JPH08299984A - Biological treating device - Google Patents

Biological treating device

Info

Publication number
JPH08299984A
JPH08299984A JP7108576A JP10857695A JPH08299984A JP H08299984 A JPH08299984 A JP H08299984A JP 7108576 A JP7108576 A JP 7108576A JP 10857695 A JP10857695 A JP 10857695A JP H08299984 A JPH08299984 A JP H08299984A
Authority
JP
Japan
Prior art keywords
membrane
biological treatment
denitrification
oxygen
nitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7108576A
Other languages
Japanese (ja)
Inventor
Akishi Hori
晃士 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP7108576A priority Critical patent/JPH08299984A/en
Publication of JPH08299984A publication Critical patent/JPH08299984A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE: To continuously take out a treated water from a membrane module by providing the device with an immersion type membrane module in a biological treating tank and preventing the reduction of a membrane permeating water amount due to the clogging of the membrane. CONSTITUTION: An oxygen-containing gas is supplied to a diffuser pipe 4 at a nitrification stage, and a nonoxidizing gas is supplied to the diffuser pipe 4 at a denitrification stage. In this way, since the nonoxidizing gas is aerated at the denitrification stage, a circulating stream is caused at a membrane surface of the membrane module 3 even at the denitrification stage and the clogging of the membrane is prevented, and the membrane permeation water amount is kept high.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、好気処理による硝化工
程と嫌気処理による脱窒工程とを一つの処理槽内で交互
に行う生物処理槽内に、浸漬型膜モジュールを設けた生
物的処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biological treatment tank in which an immersion type membrane module is provided in a biological treatment tank in which a nitrification step by aerobic treatment and a denitrification step by anaerobic treatment are alternately performed in one treatment tank. Regarding a processing device.

【0002】[0002]

【従来の技術】 廃水の生物的脱窒処理法として、間欠曝気法が知ら
れている。この方法は、生物処理槽に原水を連続的に供
給すると共に、間欠的(通常は数十分程度のサイクル)
に曝気を行って、曝気(好気環境での硝化処理)と攪拌
(嫌気環境での脱窒処理)とを交互に繰り返すことによ
り、硝化・脱窒を行う方法である。また、廃水中にリン
も含有される場合には、リンの吸収・放出を繰り返して
リンの除去も行う(脱窒工程において硝酸態及び亜硝酸
態窒素が消失した後の完全嫌気環境では、リンが放出さ
れる。)。脱窒処理水は連続的に排出される。
2. Description of the Related Art An intermittent aeration method is known as a biological denitrification method for wastewater. This method continuously supplies raw water to the biological treatment tank and also intermittently (usually several tens of minutes cycle).
In this method, nitrification and denitrification are performed by alternately repeating aeration (nitrification treatment in an aerobic environment) and stirring (denitrification treatment in an anaerobic environment). When the wastewater also contains phosphorus, phosphorus is removed by repeating absorption and release of phosphorus (in the complete anaerobic environment after the disappearance of nitrate and nitrite nitrogen in the denitrification process, phosphorus is removed). Is released). The denitrification treated water is continuously discharged.

【0003】この方法は、硝化槽と脱窒槽を設けて硝化
液を循環する方法に比べると、硝化液の循環のための動
力が不要であり、処理槽を複数の槽に区画する必要がな
く、高濃度の窒素含有廃水であっても1つの処理槽で放
流可能な低濃度にまで窒素を除去することができるとい
う利点を有する。
[0003] This method requires no power for circulating the nitrification solution as compared with the method of circulating the nitrification solution by providing a nitrification tank and a denitrification tank, and it is not necessary to divide the treatment tank into a plurality of tanks. However, there is an advantage that even a wastewater containing nitrogen of high concentration can remove nitrogen to a low concentration which can be discharged in one treatment tank.

【0004】 生物処理に酸素富化空気を用いる技術
として、水中への酸素の溶解効率を上げるために、酸素
富化空気で曝気するという技術が知られている。
As a technique of using oxygen-enriched air for biological treatment, a technique of aeration with oxygen-enriched air in order to increase the efficiency of dissolving oxygen in water is known.

【0005】 生物処理に脱酸素空気を用いる技術と
して、硝化液循環法などの脱窒槽において、脱酸素空気
で曝気することにより嫌気状態を保つと共に、汚泥の沈
降を防ぐための攪拌流を引き起こすという技術が知られ
ている。
As a technique of using deoxygenated air for biological treatment, in a denitrification tank such as a nitrification solution circulation method, aeration with deoxygenated air keeps an anaerobic state and causes a stirred flow for preventing sedimentation of sludge. The technology is known.

【0006】 従来、生物処理後の液を汚泥と処理液
とに固液分離する方法としては、生物処理液を沈殿槽に
送給して汚泥を重力沈降により分離する方法が一般に採
用されていたが、最近になって、生物処理槽内に直接膜
モジュールを浸漬し、膜透過側を吸引して生物処理液を
濾過することにより、清澄な処理水を得る技術が開発さ
れた。
Conventionally, as a method for solid-liquid separation of the liquid after biological treatment into sludge and treated liquid, a method of feeding the biological treated liquid to a settling tank and separating the sludge by gravity settling is generally adopted. However, recently, a technique for obtaining clear treated water by directly immersing the membrane module in the biological treatment tank, sucking the membrane permeation side and filtering the biological treatment liquid has been developed.

【0007】この浸漬型膜モジュールを用いる場合、膜
モジュールの下部等から曝気を行って、膜面に循環流を
与えることにより、膜の閉塞を防止して高い透過水量を
得ることができる。
When this immersion type membrane module is used, aeration is carried out from the lower part of the membrane module and the like to give a circulating flow to the membrane surface, whereby clogging of the membrane can be prevented and a high amount of permeate can be obtained.

