JPH0829979B2 - Method for manufacturing Bi-based superconductor - Google Patents

Method for manufacturing Bi-based superconductor

Info

Publication number
JPH0829979B2
JPH0829979B2 JP1253530A JP25353089A JPH0829979B2 JP H0829979 B2 JPH0829979 B2 JP H0829979B2 JP 1253530 A JP1253530 A JP 1253530A JP 25353089 A JP25353089 A JP 25353089A JP H0829979 B2 JPH0829979 B2 JP H0829979B2
Authority
JP
Japan
Prior art keywords
firing
frit
superconductor
based superconductor
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1253530A
Other languages
Japanese (ja)
Other versions
JPH03115159A (en
Inventor
均 酒井
学 吉田
小田  敏夫
均 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP1253530A priority Critical patent/JPH0829979B2/en
Priority to EP90303255A priority patent/EP0390499B2/en
Priority to DE69024244T priority patent/DE69024244T4/en
Priority to DE69024244A priority patent/DE69024244D1/en
Priority to US07/501,723 priority patent/US5089468A/en
Priority to CA002013362A priority patent/CA2013362C/en
Publication of JPH03115159A publication Critical patent/JPH03115159A/en
Publication of JPH0829979B2 publication Critical patent/JPH0829979B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、Bi系超電導体の製造方法に関する。更に詳
しくは、高超電導特性を有する均質なBi系超電導体の製
造方法に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing a Bi-based superconductor. More specifically, it relates to a method for producing a homogeneous Bi-based superconductor having high superconducting properties.

〔従来の技術〕[Conventional technology]

超電導体の利用技術が種々検討されている状況にあっ
て、各種酸化物超電導体が開発されているが、Bi系超電
導体は超電導特性の発現温度が比較的高いことから注目
されている。
While various oxide superconductors have been developed under the circumstances where various utilization techniques of superconductors are being studied, Bi-based superconductors are attracting attention because of their relatively high superconducting property development temperatures.

このBi系超電導体を製造する場合、Bi系超電導体の原
料粉末を混合、成形して焼成する場合に、融点温度以下
で1ヵ月近い長期間焼成することにより収縮の殆ど起こ
らない超電導焼結体が得られるが、その臨界電流密度
(以下、単にJcとする。)は高くならず、超電導体とし
ては十分でなかった。Bi系超電導体で高いJcを得るため
には、焼成時に部分溶融状態を経由させ、結晶化させる
必要があることが知られていた。
In the case of producing this Bi-based superconductor, when the raw material powder of the Bi-based superconductor is mixed, shaped, and fired, the superconducting sintered body causes almost no shrinkage by firing for 1 month or less at the melting point temperature or less. However, the critical current density (hereinafter, simply referred to as Jc) was not high and was not sufficient as a superconductor. It has been known that in order to obtain high Jc in a Bi-based superconductor, it is necessary to go through a partially molten state during firing and crystallize.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかし、部分溶融させる場合、いくつかの問題が指摘
された。即ち、第1に部分溶融時間の得られるBi系超電
導体に及ぼす影響が大きいため、最適なJcを得るための
操作条件の制御が困難であった。例えば長時間過ぎると
溶融状態で固相・液相が分離して溶融後の結晶化におい
て異相が析出するし、一方、短時間であると溶融状態で
十分均質とならず不均質な焼結体となること、第2に焼
成時に発生するガスが、部分溶融状態で高粘性の溶融体
中に封じ込められ、得られる焼結体のBi系超電導体の内
部や表面にバブルが残留し不均質となること等であっ
た。
However, some problems were pointed out in the case of partial melting. That is, firstly, it is difficult to control the operating conditions for obtaining the optimum Jc because the partial melting time has a great influence on the obtained Bi-based superconductor. For example, if the time is too long, the solid and liquid phases will separate in the molten state, and the heterogeneous phase will precipitate during crystallization after melting, while if the time is short, the sintered body will not be sufficiently homogeneous in the molten state. Secondly, the gas generated during firing is confined in a highly viscous melt in a partially molten state, and bubbles remain inside and on the surface of the Bi-based superconductor of the obtained sintered body, resulting in heterogeneity. It was.

