JPH08299447A - Active bending mechanism of tubular matter - Google Patents

Active bending mechanism of tubular matter

Info

Publication number
JPH08299447A
JPH08299447A JP7110819A JP11081995A JPH08299447A JP H08299447 A JPH08299447 A JP H08299447A JP 7110819 A JP7110819 A JP 7110819A JP 11081995 A JP11081995 A JP 11081995A JP H08299447 A JPH08299447 A JP H08299447A
Authority
JP
Japan
Prior art keywords
layer
shape memory
tubular
connection
connection unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7110819A
Other languages
Japanese (ja)
Inventor
Masaki Esashi
正喜 江刺
Keisuke Yamamoto
啓介 山本
Masahisa Sugihara
正久 杉原
Konbai Hayashi
根培 林
Kazuyuki Minami
和幸 南
Masaru Uchiyama
勝 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP7110819A priority Critical patent/JPH08299447A/en
Publication of JPH08299447A publication Critical patent/JPH08299447A/en
Pending legal-status Critical Current

Links

Landscapes

  • Media Introduction/Drainage Providing Device (AREA)

Abstract

PURPOSE: To provide tubular matter easy to produce though having fine constitutional parts small in diameter and having a structure freely bendable itself according to external operation so as to be capable of pref. advancing through a winding insertion route along the winding shape thereof. CONSTITUTION: In an active bending mechanism of tubular member, at least connection units 2 (A) mounted by a predetermined number at a predetermined interval in the longitudinal direction of tubular member 1 and shape memory members 3a, 3b, 3c (B) formed so as to be raised in temp. by the supply of a current to contract or extend longitudinally and connected to the respective connection parts of the adjacent connection units at both end parts thereof to mutually connect the connection units are provided to the tubular matter 1 having flexibility and a necessary number of conductors 4 (C) connected to the connection parts of the predetermined connection units are provided along the tubular member from the end part on the operation side thereof so as to individually supply a current to the shape memory members.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、医療の分野、または、
目的対象物の外部から内部を観察または加工することを
必要とする全ての産業分野に利用可能なカテーテルに関
する。
The present invention relates to the medical field, or
The present invention relates to a catheter that can be used in all industrial fields in which it is necessary to observe or process the inside of a target object from the outside.

【0002】[0002]

【従来の技術】医療分野では、生体内に挿入し患部を低
侵襲で診断、治療するための器具としてカテーテルが用
いられている。カテーテルは、内視鏡等の観測機能や、
サンプル摂取、薬物投与等の作業機能等、様々な機能を
有しており、その先端部を生体内の患部に到達させるた
めに曲がりくねった血管内の奥深くまで挿入される場合
が多い。従って、カテーテルの先端部や胴体側面が、体
内への入口から目的の患部までの経路を傷つけることな
く、よりスムーズに挿入し得るような改良が望まれてい
た。また、このような要求は、医療分野のカテーテルに
対してだけでなく、人間の作業が困難な部位や装置の奥
深い箇所に対する観測、加工への応用においても、同様
の要求があった。
2. Description of the Related Art In the medical field, a catheter is used as an instrument for inserting into a living body and diagnosing and treating a diseased part with minimal invasiveness. The catheter has an observation function such as an endoscope,
It has various functions such as working functions such as sample intake and drug administration, and it is often inserted deep inside a tortuous blood vessel in order to reach the affected part in the living body. Therefore, there has been a demand for an improvement such that the distal end portion of the catheter or the side surface of the body can be inserted more smoothly without damaging the path from the entrance into the body to the target affected area. Further, there is a similar demand not only for catheters in the medical field but also for application to observation and processing of a portion where human work is difficult or a deep portion of the device.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、細径
で微細な構成部品を有しながら、製造が容易であって、
曲がりくねった挿入経路内を、その湾曲に好ましく沿っ
て進むことができるよう、外部での操作に従って自ら自
在に屈曲し得る構造を有する管状物を提供することであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a small-diameter and minute component, which is easy to manufacture,
It is an object of the present invention to provide a tubular object having a structure capable of freely bending according to an external operation so as to be able to proceed along a curving insertion path preferably along the curve.