【0008】この浸漬型膜モジュールによる固液分離に
よれば、汚泥を生物処理槽内で完全に分離することがで
き、沈殿槽を用いる場合の問題点であった、汚泥の沈降
性悪化によるSSの流出、それによる処理水質の悪化が
防止される。また、生物処理槽内の汚泥濃度を高く保つ
ことができ、生物処理槽の処理性能が向上し、結果とし
て生物処理槽の小型化を図ることができるといった利点
がある。
According to the solid-liquid separation by this immersion type membrane module, sludge can be completely separated in the biological treatment tank, and SS which is a problem when using a sedimentation tank is deteriorated due to deterioration of sludge sedimentation property. Spills of water and the resulting deterioration of treated water quality are prevented. Further, there is an advantage that the sludge concentration in the biological treatment tank can be kept high, the treatment performance of the biological treatment tank is improved, and as a result, the biological treatment tank can be downsized.

【0009】従って、前述の間欠曝気法による脱窒処理
に、上記浸漬型膜モジュールを適用することにより、硝
化・脱窒処理と固液分離とを同一槽で行うことができ、
装置のより一層の小型化、処理効率の向上が図れること
が考えられる。
Therefore, by applying the above immersion type membrane module to the denitrification treatment by the intermittent aeration method, the nitrification / denitrification treatment and the solid-liquid separation can be performed in the same tank,
It is considered that the device can be further downsized and the processing efficiency can be improved.

【0010】[0010]

【発明が解決しようとする課題】しかし、間欠曝気を行
う生物処理槽に浸漬型膜モジュールを設置した場合、次
のような問題が生じる。
However, when the submerged membrane module is installed in the biological treatment tank for intermittent aeration, the following problems occur.

【0011】即ち、間欠曝気の嫌気工程においては、曝
気が停止され、汚泥が沈降しない程度の攪拌のみが行わ
れるため、膜モジュールの膜面における循環流が殆どな
くなり、膜が閉塞し、膜透過水量が減少してしまう。こ
れを避けるために、嫌気工程の時に膜分離を行わないよ
うにすると、固液分離効率が低下し、同一処理水量に対
して必要な膜面積が増加し、膜コストが増加する。
That is, in the anaerobic process of intermittent aeration, since aeration is stopped and only stirring is performed to the extent that sludge does not settle, the circulation flow on the membrane surface of the membrane module is almost eliminated, the membrane is blocked, and the membrane permeation is stopped. The amount of water decreases. In order to avoid this, if the membrane separation is not performed during the anaerobic process, the solid-liquid separation efficiency decreases, the membrane area required for the same amount of treated water increases, and the membrane cost increases.

【0012】また、生物処理槽とは別に膜モジュールを
浸漬する膜分離槽を設けることも考えられるが、この場
合には、膜分離槽の建設コストがかかる;生物処理のた
めとは別に膜分離のために曝気を行う必要がでてくるた
め動力コストがかかる;膜分離槽から生物処理槽へ汚泥
を循環させる必要がでてくるため、そのための動力コス
トもかかる;といった問題があり、工業的に不利であ
る。
It is also conceivable to provide a membrane separation tank in which the membrane module is immersed separately from the biological treatment tank, but in this case, the construction cost of the membrane separation tank is high; the membrane separation is separate from that for biological treatment. Therefore, there is a problem that industrial costs are required because it requires aeration because it requires power cost; because it requires the circulation of sludge from the membrane separation tank to the biological treatment tank, it also requires power cost. Is disadvantageous to

【0013】本発明は上記従来の問題点を解決し、硝化
工程と脱窒工程とを交互に繰り返し行う生物処理槽内に
浸漬型膜モジュールを設置した生物的処理装置におい
て、膜の閉塞による膜透過水量の減少を防止して、膜モ
ジュールから連続的に処理水を取り出すことができる生
物的処理装置を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and in a biological treatment apparatus in which a submerged membrane module is installed in a biological treatment tank in which a nitrification step and a denitrification step are alternately repeated, a membrane due to clogging of the membrane It is an object of the present invention to provide a biological treatment device capable of continuously taking out treated water from a membrane module while preventing a decrease in the amount of permeated water.

【0014】[0014]

【課題を解決するための手段】本発明の生物的処理装置
は、硝化工程と脱窒工程とを交互に行う生物処理槽と、
該生物処理槽内に設置された浸漬型膜モジュールと、該
生物処理槽内に設置された散気管と、硝化工程において
酸素含有ガスを該散気管に供給し、脱窒工程において非
酸化性ガスを該散気管に供給する送気手段と、を有し、
硝化工程及び脱窒工程を通して膜分離装置の膜透過側か
ら生物処理水を排出するようにしたことを特徴とする。
A biological treatment apparatus of the present invention comprises a biological treatment tank for alternately performing a nitrification step and a denitrification step,
A submerged membrane module installed in the biological treatment tank, a diffuser tube installed in the biological treatment tank, an oxygen-containing gas is supplied to the diffuser tube in the nitrification process, and a non-oxidizing gas is used in the denitrification process. And an air supply means for supplying the air diffuser to
It is characterized in that the biologically treated water is discharged from the membrane permeation side of the membrane separation device through the nitrification step and the denitrification step.

【0015】この非酸化性ガスとしては、酸素濃度が5
%以下とりわけ3%以下の、酸素濃度の低いガスが好適
である。この非酸化性ガスとしては、酸素を分離除去し
た脱酸素空気のほか、酸素をCO2 に変えた燃焼排ガス
等が例示される。
The non-oxidizing gas has an oxygen concentration of 5
% Or less, especially 3% or less, a gas having a low oxygen concentration is suitable. Examples of the non-oxidizing gas include deoxygenated air from which oxygen is separated and removed, and combustion exhaust gas in which oxygen is changed to CO 2 .

【0016】一方、酸素含有ガスとしては、酸素濃度2
7%以上に酸素濃度を高めた、酸素富化空気が好まし
い。
On the other hand, as the oxygen-containing gas, the oxygen concentration is 2
Oxygen-enriched air having an oxygen concentration of 7% or more is preferable.

【0017】[0017]

【作用】本発明の生物的処理装置にあっては、脱窒工程
において非酸化性ガスを曝気するため、脱窒工程におい
ても膜モジュールの膜面に循環流を生起させて膜の閉塞
を防止し、膜透過水量を高く維持することができる。
In the biological treatment apparatus of the present invention, since the non-oxidizing gas is aerated in the denitrification step, a circulating flow is generated on the membrane surface of the membrane module also in the denitrification step to prevent clogging of the membrane. However, the amount of water permeated through the membrane can be maintained high.