本発明は、上記従来の部分溶融の問題を解消し、均質
でバブルの混在しない緻密な焼結体であって、且つ高い
Jcを有するBi系超電導体を製造する方法を提供すること
を目的になされた。
The present invention solves the above-mentioned conventional problem of partial melting, is a dense and dense sintered body in which no bubbles are mixed, and is high.
The object is to provide a method for manufacturing a Bi-based superconductor having Jc.

〔課題を解決するための手段〕[Means for solving the problem]

本発明によれば、原料粉末を混合、成形、焼成・結晶
化してBi系超電導体を製造する方法において、原料粉末
にBi系フリット粉末を用いて成形すると共に、成形体を
銀基板上、酸素存在下、880〜920℃で部分溶融させ、焼
成・結晶化してBi系超電導体を得ることを特徴とするBi
系超電導体の製造方法が提供される。
According to the present invention, in a method for producing a Bi-based superconductor by mixing, shaping, firing and crystallizing raw material powders, a Bi-based frit powder is used as a raw material powder, and a compact is formed on a silver substrate with oxygen. In the presence of Bi, a Bi-based superconductor is obtained by partially melting at 880 to 920 ℃, firing and crystallization.
Provided is a method for manufacturing a superconductor.

以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明においては原料粉末として、Bi系フリットの粉
末を用いる。本発明において、Bi系フリット粉末とは、
焼成してBi-Sr-Ca-Cu-O系超電導体を構成するように配
合された原料を高温で溶融し、急冷してガラス化した溶
融急冷物を粉砕して粉末化したものである。この場合の
Bi-Sr-Ca-Cu-O系超電導体は、公知のBi2Sr2CaCu2Ox、Bi
2Sr2Ca2Cu3OxあるいはこれらにPb等が含有された組成及
び他元素を添加した組成または定比組成からずれた組成
等いずれの組成のものでもよい。
In the present invention, Bi-based frit powder is used as the raw material powder. In the present invention, the Bi-based frit powder is
The raw material blended so as to form a Bi-Sr-Ca-Cu-O-based superconductor by firing is melted at a high temperature, rapidly cooled and vitrified. In this case
Bi-Sr-Ca-Cu-O-based superconductors are known Bi 2 Sr 2 CaCu 2 O x , Bi
Any composition such as 2 Sr 2 Ca 2 Cu 3 O x or a composition containing Pb or the like therein, a composition containing other elements, or a composition deviating from the stoichiometric composition may be used.

Bi系フリットの粉末を得るため、焼成してBi-Sr-Ca-C
u-O系超電導体を構成するように配合された原料は、110
0〜1300℃で溶融するのが好ましい。溶融温度が1100℃
未満では溶融が不完全で均質な溶融体が得られず、また
1300℃を超えると原料組成物の蒸発が顕著となり得られ
るBi系フリットの組成が変化し、最終的に超電導体特性
が発現されない場合や、溶融用ルツボ材と反応を起こす
おそれがある。例えば、Bi2O3,SrCO3,CaCO3,CuOから
なる混合粉末を、約1100℃以上1300℃未満の高温で溶融
し、その後急冷し、溶融急冷物を粉砕してBi系フリット
を得ることができる。
Bi-Sr-Ca-C is fired to obtain Bi-based frit powder
The raw materials blended to form the uO-based superconductor are 110
It is preferable to melt at 0 to 1300 ° C. Melting temperature is 1100 ℃
If it is less than, the melting is incomplete and a homogeneous melt cannot be obtained.
If the temperature exceeds 1300 ° C, the evaporation of the raw material composition becomes remarkable, and the composition of the resulting Bi-based frit changes, so that the superconducting properties may not be finally exhibited, or a reaction with the melting crucible material may occur. For example, a mixed powder consisting of Bi 2 O 3 , SrCO 3 , CaCO 3 , and CuO is melted at a high temperature of approximately 1100 ° C or higher and lower than 1300 ° C, then rapidly cooled, and the melt-quenched material is crushed to obtain a Bi-based frit. You can

本発明で用いるフリットの粒径は、小さければ小さい
程、得られる焼結体が緻密となるため好ましいが、成形
の便宜上は、一定の大きさの粒径を有する方が好まし
く、通常粒径1〜20μm範囲のフリットが用いられる。
The smaller the particle size of the frit used in the present invention, the denser the obtained sintered body is, but it is preferable that the particle size of the frit is constant for the convenience of molding. A frit in the range of ~ 20 μm is used.