【0004】[0004]

【課題を解決するための手段】本発明の能動カテーテル
は、以下の特徴を有するものである。 (1) 可撓性を有する管状物の外側に、少なくとも、下記
(A)の接続ユニットと下記(B)の形状記憶部材と下
記(C)の導線とが装着されてなることを特徴とする管
状物の能動屈曲機構。 (A)管状物の長手方向に所望の間隔をもって所望の数
だけ装着される接続ユニットであって、個々の接続ユニ
ットには、前記管状物によって貫通される貫通孔が設け
られ、前記接続ユニットの外部表面には形状記憶部材が
個々に接続される接続部、導線が接続される接続部、お
よびこれら接続部を所望の組合せに従って接続する導通
路が設けられたものである接続ユニット。 (B)通電によって温度上昇し長手方向に収縮または伸
長し得るよう形成されてなり、その両端部が隣合った接
続ユニットの各々の接続部に接続されてこれらの接続ユ
ニット同士を連結する形状記憶部材であって、隣合った
接続ユニット同士の連結には、その接続ユニット間の管
状物を任意の方向に自在に屈曲させ得るように管状物の
外周に3本以上配置されたものである形状記憶部材。 (C)形状記憶部材に個別に通電し得るように、管状物
の操作側端部から管状物に沿って必要数だけ設けられ、
所望の接続ユニットの接続部に接続された導線。 (2) 接続ユニットが、ガラス層とシリコン層とが交互に
積層された積層構造を骨子としたものである上記 (1)記
載の管状物の能動屈曲機構。 (3) 接続ユニットの骨子となる積層構造が、第1層のガ
ラス層、第2層のシリコン層、第3層のガラス層、第4
層のシリコン層が順に積層されてなる六面体であって、
貫通孔が設けられた中間層が、第3層と第4層とにわた
るものであって、導線の接続部が第1層上面に設けら
れ、形状記憶部材の接続部が、第3層の両側面および第
4層下面に設けられたものである上記 (1)または(2) 記
載の管状物の能動屈曲機構。ただし、積層構造における
積層方向の第1層側を上側、第4層側を下側とみなし、
積層構造の側面のうち管状物の長手方向に垂直な方向の
側面を「側面」という。 (4) 第2層の両側面の近傍にはこの層を積層方向に貫通
する垂直配線用孔が所定数設けられ、第1層は、これら
垂直配線用孔の上端部が開口するように形成され、第3
層の両側面に設けられる形状記憶部材の接続部がこの層
の両側面に形成された溝であって、これらの溝が、上記
垂直配線用孔の下端部がその溝内に開口するように形成
されたものである上記 (3)記載の管状物の能動屈曲機
構。 (5) 隣合った接続ユニット同士の連結における形状記憶
部材の配置本数が3本である上記 (1)または(3) 記載の
管状物の能動屈曲機構。 (6) 接続ユニットの積層構造の外部表面に設けられる導
通路が下記(イ)および/または(ロ)に記載の導通領
域からなるものである上記 (5)記載の管状物の能動屈曲
機構。 (イ)当該接続ユニットと一方の隣の接続ユニットとを
連結して当該接続ユニットに接続される3本の形状記憶
部材の接続部を、全て導通させ、所望の1つの導線の接
続部に接続する1つの導通領域。 (ロ)当該接続ユニットと他方の隣の接続ユニットとを
連結して当該接続ユニットに接続される3本の形状記憶
部材の接続部を、各々所望の3つの導線の接続部に接続
する3つの導通領域。 (7) 形状記憶部材が、形状記憶合金をコイル状に形成し
てなるものであって、温度上昇によって長手方向に収縮
し得るよう形状を記憶したものである上記 (1)記載の管
状物の能動屈曲機構。 (8) 管状物が内部にカテーテルを挿通されたもの、また
は、管状物自体がカテーテルである上記 (1)記載の管状
物の能動屈曲機構。 (9) さらに全体を覆う柔軟な被覆層が設けられてなるも
のである上記 (1)記載の管状物の能動屈曲機構。
The active catheter of the present invention has the following features. (1) At least the connection unit (A) below, the shape memory member (B) below, and the lead wire (C) below are attached to the outside of the flexible tubular object. Active bending mechanism of tubular objects. (A) A connection unit in which a desired number of tubular units are mounted in the longitudinal direction at desired intervals, and each connection unit is provided with a through hole that is penetrated by the tubular unit. A connection unit in which a connection portion to which the shape memory members are individually connected, a connection portion to which a conductive wire is connected, and a conduction path that connects these connection portions according to a desired combination are provided on the outer surface. (B) A shape memory that is formed so as to increase in temperature and contract or expand in the longitudinal direction by energization, and both ends thereof are connected to respective connecting portions of adjacent connecting units to connect these connecting units to each other. A member which is formed by arranging three or more tubular units between adjacent connecting units so that the tubular units between the connecting units can be freely bent in any direction. Memory member. (C) A necessary number are provided along the tubular object from the operation-side end of the tubular object so that the shape memory member can be individually energized.
A conductor connected to the connection of the desired connection unit. (2) The active bending mechanism for a tubular article according to (1), wherein the connecting unit has a skeleton of a laminated structure in which glass layers and silicon layers are alternately laminated. (3) The laminated structure, which is the skeleton of the connection unit, includes the first glass layer, the second silicon layer, the third glass layer, and the fourth glass layer.