【0018】なお、本発明では、従来の間欠曝気法に比
べて、脱窒工程の曝気のための動力コストが必要となる
という問題があるが、別途膜分離槽を設けて分離汚泥を
循環させる場合に比べれば、コストを削減することがで
き、単一槽での生物処理及び固液分離処理、並びに、膜
モジュールからの処理水の連続採取による効果で、総合
的には著しく大きなコスト削減を図ることができる。
In the present invention, there is a problem that a power cost for aeration in the denitrification process is required as compared with the conventional intermittent aeration method, but a separate membrane separation tank is provided to circulate the separated sludge. Compared with the case, the cost can be reduced, and the effect of biological treatment and solid-liquid separation treatment in a single tank, and continuous sampling of treated water from the membrane module, results in a significant cost reduction overall. Can be planned.

【0019】ところで、従来の間欠曝気法では、嫌気か
ら好気、或いは、好気から嫌気への切り替え時の、低溶
存酸素期間において、硝化反応速度及び脱窒反応速度が
共に非常に遅く、この切り替え時の生物処理効率が悪い
という問題があった。
By the way, in the conventional intermittent aeration method, both the nitrification reaction rate and the denitrification reaction rate are very slow in the low dissolved oxygen period at the time of switching from anaerobic to aerobic or from aerobic to anaerobic. There was a problem that the biological treatment efficiency at the time of switching was poor.

【0020】即ち、曝気による好気条件から曝気停止に
よる嫌気条件に切り換えた際、切り換え初期の段階で液
中の溶存酸素が微生物により消費されるまでは脱窒反応
が円滑に進行しない。逆に、嫌気条件から曝気再開によ
る好気条件に切り換えた際、切り換え初期の段階で液中
の溶存酸素量が不足し、硝化反応が円滑に進行しない。
That is, when the aerobic condition by aeration is switched to the anaerobic condition by stopping aeration, the denitrification reaction does not proceed smoothly until the dissolved oxygen in the liquid is consumed by the microorganisms at the initial stage of the switching. On the contrary, when the anaerobic condition is switched to the aerobic condition by restarting aeration, the amount of dissolved oxygen in the liquid is insufficient at the initial stage of the switching, and the nitrification reaction does not proceed smoothly.

【0021】従って、従来において、この好気から嫌気
への切り換え時及び嫌気から好気への切り換え時におい
て、この反応速度の遅い期間を短く抑えることが、処理
効率の向上のために重要であるとされていた。特に、窒
素の除去率を上げるためには、嫌気・好気の1サイクル
の時間を短くすることが重要であるが、嫌気・好気の1
サイクルの時間を短くすると、上述の反応速度の遅い期
間の占める割合が相対的に大きくなるため、この期間を
短くし、嫌気・好気の切り替えを迅速に行うことが、高
効率処理のために望まれる課題である。
Therefore, conventionally, it is important to suppress the period of slow reaction rate to be short at the time of switching from the aerobic to the anaerobic and at the time of switching from the anaerobic to the aerobic in order to improve the processing efficiency. Was said. In particular, it is important to shorten the time for one cycle of anaerobic / aerobic to increase the removal rate of nitrogen.
When the cycle time is shortened, the proportion of the above-mentioned slow reaction rate period becomes relatively large. Therefore, it is necessary to shorten this period and quickly switch between anaerobic and aerobic for highly efficient treatment. This is a desired issue.

【0022】本発明においては、脱窒工程において非酸
化性ガスを曝気するため、この非酸化性ガスによる溶存
酸素の脱気効果で、好気から嫌気への切り換え時におい
て、従来の間欠曝気法、即ち、曝気を停止して微生物に
よる溶存酸素の消費によって好気から嫌気に切り換える
方法よりも、速やかに液中の溶存酸素量を低減すること
ができ、これにより、脱窒反応速度の遅い期間を短縮す
ることができる。
In the present invention, since the non-oxidizing gas is aerated in the denitrification step, the conventional intermittent aeration method is used at the time of switching from aerobic to anaerobic due to the degassing effect of the dissolved oxygen by the non-oxidizing gas. That is, the amount of dissolved oxygen in the liquid can be reduced more rapidly than the method of stopping aeration and switching from aerobic to anaerobic by the consumption of dissolved oxygen by microorganisms, and thus the period of slow denitrification reaction rate. Can be shortened.

【0023】この脱窒工程の曝気ガスとしては、空気か
ら酸素を除去した脱酸素空気(窒素を主体とする空気)
を用いるのが有利である。
As the aeration gas in this denitrification process, deoxygenated air (mainly nitrogen) in which oxygen is removed from air
It is advantageous to use

【0024】一方、硝化工程において、酸素含有ガスと
して、酸素富化空気のような、酸素濃度が比較的高いガ
スを用いた場合には、嫌気から好気への切り換え時にお
いて、液中の溶存酸素を速やかに高めて、硝化反応速度
の遅い期間を短縮することができる。
On the other hand, when a gas having a relatively high oxygen concentration, such as oxygen-enriched air, is used as the oxygen-containing gas in the nitrification step, it is dissolved in the liquid at the time of switching from anaerobic to aerobic. Oxygen can be raised rapidly to shorten the period during which the nitrification reaction rate is slow.

【0025】従って、本発明においては、特に、硝化工
程において、脱酸素空気を生成させる際に得られる酸素
富化空気等の酸素濃度の高いガスを曝気ガスとして用い
ることが好ましいが、通常の空気、或いは、空気と酸素
富化空気との混合物を用いることもできる。
Therefore, in the present invention, it is preferable to use, as the aeration gas, a gas having a high oxygen concentration such as oxygen-enriched air obtained when deoxygenated air is generated in the nitrification step. Alternatively, a mixture of air and oxygen enriched air can be used.