本発明においては、上記したようなBi系フリットを用
い、例えば、乾式プレス法、ドクターブレード法、スラ
リー塗布法等公知の通常の方法で成形して成形体とした
後、焼成する。
In the present invention, the Bi type frit as described above is used to form a molded body by a known ordinary method such as a dry pressing method, a doctor blade method, and a slurry coating method, and then fired.

本発明の焼成は、Bi系フリットを用いて上記のように
成形した成形体を銀基板上に載置して行うものである。
本発明において、銀基板とは銀の単体で構成された基板
でもよいし、また、ステンレス等の金属やセラミックス
等の厚板上に約1μm〜1mmの銀薄膜を密着させたもの
でもよく、銀単体成分上に成形体が載置できればよい。
銀薄膜を用いる場合、その厚さが1μm未満では下地厚
板とBi系超電導体が反応するおそれがあり、また、1mm
以上でも不都合は生じないが、実用上はコスト的に約1m
m程度が好ましい。
The firing of the present invention is performed by placing the molded body molded as described above using a Bi-based frit on a silver substrate.
In the present invention, the silver substrate may be a substrate composed of a simple substance of silver, or may be a substrate in which a silver thin film of about 1 μm to 1 mm is adhered on a thick plate of metal such as stainless steel or ceramics. It is sufficient that the molded body can be placed on the single component.
When using a silver thin film, if the thickness is less than 1 μm, the base slab may react with the Bi-based superconductor.
The above does not cause any inconvenience, but practically it costs about 1 m
About m is preferable.

また、銀基板上に直接スプレー塗布等により成形体を
得る場合には、乾燥後、そのまま焼成することができ
る。
Further, when a molded product is obtained by spray coating or the like directly on a silver substrate, it can be baked as it is after being dried.

更に、銀基板上に載置された成形体の焼成は酸素の存
在下、即ち酸素ガスまたは酸素含有ガス雰囲気中で、Bi
系フリットの部分溶融と結晶化を起こさせるように行
う。焼成温度は、酸素ガス雰囲気中では880〜920℃で行
う。880℃より低い場合は溶融が殆ど生じないため緻密
化せず、一方、920℃を超える場合には溶融液中の液相
と固相が分離し異相が析出するため好ましくない。また
焼成は二段階に行ってもよい。二段階焼成をする場合
は、第1段階の焼成を温度880〜920℃で1分〜3時間、
好ましくは5分〜3時間行い、第2段階の焼成を温度80
0〜880℃で3時間以上行い、第1段階においてBi系フリ
ットを部分溶融させ、第2段階で部分溶融したBi系フリ
ットを結晶化させるようにするのが好ましい。焼成時の
酸素分圧が低いときには、焼成温度は低温側へ移行し、
例えば、大気中での焼成では、酸素ガス雰囲気中での上
記焼成温度が10〜20℃低下した範囲となる。
Further, the firing of the molded body placed on the silver substrate is performed in the presence of oxygen, that is, in an atmosphere of oxygen gas or oxygen-containing gas, in a Bi
It is carried out so as to cause partial melting and crystallization of the system frit. The firing temperature is 880 to 920 ° C. in an oxygen gas atmosphere. If the temperature is lower than 880 ° C, melting hardly occurs and thus the densification does not occur. On the other hand, if the temperature is higher than 920 ° C, the liquid phase and the solid phase in the melt are separated and a hetero phase is precipitated, which is not preferable. The firing may be performed in two steps. When performing the two-stage firing, the first-stage firing is performed at a temperature of 880 to 920 ° C. for 1 minute to 3 hours,
It is preferably carried out for 5 minutes to 3 hours, and the second stage firing is carried out at a temperature of 80.
It is preferable to carry out at 0 to 880 ° C. for 3 hours or more, to partially melt the Bi-based frit in the first step and to crystallize the partially melted Bi-based frit in the second step. When the oxygen partial pressure during firing is low, the firing temperature shifts to the low temperature side,
For example, in the case of firing in the air, the firing temperature in the oxygen gas atmosphere is in the range of 10 to 20 ° C. lower.