A hexahedron in which layers of silicon layers are sequentially stacked,
The intermediate layer provided with the through holes extends over the third layer and the fourth layer, the connecting portion of the conductive wire is provided on the upper surface of the first layer, and the connecting portion of the shape memory member is on both sides of the third layer. The active bending mechanism of the tubular article according to (1) or (2), which is provided on the surface and the lower surface of the fourth layer. However, in the laminated structure, the first layer side in the laminating direction is regarded as the upper side and the fourth layer side is regarded as the lower side,
Of the side surfaces of the laminated structure, the side surface in the direction perpendicular to the longitudinal direction of the tubular product is referred to as "side surface". (4) A predetermined number of vertical wiring holes penetrating this layer in the stacking direction are provided in the vicinity of both side surfaces of the second layer, and the first layer is formed so that the upper end portions of these vertical wiring holes are opened. And the third
The connection portion of the shape memory member provided on both side surfaces of the layer is a groove formed on both side surfaces of this layer, and these grooves are formed so that the lower end portion of the vertical wiring hole is opened in the groove. The active bending mechanism of the tubular article according to (3) above, which is formed. (5) The active bending mechanism for a tubular article according to the above (1) or (3), wherein the number of shape memory members arranged in connection between adjacent connection units is three. (6) The active bending mechanism for a tubular article according to (5) above, wherein the conduction path provided on the outer surface of the laminated structure of the connection unit comprises the conduction region described in (a) and / or (b) below. (A) All the connection portions of the three shape memory members connected to the connection unit by connecting the connection unit and the adjacent one of the connection units are electrically connected and connected to the connection portion of one desired conductor. One conductive area to do. (B) Three connecting portions of the three shape memory members connected to the connecting unit by connecting the connecting unit and the adjacent connecting unit on the other side are connected to the connecting portions of the desired three conducting wires, respectively. Conduction area. (7) The tubular article according to (1), wherein the shape-memory member is formed by forming a shape-memory alloy into a coil shape, and has a shape memorized so that the shape-memory alloy can contract in the longitudinal direction due to temperature rise. Active bending mechanism. (8) The active bending mechanism of the tubular article according to (1), wherein the tubular article has a catheter inserted therein, or the tubular article itself is a catheter. (9) The active bending mechanism for a tubular article according to (1), further including a flexible coating layer that covers the entire surface.