【0026】特に、本発明においては、ガス分離膜装
置、或いはガス吸着分離装置に空気を供給し、酸素富化
空気及び脱酸素空気をそれぞれ取り出して、硝化工程及
び脱窒工程での曝気に用いるのが有利である。
In particular, in the present invention, air is supplied to the gas separation membrane device or the gas adsorption separation device, and oxygen-enriched air and deoxygenated air are respectively taken out and used for aeration in the nitrification process and the denitrification process. Is advantageous.

【0027】硝化工程で酸素富化空気等の酸素濃度の高
い酸素含有ガスを曝気し、脱窒工程で非酸化性ガスを曝
気した場合には、嫌気から好気、及び、好気から嫌気へ
移行する際の低溶存酸素で硝化反応速度及び脱窒反応速
度の遅い期間を短くすることができ、この結果として、
より短い嫌気・好気サイクルに対応でき、高処理効率を
達成できる。また、嫌気・好気サイクルを短くする必要
がない場合でも、反応が円滑に進行する有効な硝化時間
・脱窒時間が増加するため、処理が安定化する。特に、
有効な時間が増加した分、嫌気工程の時間を長くするこ
とによって、原水BODが低い場合に必要な嫌気工程に
おける電子供与体(例えばメタノール)の添加量を削減
できるという効果も奏される。
When an oxygen-containing gas having a high oxygen concentration such as oxygen-enriched air is aerated in the nitrification process and a non-oxidizing gas is aerated in the denitrification process, anaerobic to aerobic and aerobic to anaerobic It is possible to shorten the period during which the nitrification reaction rate and the denitrification reaction rate are slow with low dissolved oxygen during the transition, and as a result,
Capable of handling shorter anaerobic / aerobic cycles and achieving high treatment efficiency. Even when it is not necessary to shorten the anaerobic / aerobic cycle, the treatment is stabilized because the effective nitrification time / denitrification time in which the reaction proceeds smoothly is increased. In particular,
By increasing the effective time, the time of the anaerobic process is lengthened, so that the amount of the electron donor (for example, methanol) added in the anaerobic process required when the raw water BOD is low can be reduced.

【0028】本発明により、嫌気工程において非酸化性
ガスを曝気する際の問題点として、更に、脱酸素空気等
の非酸化性ガスを生成させる装置のイニシャルコストが
必要なことが挙げられる。従って、非酸化性ガス製造装
置の最大能力は小さい程コスト的に有利であるが、生物
処理槽が1槽のみの場合、硝化工程では非酸化性ガスが
必要なくなるため、生物処理槽に対して不必要に大きい
能力を持つ装置が必要になることになる。この問題を解
決するためには、非酸化性ガス製造装置の能力をより低
いものにする代りに、硝化工程の間に生成する非酸化性
ガスをガスタンクにためておいて次の脱窒工程で利用す
る方法が考えられるが、ガスの圧縮装置、ガスタンク等
にコストがかかるため、現実的ではない。
According to the present invention, another problem in aerating the non-oxidizing gas in the anaerobic process is that the initial cost of the apparatus for producing the non-oxidizing gas such as deoxygenated air is required. Therefore, the smaller the maximum capacity of the non-oxidizing gas production apparatus is, the more cost-effective it is. However, when only one biological treatment tank is used, the non-oxidizing gas is not required in the nitrification process. A device with an unnecessarily large capacity will be required. In order to solve this problem, instead of lowering the capacity of the non-oxidizing gas production device, the non-oxidizing gas generated during the nitrification process is stored in the gas tank and is used in the next denitrification process. A method of using it is conceivable, but it is not realistic because the cost of the gas compression device, the gas tank, etc. is high.

【0029】本発明では、この欠点を解決するために、
生物処理槽を2槽以上の複数槽設け、好気・嫌気のサイ
クルをずらし、一方の生物処理槽で酸素含有ガスを曝気
して硝化処理を行っている間に、他方の生物処理槽で非
酸化性ガスを曝気して脱窒処理を行うようにするのが有
利である。
In the present invention, in order to solve this drawback,
Two or more biological treatment tanks are provided, the aerobic / anaerobic cycle is shifted, and one biological treatment tank aerates oxygen-containing gas to perform nitrification treatment while the other biological treatment tank does not It is advantageous to aerate the oxidizing gas to carry out the denitrification treatment.

【0030】具体的には、処理装置を2系列に分け(系
列A,Bとする)、嫌気工程:好気工程の時間比を1:
1とし、両系列のサイクルを嫌気と好気が逆転するよう
に設定することによって、即ち、系列Aが嫌気のとき系
列Bが好気、系列Aが好気のとき系列Bが嫌気となるよ
うにして、非酸化性ガスの送給先を切り換えることによ
り、脱酸素空気等の非酸化性ガス製造装置を休みなく稼
動するようにする。このようにすることにより、単一系
列の場合に比べて、非酸化性ガス製造装置の能力を、1
/2にすることができ(例えば、ガス分離膜装置であれ
ば、膜面積や膜分離に必要な空気量を1/2にすること
ができる。)、コスト面での合理化を図ることができ
る。
Specifically, the processing apparatus is divided into two series (set as series A and B), and the time ratio of anaerobic process: aerobic process is 1 :.
1 and by setting the cycles of both series so that anaerobic and aerobic are reversed, that is, when the series A is anaerobic, the series B is aerobic, and when the series A is aerobic, the series B is anaerobic. By switching the destination of the non-oxidizing gas, the non-oxidizing gas producing apparatus for deoxygenated air can be operated without interruption. By doing so, the capacity of the non-oxidizing gas production apparatus can be reduced to 1 compared with the case of a single series.
/ 2 (for example, in the case of a gas separation membrane device, the membrane area and the amount of air required for membrane separation can be halved), and the cost can be rationalized. .

【0031】[0031]

【実施例】以下、図面を参照して本発明の実施例につい
て詳細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0032】図1は本発明の一実施例を示す系統図であ
る。
FIG. 1 is a system diagram showing an embodiment of the present invention.

【0033】1は生物処理槽であり、配管2より原水が
導入される。この生物処理槽1内には浸漬型膜モジュー
ル3が設置され、この膜モジュール3の下部に散気管4
が設けられている。5はバッフル板である。
Reference numeral 1 is a biological treatment tank into which raw water is introduced through a pipe 2. A submerged membrane module 3 is installed in the biological treatment tank 1, and a diffusing tube 4 is provided below the membrane module 3.
Is provided. 5 is a baffle plate.