〔作用〕[Action]

本発明は、上記のように構成することにより、高臨界
電流密度、例えば400A/cm2以上の臨界電流密度を有し均
質で緻密なBi系超電導体を比較的短時間で得ることがで
きる。即ち、Bi系フリットは溶融急冷ガラスであること
から、原料粉末が緻密な粒子であると共に、通常超電導
体の原料粉末として用いられる仮焼原料において残留し
ている未反応のSrCO3やCaCO3が、本発明の原料粉末のBi
系フリットには極めて少ない。そのため、焼成時の部分
溶融工程における分解溶融速度が一定に保持され、溶融
状態を制御するのが容易となり均質で溶融むらのない溶
融体とすることができ、高臨界電流密度のBi系超電導体
を得ることができる。
According to the present invention, with the above-mentioned configuration, it is possible to obtain a homogeneous and dense Bi-based superconductor having a high critical current density, for example, a critical current density of 400 A / cm 2 or more, in a relatively short time. That is, since the Bi-based frit is a melt-quenched glass, the raw material powder is dense particles, and unreacted SrCO 3 and CaCO 3 remaining in the calcination raw material that is usually used as the raw material powder of the superconductor are , Bi of the raw material powder of the present invention
Very few frit system. Therefore, the decomposition and melting rate in the partial melting step during firing is kept constant, the molten state can be easily controlled, and a homogeneous and evenly melted melt can be obtained, and a Bi-based superconductor with a high critical current density can be obtained. Can be obtained.

銀基板上においてBi系フリット成形体を焼成すること
によっても、均質で緻密なBi系超電導体を得ることがで
きる。この理由は明らかでないが、基板を構成する銀の
一部が成形体溶融物中に溶融混入して、溶融温度を低下
させより均質な溶融体とすると共に、溶融混入した銀成
分は焼結助剤的に作用し、Bi系フリット中に一部残留し
ている未反応のSrCO3やCaCO3の反応を促進し、溶融体の
粘性を改善して均質化を促進するものと考えられる。ま
た、焼成時に混入した銀成分は、凝固の際はBi系組成物
とは反応せずにBi系組成物の粒界(主として3重点)に
分散析出するため、Bi系超電導体の臨界電流密度を低下
させることもない。
A homogeneous and dense Bi-based superconductor can also be obtained by firing the Bi-based frit compact on the silver substrate. Although the reason for this is not clear, part of the silver that constitutes the substrate is melted and mixed into the melt of the molded body, lowering the melting temperature to make a more homogeneous melt, and the silver component melted and mixed does not contribute to sintering. It is considered that it acts as an agent and promotes the reaction of unreacted SrCO 3 and CaCO 3 partially remaining in the Bi-based frit to improve the viscosity of the melt and promote homogenization. Also, the silver component mixed during firing does not react with the Bi-based composition during solidification and is dispersed and precipitated at the grain boundaries (mainly at the triple points) of the Bi-based composition, so the critical current density of the Bi-based superconductor Does not lower the

上記したように、本発明は原料粉末にBi系フリットを
用い、更に焼成時に銀基板を用いることによりそれぞれ
がBi系超電導体の均質化を促進すると共に、双方を併用
することにより相乗的効果も得られるものである。
As described above, the present invention uses the Bi-based frit as the raw material powder, and further promotes the homogenization of the Bi-based superconductor by using the silver substrate at the time of firing, and also has a synergistic effect by using both in combination. Is what you get.

〔実施例〕〔Example〕

以下に、本発明の実施例について詳しく説明する。但
し、本発明は、本実施例に限定されるものでない。
Examples of the present invention will be described in detail below. However, the present invention is not limited to this embodiment.

実施例1〜10 [Bi系フリットの製造] Bi2O3,SrCO3,CaCO3及びCuO粉末をモル比でBi:Sr:C
a:Cuが2.0:2.0:1.0:2.0となるように調合して、乾式混
合器により2時間混合した。得られた調合粉末200gを白
金るつぼに入れ、1200℃の電気炉で30分溶融した。その
後溶融体を水冷したステンレスローラ上に滴下し、回転
ローラ中を通過させ圧縮急冷した。
Bi in Examples 1 to 10 [Bi-based production of frits] Bi 2 O 3, SrCO 3 , CaCO 3 and CuO powders molar ratio: Sr: C
The mixture was prepared so that a: Cu was 2.0: 2.0: 1.0: 2.0 and mixed by a dry mixer for 2 hours. 200 g of the obtained mixed powder was put into a platinum crucible and melted in an electric furnace at 1200 ° C. for 30 minutes. Then, the melt was dropped on a water-cooled stainless roller, passed through a rotating roller, and compression-cooled.