【0005】[0005]

【作用】本発明による管状物の能動屈曲機構は、可撓性
を有する管状物が自ら屈曲し得るための構造として、該
管状物の屈曲を意図する区間の胴体側面に対して、その
長手方向に沿って、かつ、その外周方向に適当な間隔を
おいて3本以上の形状記憶部材を区間の両端で固定した
ものである。また、その形状記憶部材は、加熱されるこ
とによって長手方向に伸長または収縮するものである。
上記構造によって、形状記憶部材は管状物に対して筋肉
のように作用し、その伸縮によって、区間内の管状物は
弧を描いて屈曲する。従って、形状記憶部材を管状物の
外周方向に適当な間隔をおいて3本以上配置することに
よって、屈曲方向を360度自在に合成することができ
る。
The active bending mechanism of the tubular article according to the present invention has a structure for allowing the tubular article having flexibility to bend by itself, in the longitudinal direction with respect to the body side surface of the section intended to bend the tubular article. Three or more shape memory members are fixed at both ends of the section along the circumference and at appropriate intervals in the outer peripheral direction. Further, the shape memory member is one that expands or contracts in the longitudinal direction when heated.
With the above structure, the shape memory member acts on the tubular object like a muscle, and the tubular object in the section bends in an arc by its expansion and contraction. Therefore, by disposing three or more shape memory members at appropriate intervals in the outer peripheral direction of the tubular object, the bending directions can be freely combined by 360 degrees.

【0006】上記形状記憶部材の伸縮力は、接続ユニッ
トを介して管状物に伝達され、管状物を屈曲させる。接
続ユニットは、管状物の屈曲を意図する区間の両端に装
着されるものであって、これに形状記憶部材の両端部が
接続される。また、接続ユニットは、個々の形状記憶部
材に対して通電するためのターミナルとしても機能す
る。管状物の側面には、形状記憶部材の発熱のために電
力を供給する導線、または、その電力供給を制御する導
線等が、操作側の端部から管状物の長手方向に沿って敷
設され、各々所望の接続ユニットに接続されている。こ
れによって、隣合った接続ユニット間の形状記憶部材に
対して自在に通電でき、温度を上昇させることができ
る。
The expansion / contraction force of the shape memory member is transmitted to the tubular article through the connection unit to bend the tubular article. The connection units are attached to both ends of a section in which the tubular object is intended to be bent, and both ends of the shape memory member are connected thereto. The connection unit also functions as a terminal for energizing each shape memory member. On the side surface of the tubular article, a lead wire for supplying electric power for heat generation of the shape memory member, or a lead wire for controlling the power supply is laid along the longitudinal direction of the tubular article from the end on the operation side, Each is connected to a desired connection unit. As a result, the shape memory member between the adjacent connection units can be freely energized and the temperature can be raised.