【0034】浸漬型膜モジュール3の透過水室3c側は
減圧ポンプP1 で減圧され、生物処理槽1内の生物処理
液が膜モジュール3の原水室3aから分離膜3bを透過
して抜き出される。膜透過水は配管6より抜き出され処
理水槽7に貯留され、更に、ポンプP2 を備える配管8
より系外へ排出される。
The side of the permeated water chamber 3c of the submerged membrane module 3 is decompressed by the decompression pump P 1 , and the biological treatment liquid in the biological treatment tank 1 permeates the raw water chamber 3a of the membrane module 3 through the separation membrane 3b and is extracted. Be done. The membrane permeated water is extracted from the pipe 6 and stored in the treated water tank 7, and the pipe 8 equipped with the pump P 2 is further provided.
Is discharged outside the system.

【0035】浸漬型膜モジュール3の分離膜としては、
限外濾過膜、精密濾過膜が用いられ、その形状としては
平膜、チューブラー膜、中空子膜等任意のものを用いる
ことができる。
As the separation membrane of the immersion type membrane module 3,
An ultrafiltration membrane or a microfiltration membrane is used, and any shape such as a flat membrane, a tubular membrane or a hollow membrane can be used.

【0036】9は、酸素透過膜9bを内蔵するガス分離
膜装置であり、コンプレッサ10で加圧した空気を配管
11より原ガス室9aに供給すると(空気を加圧供給す
る代りに、透過ガス室9c側を減圧しても良い。)、原
ガス室9a内の空気中の酸素が酸素透過膜9bを透過し
て除去され、原ガス室から脱酸素空気が、また、透過ガ
ス室9cから酸素富化空気が得られる。
Reference numeral 9 denotes a gas separation membrane device having an oxygen permeable membrane 9b built therein. When the air pressurized by the compressor 10 is supplied to the raw gas chamber 9a through the pipe 11 (instead of pressurizing the air, the permeation gas is supplied). The pressure in the chamber 9c may be reduced.), Oxygen in the air in the raw gas chamber 9a is removed by permeating the oxygen permeable membrane 9b, and deoxygenated air is discharged from the raw gas chamber and from the permeable gas chamber 9c. Oxygen-enriched air is obtained.

【0037】ガス分離膜装置9で生成した脱酸素空気及
び酸素富化空気は、各々、配管12,13より抜き出さ
れ、タイマ16による3方切り替え電磁弁V1 ,V2
切り換え制御で、配管14又は15を経て必要箇所へ送
給される。
The deoxygenated air and the oxygen-enriched air generated in the gas separation membrane device 9 are extracted from the pipes 12 and 13, respectively, and are controlled by the timer 16 to switch the three-way switching solenoid valves V 1 and V 2 . It is delivered to the required place via the pipe 14 or 15.

【0038】本実施例の生物的処理装置において、原水
は、通常の場合、配管2より生物処理槽1に硝化工程及
び脱窒工程を通して連続的に供給される。生物処理槽1
では、電磁弁V1 ,V3 の切り替えにより、一定の周期
で脱酸素空気又は酸素富化空気が散気管4より曝気され
る。この生物処理槽1が脱窒工程にあり、ガス分離膜装
置9で生成した脱酸素空気が配管12,14を経て曝気
されているときには、ガス分離膜装置9で同時に生成す
る酸素富化空気は配管13,15を経て他系列の生物処
理槽の散気管に送給される。逆に、生物処理槽1が硝化
工程にあり、酸素富化空気が配管13,14を経て曝気
されているときには、脱酸素空気は配管12,15を経
て他系列の生物処理槽の散気管に送給される。
In the biological treatment apparatus of this embodiment, the raw water is normally supplied from the pipe 2 to the biological treatment tank 1 continuously through the nitrification process and the denitrification process. Biological treatment tank 1
Then, by switching the solenoid valves V 1 and V 3 , deoxygenated air or oxygen-enriched air is aerated from the air diffusing pipe 4 at a constant cycle. When the biological treatment tank 1 is in the denitrification process and the deoxygenated air generated in the gas separation membrane device 9 is aerated through the pipes 12 and 14, the oxygen-enriched air simultaneously generated in the gas separation membrane device 9 is It is sent to the diffuser pipe of the biological treatment tank of another series via the pipes 13 and 15. On the contrary, when the biological treatment tank 1 is in the nitrification process and the oxygen-enriched air is aerated through the pipes 13 and 14, the deoxidized air is passed through the pipes 12 and 15 to the diffuser pipes of other series of biological treatment tanks. Sent.

【0039】酸素富化空気の曝気による硝化工程と、脱
酸素空気の曝気による脱窒工程を交互に繰り返すことに
より、窒素が除去された生物処理液は、減圧ポンプP1
の吸引により、浸漬型膜モジュール3で膜分離処理さ
れ、処理水は配管6、処理水槽7及び配管8を経て系外
へ排出される。
By alternately repeating the nitrification process by aeration of oxygen-enriched air and the denitrification process by aeration of deoxygenated air, the biological treatment liquid from which nitrogen has been removed is treated by the decompression pump P 1
The membrane separation treatment is performed in the submerged membrane module 3 by suction, and the treated water is discharged out of the system through the pipe 6, the treated water tank 7 and the pipe 8.

【0040】本実施例の生物的処理装置であれば、硝化
工程のみならず、脱窒工程においても膜モジュール3に
曝気による循環流が付与されて、膜の閉塞が防止される
ため、硝化工程及び脱窒工程を通して処理水の連続採水
を行っても、高い透過水量を維持することができる。
In the biological treatment apparatus of this embodiment, the circulation flow due to aeration is applied to the membrane module 3 not only in the nitrification step but also in the denitrification step, so that clogging of the membrane is prevented, so that the nitrification step is performed. Even if the treated water is continuously sampled through the denitrification process, a high amount of permeated water can be maintained.