得られた粒状の圧縮急冷物は、X線回折により回折ピ
ークが認められず、一方、半値幅の大きいハローが観測
されガラス化されていることが確認された。また、分析
の結果、Bi:Sr:Ca:Cuが2:2:1:2の組成を有し、溶融時に
組成ずれが起きていないことも確認された。
No diffraction peak was observed by X-ray diffraction in the obtained granular quenched product, while it was confirmed that a halo having a wide half-value width was observed and vitrified. Further, as a result of the analysis, it was also confirmed that Bi: Sr: Ca: Cu had a composition of 2: 2: 1: 2 and no composition deviation occurred during melting.

次いで、粒状の圧縮急冷物をイソプロピルアルコール
溶媒中でZrO2玉石と共に混合し、回転ミルで15時間粉砕
してフリットとした。得られたフリットの平均粒径は7
μmであった。
The granular compressed quench was then mixed with ZrO 2 boulders in an isopropyl alcohol solvent and ground on a rotary mill for 15 hours to give a frit. The average particle size of the resulting frit is 7
μm.

[成形] 上記で得られたBi系フリットを原料に用い、プレス法
により40×8×1mmの平板状に成形した。得られた平板
状成形体(イ)を、50×10×0.5mmの銀単体製基板上に
載置した。
[Molding] Using the Bi-based frit obtained above as a raw material, it was molded into a flat plate of 40 × 8 × 1 mm by a pressing method. The obtained flat plate-shaped molded product (a) was placed on a silver-only substrate having a size of 50 × 10 × 0.5 mm.

また、Bi系フリットをイソプロピルアルコール溶媒中
に分散して、粘度を調整した後スプレーガンにより50×
10×0.5mmの銀単体製基板上に0.5mmの厚さにスプレー塗
布して、その後乾燥して銀単体製基板上に成形体(ロ)
を形成した。
Also, Bi-based frit is dispersed in isopropyl alcohol solvent, the viscosity is adjusted, and then 50 × with a spray gun.
Spray-applied to a thickness of 0.5 mm on a 10 x 0.5 mm silver substrate, and then dry it to form a molded body on a silver substrate (b).
Was formed.

[焼成及び超電導特性の測定] 上記の銀製基板上の成形体(イ)及び(ロ)を酸素ガ
ス中、電気炉で焼成した。焼成は、先ず第1表に示した
880〜930℃で部分溶融し、その後850℃で15時間焼成し
て結晶化した。焼成後、炉外に取り出し放冷してBi系焼
結体の超電導体を得た。
[Baking and Measurement of Superconducting Properties] The above-mentioned molded bodies (a) and (b) on the silver substrate were baked in an oxygen gas in an electric furnace. The firing was first shown in Table 1.
It was partially melted at 880 to 930 ° C, and then fired at 850 ° C for 15 hours for crystallization. After firing, it was taken out of the furnace and allowed to cool to obtain a Bi-based sintered superconductor.

得られた焼結体の臨界電流密度(Jc)を、4端子法に
より液体窒素中で測定した。その結果を第1表に示し
た。
The critical current density (Jc) of the obtained sintered body was measured in liquid nitrogen by the 4-terminal method. The results are shown in Table 1.

また、表面状態を肉眼観察した。その結果も第1表に
示した。
In addition, the surface condition was visually observed. The results are also shown in Table 1.

なお、880℃以上の焼成し、部分溶融したBi系焼結体
の断面を電子線マイクロアナライザー(EPMA)により元
素分析した結果、銀製基板上に載置した面と反対側の表
面までの断面全体に均一に銀が分散析出していることが
認められた。
In addition, as a result of elemental analysis of the cross section of the Bi-based sintered body that was fired at 880 ° C or higher and partially melted by an electron beam microanalyzer (EPMA), the entire cross section up to the surface opposite to the surface mounted on the silver substrate It was confirmed that silver was uniformly dispersed and deposited.

比較例1〜2 実施例と同様の成形体(ロ)を用いて、第1表に示し
た焼成条件で焼成した。得られた焼結体の実施例と同様
にして測定した結果を、第1表に示した。
Comparative Examples 1 and 2 Using the same molded body (b) as in Example, firing was performed under the firing conditions shown in Table 1. Table 1 shows the measurement results of the obtained sintered body in the same manner as in the example.

