital apparatus
JP2007164157A (en) * 2005-11-17 2007-06-28 Matsushita Electric Ind Co Ltd Zoom lens system, imaging device, and camera
US7365910B2 (en) 2001-05-14 2008-04-29 Olympus Corporation Electronic image pickup system
US7551365B2 (en) 2005-11-10 2009-06-23 Sharp Kabushiki Kaisha Zoom lens, digital camera and portable information device
JP2010176016A (en) * 2009-01-30 2010-08-12 Nikon Corp Wide-angle lens, imaging apparatus, and method for manufacturing the wide-angle lens
JP2010204647A (en) * 2009-02-03 2010-09-16 Hoya Corp Wide-angle zoom lens system
JP2011053507A (en) * 2009-09-03 2011-03-17 Fujifilm Corp Projection type variable focus lens and projection type display device
JP2011248339A (en) * 2010-04-28 2011-12-08 Nikon Corp Photographing lens, optical device and method for producing photographing lens
JP2012027311A (en) * 2010-07-26 2012-02-09 Nikon Corp Zoom lens, optical device and method for manufacturing zoom lens
JP2012047813A (en) * 2010-08-24 2012-03-08 Panasonic Corp Zoom lens system, interchangeable lens device and camera system
WO2014007298A1 (en) * 2012-07-03 2014-01-09 株式会社タムロン Zoom lens
US8824059B2 (en) 2011-05-30 2014-09-02 Pentax Ricoh Imaging Company, Ltd. Zoom lens system and optical instrument using the same
US9001441B2 (en) 2010-04-28 2015-04-07 Nikon Corporation Imaging lens, optical apparatus equipped therewith, and method for manufacturing imaging lens
US9097881B2 (en) 2010-07-26 2015-08-04 Nikon Corporation Zoom lens system, optical apparatus and method for manufacturing zoom lens system
WO2019207699A1 (en) * 2018-04-26 2019-10-31 オリンパス株式会社 Objective optical system and imaging device using same