【0041】なお、原水にリンを含み、リンも生物的に
除去するときは、硝化(好気)工程及び脱窒(嫌気)工
程につづきリン放出(完全嫌気)工程を設けても良い。
この場合、非酸化性ガスの曝気は、リン放出工程まで続
行しても良く、また、このリン放出工程において膜モジ
ュールから膜透過水の引き抜きを行わないのであれば、
非酸化性ガスの曝気量を低減するか、或いは、曝気を停
止しても良い。
When the raw water contains phosphorus and is also biologically removed, a nitric acid (aerobic) step and a denitrifying (anaerobic) step may be followed by a phosphorus releasing (complete anaerobic) step.
In this case, the aeration of the non-oxidizing gas may be continued until the phosphorus releasing step, and if the membrane permeate is not extracted from the membrane module in the phosphorus releasing step,
The aeration amount of the non-oxidizing gas may be reduced or the aeration may be stopped.

【0042】上記硝化・脱窒処理において、原水のBO
D濃度が低いと、必要な脱窒速度が得られないため、脱
窒工程において電子供与体(例えばメタノール)を添加
することが必要な場合がある。この場合、原水の供給を
脱窒工程のみ行うことにより、脱窒速度を増大させるこ
とができ、電子供与体の添加量を減少ないし不要にする
ことができる。
In the above nitrification / denitrification treatment, BO of raw water was used.
If the D concentration is low, the required denitrification rate cannot be obtained, and therefore it may be necessary to add an electron donor (for example, methanol) in the denitrification step. In this case, the denitrification rate can be increased and the addition amount of the electron donor can be reduced or eliminated by performing only the denitrification step of supplying the raw water.

【0043】原水の供給を脱窒工程のみに行う場合に
は、前述の如く、複数の処理系列を設け、一系列で硝化
を行って原水の供給を停止している間に、他の系列で脱
窒を行って、この系列に原水を供給するようにするのが
好ましい。
When the raw water is supplied only to the denitrification step, as described above, a plurality of treatment series are provided, and while nitrification is performed in one series and the supply of raw water is stopped, another series is used. It is preferable to perform denitrification so that raw water is supplied to this series.

【0044】従って、この脱窒速度の向上、及び、前述
の非酸化性ガスの製造コストの点から、本発明の生物的
処理装置では、生物処理槽を2系列以上設置するのが有
利である。
Therefore, in view of the improvement of the denitrification rate and the production cost of the above-mentioned non-oxidizing gas, it is advantageous to install two or more biological treatment tanks in the biological treatment apparatus of the present invention. .

【0045】また、従来の間欠曝気においては、処理水
にアンモニア態窒素が残留するが、脱窒工程への原水供
給量を抑制するか、全く供給しないことによって、処理
水へのアンモニア態窒素の流出を抑制することもでき
る。
Further, in the conventional intermittent aeration, although ammonia nitrogen remains in the treated water, by suppressing the raw water supply amount to the denitrification process or not supplying it at all, the ammonia nitrogen of the treated water is not supplied. The outflow can also be suppressed.

【0046】図示の実施例では、酸素富化空気及び脱酸
素空気の製造装置としてガス分離膜装置を用いたが、そ
の他、ガス分離吸着装置を用いることもできる。この場
合には、ゼオライト等の分子篩作用を有する充填剤を充
填したカラムに、空気を加圧供給して窒素を捕捉し、ま
ず、酸素富化空気を得る。次に減圧下に空気又は酸素富
化空気を供給して、窒素富化空気を得ることができる。
ガス分離吸着装置では、通常の場合、複数のカラムを用
い、いずれかのカラムから酸素富化空気を得、別のカラ
ムから脱酸素空気を得るようにする。
In the illustrated embodiment, a gas separation membrane device was used as a device for producing oxygen-enriched air and deoxygenated air, but it is also possible to use a gas separation / adsorption device. In this case, air is supplied under pressure to a column filled with a filler having a molecular sieving action such as zeolite to capture nitrogen, and oxygen-enriched air is first obtained. Air or oxygen-enriched air can then be fed under reduced pressure to obtain nitrogen-enriched air.
In a gas separation / adsorption device, usually, a plurality of columns are used, and oxygen enriched air is obtained from any column and deoxygenated air is obtained from another column.

【0047】また、散気管4は膜モジュール3の膜面に
循環流を引き起こすために、膜モジュール3の下方に設
けられているが、任意の位置に設けることができる。ま
た、膜面に循環流を引き起こす程度の曝気量では、生物
処理に必要な酸素を十分に供給できない場合、或いは、
汚泥の沈降を防止する攪拌流が得られない場合には、膜
モジュール3に影響しない位置(例えば、図示の生物処
理槽1において、バッフル板5の原水導入側の領域)
に、別途補助の散気管を設け、酸素含有ガス又は非酸化
性ガスの曝気を複数箇所で行うようにしても良い。ま
た、生物処理槽に攪拌機を設けて攪拌しても良い。
The diffusing tube 4 is provided below the membrane module 3 in order to cause a circulating flow on the membrane surface of the membrane module 3, but it can be provided at any position. In addition, if the amount of aeration that causes a circulating flow on the membrane surface is insufficient to supply oxygen necessary for biological treatment, or
If a stirring flow that prevents sludge settling cannot be obtained, a position that does not affect the membrane module 3 (for example, in the biological treatment tank 1 shown in the drawing, an area on the raw water introduction side of the baffle plate 5)
In addition, an auxiliary air diffuser may be separately provided to aerate the oxygen-containing gas or the non-oxidizing gas at a plurality of locations. Further, the biological treatment tank may be provided with a stirrer for stirring.

【0048】以下に具体的な実施例を挙げて、本発明を
より詳細に説明する。
The present invention will be described in more detail with reference to specific examples.

【0049】実施例1 図1に示す生物的処理装置により、MLSS濃度100
00mg/L、BOD槽負荷0.9kg−O/m3 /d
ay、窒素槽負荷0.15kg−N/m3 /day、汚
泥滞留時間(SRT)30日の条件で、人工廃水を処理
した。浸漬型膜モジュールとしては、中空糸膜モジュー
ルを用いた。
Example 1 The biological treatment apparatus shown in FIG. 1 was used to obtain an MLSS concentration of 100.
00 mg / L, BOD tank load 0.9 kg-O / m 3 / d
The artificial wastewater was treated under the conditions of ay, nitrogen tank load of 0.15 kg-N / m 3 / day, and sludge retention time (SRT) of 30 days. A hollow fiber membrane module was used as the immersion type membrane module.