比較例3〜10 実施例と同様の成形体(ロ)を、銀製基板の代わり
に、部分安定化ジルコニア(PSZ)製基板上にスプレー
塗布成形し、PSZ基板上に実質的に載置された状態で、
実施例と同様に部分溶融・結晶化で焼成した。
Comparative Examples 3 to 10 A molded body (B) similar to that of the example was spray-coated and molded on a partially stabilized zirconia (PSZ) substrate instead of the silver substrate, and was substantially placed on the PSZ substrate. In the state
Firing was performed by partial melting and crystallization as in the example.

得られた焼結体の実施例と同様にした測定結果を、第
1表に示した。
Table 1 shows the measurement results of the obtained sintered body in the same manner as in the example.

比較例11〜15 実施例のフリットの製造と同様にして得た調合粉末
を、通常通り温度800℃で20時間仮焼し、粉砕して粒径
4μmの仮焼粉末を得た。得られた仮焼粉末を、Bi系フ
リットの代わりに用いて、実施例と同様に銀単体基板上
にスプレー塗布成形して、成形体(ロ′)を得た。
Comparative Examples 11 to 15 The compounded powders obtained in the same manner as in the production of the frit of the examples were calcined as usual at a temperature of 800 ° C. for 20 hours and pulverized to obtain calcined powders having a particle size of 4 μm. The obtained calcined powder was used in place of the Bi-based frit and spray-coated and molded on a silver single substrate in the same manner as in the example to obtain a molded body (b ').

得られた成形体(ロ′)を実施例と同様に部分溶融・
結晶化の焼成を行い、焼結体について表面状態観察及び
Jcの測定を行った。その結果を第1表に示した。
The obtained molded product (b ') was partially melted in the same manner as in the example.
Performs crystallization firing and observes the surface state of the sintered body and
Jc was measured. The results are shown in Table 1.

これら実施例及び比較例の結果から明らかなように、
Bi系フリットを用いて焼成温度880〜920℃で部分溶融し
た場合は、いずれも400A/cm2以上のJcが得られ、表面も
良好であった。
As is clear from the results of these Examples and Comparative Examples,
When Bi was partially melted at a firing temperature of 880 to 920 ℃, Jc of 400 A / cm 2 or more was obtained and the surface was good.

またPSZ上の焼成(比較例3〜10)では、Bi系フリッ
トを用いても、Jcは910〜920℃の部分溶融した場合で最
高300A/cm2であり、いずれも表面にふくれが生じ不良な
焼結体しか得られなかった。
In the case of firing on PSZ (Comparative Examples 3 to 10), Jc was 300A / cm 2 at the maximum when partially melted at 910 to 920 ° C even when Bi-based frit was used, and in both cases, swelling occurred on the surface and was poor. Only a sintered body was obtained.

銀製基板上を用いた焼成でも、原料粉末に仮焼粉末を
用いた場合には(比較例11〜15)、いずれもJcは300A/c
m2以下であった。
Even when firing on a silver substrate, when a calcined powder was used as the raw material powder (Comparative Examples 11 to 15), Jc was 300 A / c in all cases.
It was less than m 2 .