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4616966B2 (en) * 2000-04-27 2011-01-19 日東光学株式会社 Projection zoom lens and projector apparatus
JP2001311872A (en) * 2000-04-27 2001-11-09 Nitto Kogaku Kk Zoom lens for projection and projector device
JP4540261B2 (en) * 2000-07-10 2010-09-08 オリンパス株式会社 Electronic imaging device
JP2002090624A (en) * 2000-07-10 2002-03-27 Olympus Optical Co Ltd Electronic imaging device
US10031322B2 (en) 2001-05-14 2018-07-24 Olympus Corporation Electronic image pickup system
US8885262B2 (en) 2001-05-14 2014-11-11 Olympus Corporation Electronic image pickup system
US9274321B2 (en) 2001-05-14 2016-03-01 Olympus Corporation Electronic image pickup system
US7365910B2 (en) 2001-05-14 2008-04-29 Olympus Corporation Electronic image pickup system
US7436599B2 (en) 2001-05-14 2008-10-14 Olympus Corporation Electronic image pickup system
US9696524B2 (en) 2001-05-14 2017-07-04 Olympus Corporation Electronic image pickup system
US8094381B2 (en) 2001-05-14 2012-01-10 Olympus Corporation Electronic image pickup system
US7872806B2 (en) 2001-05-14 2011-01-18 Olympus Corporation Electronic image pickup system
US6813091B2 (en) 2002-05-21 2004-11-02 Canon Kabushiki Kaisha Zoom lens system and photographing apparatus having the same
JP2004053993A (en) * 2002-07-22 2004-02-19 Nidec Copal Corp Zoom lens
JP2006065026A (en) * 2004-08-27 2006-03-09 Canon Inc Zoom lens and image projection device having the same
JP4659412B2 (en) * 2004-08-27 2011-03-30 キヤノン株式会社 Zoom lens and image projection apparatus having the same
WO2006115107A1 (en) * 2005-04-22 2006-11-02 Konica Minolta Opto, Inc. Variable power optical system, imaging lens system and digital apparatus
US7869134B2 (en) 2005-04-22 2011-01-11 Konica Minolta Opto, Inc. Variable power optical system, imaging lens system and digital apparatus
JP4894754B2 (en) * 2005-04-22 2012-03-14 コニカミノルタオプト株式会社 Magnification optical system, imaging lens device, and digital device
US7551365B2 (en) 2005-11-10 2009-06-23 Sharp Kabushiki Kaisha Zoom lens, digital camera and portable information device
JP2007164157A (en) * 2005-11-17 2007-06-28 Matsushita Electric Ind Co Ltd Zoom lens system, imaging device, and camera
JP2010176016A (en) * 2009-01-30 2010-08-12 Nikon Corp Wide-angle lens, imaging apparatus, and method for manufacturing the wide-angle lens
JP2010204647A (en) * 2009-02-03 2010-09-16 Hoya Corp Wide-angle zoom lens system
JP2011053507A (en) * 2009-09-03 2011-03-17 Fujifilm Corp Projection type variable focus lens and projection type display device
US9001441B2 (en) 2010-04-28 2015-04-07 Nikon Corporation Imaging lens, optical apparatus equipped therewith, and method for manufacturing imaging lens
US9715127B2 (en) 2010-04-28 2017-07-25 Nikon Corporation Imaging lens, optical apparatus equipped therewith, and method for manufacturing imaging lens
JP2011248339A (en) * 2010-04-28 2011-12-08 Nikon Corp Photographing lens, optical device and method for producing photographing lens
US9097881B2 (en) 2010-07-26 2015-08-04 Nikon Corporation Zoom lens system, optical apparatus and method for manufacturing zoom lens system
JP2012027311A (en) * 2010-07-26 2012-02-09 Nikon Corp Zoom lens, optical device and method for manufacturing zoom lens
US10095012B2 (en) 2010-07-26 2018-10-09 Nikon Corporation Zoom lens system, optical apparatus and method for manufacturing zoom lens system
JP2012047813A (en) * 2010-08-24 2012-03-08 Panasonic Corp Zoom lens system, interchangeable lens device and camera system
US8824059B2 (en) 2011-05-30 2014-09-02 Pentax Ricoh Imaging Company, Ltd. Zoom lens system and optical instrument using the same
WO2014007298A1 (en) * 2012-07-03 2014-01-09 株式会社タムロン Zoom lens
WO2019207699A1 (en) * 2018-04-26 2019-10-31 オリンパス株式会社 Objective optical system and imaging device using same

Similar Documents

Publication Publication Date Title
JP4317928B2 (en) Zoom lens
JP3570253B2 (en) Zoom lens
JP3590807B2 (en) Zoom lens
JP3304518B2 (en) Zoom lens
JPH08304704A (en) Zoom lens
JPH11174329A (en) Variable power optical system having vibration-proof function
JPH08327907A (en) Zoom lens
JPH06337354A (en) Zoom lens
JPH05273467A (en) Zoom lens of internal focusing
JPH1195105A (en) Focusing system for variable power optical system
JP3018723B2 (en) Zoom lens
JP4774710B2 (en) Zoom lens
JPH0843737A (en) Zoom lens
JP4227223B2 (en) Zoom lens
JP3144191B2 (en) Zoom lens
US5659426A (en) Zoom lens
JP3363688B2 (en) Zoom lens
JPH1164732A (en) Zoom lens
JPH07287168A (en) Zoom lens with high power variation rate
JPH07151975A (en) Zoom lens
JP3508273B2 (en) Zoom lens
JPH08248319A (en) Zoom lens
JPH08211290A (en) High variable power rate zoom lens
JPH11237551A (en) Zoom lens and video camera using the zoom lens
JPH0894935A (en) Internal focusing system zoom lens

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040203

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040413

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040514