【0050】嫌気・好気の1サイクルを7分(嫌気3.
5分、好気3.5分)又は15分(嫌気7.5分、好気
7.5分)とし、嫌気工程(脱窒工程)では酸素濃度2
%以下の脱酸素空気を、また、好気工程(硝化工程)で
は酸素濃度約30%の酸素富化空気を、それぞれ膜分離
部水平断面積1m2 当り40Nm3 /hrで曝気し、透
過水を連続採水した。
One cycle of anaerobic / aerobic is 7 minutes (anaerobic 3.
5 minutes, aerobic 3.5 minutes) or 15 minutes (anaerobic 7.5 minutes, aerobic 7.5 minutes), oxygen concentration 2 in the anaerobic process (denitrification process)
% Deoxidized air, and in the aerobic process (nitrification process), oxygen-enriched air with an oxygen concentration of about 30% was aerated at 40 Nm 3 / hr per 1 m 2 of horizontal cross-sectional area of the membrane separation unit, and the permeated water was aerated. Was continuously sampled.

【0051】その結果、膜モジュールの透過水量は、1
サイクル7分の場合も15分の場合も、0.4m3 /m
2 /dayが得られた。
As a result, the permeated water amount of the membrane module is 1
0.4 m 3 / m for both 7 and 15 minute cycles
2 / day was obtained.

【0052】比較例1 好気工程(硝化工程)において空気を曝気し、嫌気工程
(脱窒工程)においては曝気及び膜透過側の吸引を行わ
なかったこと以外は、実施例1と同様にして処理したと
ころ、膜モジュールの平均透過水量は、1サイクル7分
の場合も15分の場合も0.15m3 /m2 /dayで
あった。
Comparative Example 1 In the same manner as in Example 1 except that air was aerated in the aerobic process (nitrification process) and aeration and suction on the membrane permeation side were not performed in the anaerobic process (denitrification process). When treated, the average amount of permeated water of the membrane module was 0.15 m 3 / m 2 / day in both cases of 7 minutes and 15 minutes in one cycle.

【0053】比較例2 好気工程(硝化工程)において空気を曝気し、嫌気工程
(脱窒工程)においては曝気を行わなかったこと以外は
実施例1と同様にして処理したところ、膜の閉塞のため
に、膜モジュールの透過水量は1週間以内に0.15m
3 /m2 /dayに低下した。
Comparative Example 2 When the treatment was performed in the same manner as in Example 1 except that air was aerated in the aerobic process (nitrification process) and no aeration was performed in the anaerobic process (denitrification process), the membrane was clogged. Because of this, the permeated water volume of the membrane module is 0.15m within 1 week.
It fell to 3 / m 2 / day.

【0054】なお、実施例1及び比較例1において、液
中の溶存酸素量を調べたところ、嫌気から好気への切り
換え時の溶存酸素量は、好気工程で空気を曝気した比較
例1では溶存酸素濃度1.0mg/L以上の溶存酸素量
となるのに約3分を要したのに対し、酸素濃度約30%
の酸素富化空気を曝気した実施例1では、約2分で溶存
酸素濃度1.0mg/L以上に上昇した。また、好気か
ら嫌気への切り換え時の溶存酸素量は、嫌気工程で曝気
を停止した比較例1では溶存酸素濃度0.1mg/L以
下となるのに約4分を要したのに対し、酸素濃度2%以
下の脱酸素空気を曝気した実施例1では2分以内に溶存
酸素濃度0.1mg/L以下となった。
When the dissolved oxygen amount in the liquid was examined in Example 1 and Comparative Example 1, the dissolved oxygen amount at the time of switching from anaerobic to aerobic was found to be Comparative Example 1 in which air was aerated in the aerobic process. In contrast, it took about 3 minutes to reach a dissolved oxygen concentration of 1.0 mg / L or more, whereas the oxygen concentration was about 30%.
In Example 1 in which the oxygen-enriched air was aerated, the dissolved oxygen concentration increased to 1.0 mg / L or more in about 2 minutes. Further, in Comparative Example 1 in which aeration was stopped in the anaerobic process, the dissolved oxygen amount at the time of switching from aerobic to anaerobic took about 4 minutes to reach a dissolved oxygen concentration of 0.1 mg / L or less. In Example 1 in which deoxygenated air having an oxygen concentration of 2% or less was aerated, the dissolved oxygen concentration became 0.1 mg / L or less within 2 minutes.

【0055】このため、比較例1において、1サイクル
7分とした場合には、溶存酸素濃度1.0mg/L以上
の硝化工程時間と溶存酸素濃度0.1mg/L以下の脱
窒工程時間が殆どなくなり、窒素除去率が極端に悪化し
た。
Therefore, in Comparative Example 1, when one cycle is set to 7 minutes, the nitrification process time for a dissolved oxygen concentration of 1.0 mg / L or more and the denitrification process time for a dissolved oxygen concentration of 0.1 mg / L or less. It almost disappeared and the nitrogen removal rate deteriorated extremely.

【0056】この窒素除去率の悪化は、主に、硝化速度
が低下したためであり、残留した窒素分の殆どがアンモ
ニア態窒素であった。そこで、好気工程の時間の比率を
増やし、硝化が完全に進行するようにしたところ、硝酸
態窒素が残留するようになり、窒素除去率は回復しなか
った。
This deterioration of the nitrogen removal rate was mainly due to a decrease in the nitrification rate, and most of the remaining nitrogen content was ammonia nitrogen. Therefore, when the time ratio of the aerobic process was increased so that nitrification proceeded completely, nitrate nitrogen remained and the nitrogen removal rate did not recover.