〔発明の効果〕〔The invention's effect〕

本発明の方法は、比較的短時間の焼成によっても、均
質で緻密な焼結体のBi系超電導体が得られると共に、高
い臨界電流密度も得られ、超電導特性の優れたBi系超電
導体を簡便に得ることができる。
The method of the present invention, even by firing for a relatively short time, a Bi-based superconductor of a homogeneous and dense sintered body can be obtained, a high critical current density can also be obtained, and a Bi-based superconductor having excellent superconducting properties can be obtained. It can be easily obtained.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】原料粉末を混合、成形、焼成・結晶化して
Bi系超電導体を製造する方法において、原料粉末にBi系
フリット粉末を用いて成形すると共に、成形体を銀基板
上、酸素存在下、880〜920℃で部分溶融させ、焼成・結
晶化してBi系超電導体を得ることを特徴とするBi系超電
導体の製造方法。
1. A raw material powder is mixed, molded, fired and crystallized.
In the method for producing a Bi-based superconductor, a Bi-based frit powder is used as a raw material powder, and the molded body is partially melted at 880 to 920 ° C. in the presence of oxygen on a silver substrate, baked and crystallized to form Bi. A method for manufacturing a Bi-based superconductor, which comprises obtaining a B-based superconductor.
JP1253530A 1989-03-30 1989-09-28 Method for manufacturing Bi-based superconductor Expired - Lifetime JPH0829979B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1253530A JPH0829979B2 (en) 1989-09-28 1989-09-28 Method for manufacturing Bi-based superconductor
EP90303255A EP0390499B2 (en) 1989-03-30 1990-03-27 Process for producing bismuth-based superconducting material
DE69024244T DE69024244T4 (en) 1989-03-30 1990-03-27 Process for the production of bismuth-based superconducting material
DE69024244A DE69024244D1 (en) 1989-03-30 1990-03-27 Process for the production of bismuth-based superconducting material
US07/501,723 US5089468A (en) 1989-03-30 1990-03-28 Process for producing bismuth-based superconducting oxide
CA002013362A CA2013362C (en) 1989-03-30 1990-03-29 Process for producing bismuth-based superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1253530A JPH0829979B2 (en) 1989-09-28 1989-09-28 Method for manufacturing Bi-based superconductor

Publications (2)

Publication Number Publication Date
JPH03115159A JPH03115159A (en) 1991-05-16
JPH0829979B2 true JPH0829979B2 (en) 1996-03-27

Family

ID=17252650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1253530A Expired - Lifetime JPH0829979B2 (en) 1989-03-30 1989-09-28 Method for manufacturing Bi-based superconductor

Country Status (1)

Country Link
JP (1) JPH0829979B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2592692B2 (en) * 1989-11-16 1997-03-19 旭硝子株式会社 Method for producing oxide superconductor tape material
KR100315126B1 (en) * 1999-08-13 2001-11-24 김 태 영 Hydraulic crane having swing device of screw type

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472904A (en) * 1987-09-16 1989-03-17 Nat Inst Res Inorganic Mat Production of superconductive ceramic powder
JPH02252618A (en) * 1989-03-27 1990-10-11 Hitachi Ltd Production of bi-based superconducting thin film

Also Published As

Publication number Publication date
JPH03115159A (en) 1991-05-16

Similar Documents

Publication Publication Date Title
EP0390499B1 (en) Process for producing bismuth-based superconducting material
EP0303249B1 (en) Method of manufacturing oxide superconductor, and method of manufacturing composite oxide powder which is the precursor of the oxide superconductor
JP4470008B2 (en) Target material, manufacturing method thereof, and oxide superconductor thin film
JPH0829979B2 (en) Method for manufacturing Bi-based superconductor
EP0411943B1 (en) Metal oxide 247 superconducting materials
JPH0365510A (en) Manufacture of high temperature superconducting material
US5346538A (en) Molding of sintered strontium/calcium indate and the use thereof
JP3461654B2 (en) Manufacturing method of oxide superconductor
JP3115915B2 (en) Method for producing rare earth oxide superconductor
JP2540639B2 (en) Method for manufacturing bismuth-based superconductor
JP3073996B2 (en) Method for producing sintered body of Y1Ba2Cu3O7-x-based oxide superconductor and Y1Ba2Cu3O7-x-based oxide superconductor
JP2931446B2 (en) Method for producing rare earth oxide superconductor
JP2632543B2 (en) Method for producing Bi-Sr-Ca-Cu-O-based superconductor
JP2783559B2 (en) Oxide-based composite sintered body, method for producing the same, and resistor using the same
JP2915546B2 (en) Manufacturing method of oxide superconducting material
JPH03279212A (en) Production of target material for forming oxide superconducting thin film
JP2969221B2 (en) Manufacturing method of oxide superconductor
JPH02145423A (en) Production of oxide-based superconductor
JP2685951B2 (en) Method for manufacturing bismuth-based superconductor
JP3157184B2 (en) Manufacturing method of high-density oxide superconductor
JPH0360457A (en) Production of y-ba-cu-based oxide superconductor
JPH0292827A (en) Production of bi oxide superconductor
JPH11268915A (en) Raw material for oxide superconductor and production of oxide superconductor
JPH03252347A (en) Production of oxide superconductive sintered body
JPH03228825A (en) Production of high temperature superconductor material