【0007】また、本発明では、接続ユニットの構造が
重要である。接続ユニットの構造は、ガラス層とシリコ
ン層とが交互に積層された積層構造を基本的な骨子とす
るものであって、これに種々の溝部や貫通孔が設けられ
る。このような積層構造とすることによって、シリコン
に対する微細加工技術をそのまま形状加工に応用でき
る。従って、接続ユニットを微小で複雑な形状に加工
し、その表面へ配線パターンを形成すること等が、容易
にかつ大量に形成することが可能となる。また、一つの
部材から微細で複雑な構造体を作製することは極めて困
難であり、複数の部材にそれぞれ形状加工を施し組合せ
ることによって作製することが好ましい。そしてこのよ
うに複数の部材で一つの構造体を作製する場合、各部材
の接着は均一にかつ高強度で接着される必要があり、そ
のためには陽極接合技術が好適である。そして陽極接合
技術を使用し、かつシリコンの微細加工技術を使用する
ことから、シリコンと陽極接合することが容易なガラス
を用いてシリコンとガラスとの積層構造とすることが望
ましい。
Further, in the present invention, the structure of the connection unit is important. The structure of the connection unit is basically a laminated structure in which glass layers and silicon layers are alternately laminated, and various groove portions and through holes are provided in this structure. With such a laminated structure, the fine processing technology for silicon can be directly applied to shape processing. Therefore, it becomes possible to easily and in large quantity form the connection unit into a minute and complicated shape and form the wiring pattern on the surface thereof. Further, it is extremely difficult to fabricate a fine and complicated structure from one member, and it is preferable to fabricate a plurality of members by performing shape processing and combining them. When a single structure is made of a plurality of members in this way, it is necessary that the members be bonded uniformly and with high strength. For that purpose, the anodic bonding technique is suitable. Since the anodic bonding technique and the silicon fine processing technique are used, it is desirable to use a glass that is easy to anodic bond with silicon to form a laminated structure of silicon and glass.

【0008】[0008]

【実施例】以下、実施例を挙げて本発明をさらに詳細に
説明する。図1は、本発明の一実施例による管状物の能
動屈曲機構の一例を模式的に示す斜視図であって、全構
造の一部を示した図である。同図に示すように、可撓性
を有する管状物1の外側に、接続ユニット2が所望の間
隔をもって所望の数だけ装着されている。同図では1つ
の接続ユニットだけを図示している。この接続ユニット
と、一方の隣(同図では右隣)の接続ユニットとを、3
本の形状記憶部材3a、3b、3cが連結している。同
様にこの接続ユニットと、他方の隣(同図では左隣)の
接続ユニットとを、3本の形状記憶部材3d、3e、3
fが連結している。同図では、管状物を適当に短く切欠
いて描くことによって、背後の形状記憶部材3c、3f
を現して示している。また、複数の導線の集合4が、管
状物1の操作側端部から管状物に沿って必要本数だけ設
けられ、全ての形状記憶部材に個別に通電し得るよう
に、後述のように所望の接続ユニットで分かれ、各接続
部に接続されている。この機構によって、隣合った接続
ユニットを連結する形状記憶部材に対して全て個別に通
電でき、それによって隣合った接続ユニット間の管状物
を、任意の方向に弧状に屈曲させることができる。
EXAMPLES The present invention will be described in more detail with reference to examples. FIG. 1 is a perspective view schematically showing an example of an active bending mechanism of a tubular article according to an embodiment of the present invention, and is a view showing a part of the entire structure. As shown in the figure, a desired number of connection units 2 are mounted on the outer side of a flexible tubular object 1 at desired intervals. In the figure, only one connection unit is shown. Connect this connection unit and the connection unit next to it (on the right in the figure)
The shape memory members 3a, 3b, 3c of the book are connected. Similarly, this connection unit and the other adjacent (left adjacent in the figure) connection unit are connected to the three shape memory members 3d, 3e, 3 and 3.
f is connected. In the same figure, the shape memory members 3c and 3f on the back are drawn by drawing the tubular object by cutting it appropriately short.
Is shown. In addition, a desired number of the plurality of conducting wires 4 are provided from the operation side end of the tubular object 1 along the tubular object in a required number so that all shape memory members can be individually energized as described later. Divided by the connection unit and connected to each connection. By this mechanism, all the shape memory members that connect the adjacent connection units can be individually energized, whereby the tubular object between the adjacent connection units can be bent in an arc shape in an arbitrary direction.