【0057】これに対して、実施例1の場合には、1サ
イクル7分でも良好な処理が実現でき、窒素除去率とし
て99%以上を達成することができた。
On the other hand, in the case of Example 1, good treatment could be realized even in one cycle of 7 minutes, and a nitrogen removal rate of 99% or more could be achieved.

【0058】なお、生物的リン除去を行う場合には、上
記実施例1において、1サイクルを15分とし、原水の
流入を嫌気工程時のみとしたものが最も良好であり、リ
ン酸態リンを0.2mg/L以下に低減することができ
た。
When biological phosphorus is removed, it is the best in Example 1 that one cycle is set to 15 minutes and the raw water is introduced only during the anaerobic step. It could be reduced to 0.2 mg / L or less.

【0059】[0059]

【発明の効果】以上詳述した通り、本発明の生物的処理
装置によれば、生物処理槽内に浸漬型膜モジュールを設
けて硝化・脱窒処理と固液分離処理とを単一槽で行う生
物的処理装置において、硝化工程のみならず、脱窒工程
においても曝気を行うことにより、生物処理槽内に浸漬
した膜モジュールの膜に、常時、膜の閉塞防止に有効な
循環流を付与することができる。このため、膜透過水量
の低下が防止され、同一処理水量に必要な膜面積を増加
させることなく、処理水を安定かつ効率的に、連続採取
で得ることができる。
As described in detail above, according to the biological treatment apparatus of the present invention, the immersion type membrane module is provided in the biological treatment tank to perform nitrification / denitrification treatment and solid-liquid separation treatment in a single tank. In the biological treatment equipment to be used, aeration is performed not only in the nitrification process but also in the denitrification process, so that the membrane of the membrane module immersed in the biological treatment tank is always provided with a circulation flow effective for preventing clogging of the membrane. can do. Therefore, a decrease in the amount of permeated water is prevented, and the treated water can be stably and efficiently obtained by continuous sampling without increasing the membrane area required for the same amount of treated water.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の生物的処理装置の一実施例を示す系統
図である。
FIG. 1 is a system diagram showing an embodiment of a biological treatment apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 生物処理槽 3 浸漬型膜モジュール 4 散気管 7 処理水槽 9 ガス分離膜装置 1 Biological treatment tank 3 Immersion type membrane module 4 Air diffuser 7 Treated water tank 9 Gas separation membrane device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 硝化工程と脱窒工程とを交互に行う生物
処理槽と、 該生物処理槽内に設置された浸漬型膜モジュールと、 該生物処理槽内に設置された散気管と、 硝化工程において酸素含有ガスを該散気管に供給し、脱
窒工程において非酸化性ガスを該散気管に供給する送気
手段と、を有し、硝化工程及び脱窒工程を通して膜分離
装置の膜透過側から生物処理水を排出するようにした生
物的処理装置。
1. A biological treatment tank in which a nitrification step and a denitrification step are alternately performed, a submerged membrane module installed in the biological treatment tank, an air diffusing tube installed in the biological treatment tank, and nitrification A gas supply means for supplying an oxygen-containing gas to the diffuser pipe in the process, and a non-oxidizing gas in the denitrification process for supplying the non-oxidizing gas to the diffuser pipe. A biological treatment device that discharges biologically treated water from the side.
JP7108576A 1995-05-02 1995-05-02 Biological treating device Pending JPH08299984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7108576A JPH08299984A (en) 1995-05-02 1995-05-02 Biological treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7108576A JPH08299984A (en) 1995-05-02 1995-05-02 Biological treating device

Publications (1)

Publication Number Publication Date
JPH08299984A true JPH08299984A (en) 1996-11-19

Family

ID=14488324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7108576A Pending JPH08299984A (en) 1995-05-02 1995-05-02 Biological treating device

Country Status (1)

Country Link
JP (1) JPH08299984A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09141066A (en) * 1995-11-21 1997-06-03 Kubota Corp Dipping type membrane separator
JP2006035154A (en) * 2004-07-29 2006-02-09 Matsushita Electric Ind Co Ltd Method and apparatus for treating nitric acid waste liquid
JP2007160158A (en) * 2005-12-12 2007-06-28 Hikita Kogyo Kk Water treatment apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09141066A (en) * 1995-11-21 1997-06-03 Kubota Corp Dipping type membrane separator
JP2006035154A (en) * 2004-07-29 2006-02-09 Matsushita Electric Ind Co Ltd Method and apparatus for treating nitric acid waste liquid
JP4556532B2 (en) * 2004-07-29 2010-10-06 パナソニック株式会社 Method and apparatus for treating nitric acid waste liquid
JP2007160158A (en) * 2005-12-12 2007-06-28 Hikita Kogyo Kk Water treatment apparatus

Similar Documents

Publication Publication Date Title
AU599324B2 (en) Method of treating waste water and equipment therefor
US6743362B1 (en) Sewage treatment process
US20020117444A1 (en) Process and apparatus for the treatment of waste water
JPH11277091A (en) Apparatus and method for treating sewage/waste water by biological reaction
JP2001314890A (en) Wastewater treatment method
JPH11309480A (en) Operating method of immersion type membrane separation device
US20070017867A1 (en) Submerged attached growth bioreactor
JPH08299984A (en) Biological treating device
JP3836038B2 (en) Sludge treatment method and treatment equipment
JPH1034185A (en) Drainage treatment method
EP1260486A1 (en) Method for treating organic wastewater
JP3478241B2 (en) Biological treatment equipment
JPH0683835B2 (en) Membrane bioreactor treatment method
GB2057415A (en) A pressurized aerating system for treating waste materials active sludge
JP3763444B2 (en) Organic wastewater treatment method
JPH09117794A (en) Biological denitrification device
JPH07214056A (en) Device for treating waste water
JP2002192182A (en) Ultrahigh concentration membrane separation activated sludge method
JP3535198B2 (en) Wastewater treatment equipment
JPH1177044A (en) Wastewater treatment apparatus
JP3087914B2 (en) Aeration treatment equipment
JPH05185092A (en) Waste water disposing device
JP2673488B2 (en) Method and apparatus for treating organic wastewater
JPH0568998A (en) Treatment of waste water
CN214991018U (en) Sewage total nitrogen removal device