【0009】管状物は、可撓性を有するものであればよ
く、単純な管であっても、カテーテルのように複数の部
品からなる管状の装置であってもよい。管状物が単純な
管である場合、能動屈曲機構として組み立てた後、内部
にカテーテルを挿通して用いてもよい。また、管状物
は、塑性変形せず適度な弾性を有するものが好ましく、
特に繰り返しの曲げに対して劣化しないものがより好ま
しい。また、必要に応じて剛性が与えられる。管状物が
単純な管である場合、このような材料としては、シリコ
ーンゴム、テフロン、ナイロン等が挙げられる。管状物
の断面形状、外部寸法、内部寸法は限定されず、大規模
な生産設備内部への適用から、細い血管内への適用に至
るまで、用途に応じて好適な値のものを選択すればよ
い。それらの用途のなかでも、医療用カテーテルのよう
に、より細く多機能であることを求められる用途の方
が、微細な加工を可能とする本発明の特徴が生かされ好
ましい。例えば、管状物自体をカテーテルとする場合、
その断面形状は一般には円形であって、外径は0.2m
m〜3.0mm程度が主である。
The tubular object may be a flexible tube, and may be a simple tube or a tubular device composed of a plurality of parts such as a catheter. When the tubular object is a simple tube, it may be assembled as an active bending mechanism and then used by inserting a catheter inside. Further, it is preferable that the tubular object has moderate elasticity without plastic deformation,
In particular, a material that does not deteriorate with repeated bending is more preferable. Moreover, rigidity is given as needed. When the tubular object is a simple tube, such materials include silicone rubber, Teflon, nylon and the like. The cross-sectional shape, external dimensions, and internal dimensions of the tubular product are not limited, and if suitable values are selected according to the application, from application inside large-scale production equipment to application inside thin blood vessels. Good. Among these applications, applications such as medical catheters, which are required to be thinner and have multiple functions, are preferable because the feature of the present invention that enables fine processing is utilized. For example, when using the tubular object itself as a catheter,
Its cross-sectional shape is generally circular with an outer diameter of 0.2 m.
Mainly about m to 3.0 mm.

【0010】接続ユニットの数は、全体としての屈曲の
形状に必要な数だけ管状物の長手方向に沿って装着され
る。例えば管状物をS字に屈曲させる場合には3個以上
が必要である。接続ユニットの構造は、図2に模式的に
示すように、ガラス層とシリコン層とが交互に積層され
た積層構造を骨子とするものである。積層構造の積層数
は限定されず、目的の形状に応じて決定すればよい。本
実施例では、第1層のガラス層2a、第2層のシリコン
層2b、第3層のガラス層2c、第4層のシリコン層2
dが順に積層されてなる計4層の積層構造の六面体を骨
子とし、これに種々の形状加工が施されている。以下説
明のため、この積層構造の六面のうち、第1層の面を
「上面」、第4層の面を「下面」、管状物の長手方向の
2面を「前後の端面」、残る管状物の長手方向に垂直な
方向の2側面を単に「側面」という。
As many connecting units as the bending shape as a whole are mounted along the longitudinal direction of the tubular article. For example, when bending a tubular object into an S shape, three or more pieces are required. As shown schematically in FIG. 2, the structure of the connection unit has a skeleton of a laminated structure in which glass layers and silicon layers are alternately laminated. The number of laminated layers of the laminated structure is not limited and may be determined according to the target shape. In this embodiment, the first glass layer 2a, the second silicon layer 2b, the third glass layer 2c, and the fourth silicon layer 2 are used.
A hexahedron having a laminated structure of a total of four layers in which d is laminated in order is used as a skeleton, and various shapes are applied thereto. For the following description, of the six faces of this laminated structure, the face of the first layer is the “top face”, the face of the fourth layer is the “bottom face”, and the two faces in the longitudinal direction of the tubular object are the “front and rear end faces”. The two side faces in the direction perpendicular to the longitudinal direction of the tubular product are simply referred to as "side faces".

【0011】ガラス層の材料としては、陽極接合に用い
得るガラスであればよく、その中でも特にNaを含有し
たものが好ましく、例えばパイレックスガラス(コーニ
ング社、商品名)、SD2(HOYA社、商品名)等が
挙げられる。シリコン層は、Siからなるが、本発明の
目的が達成される範囲内であれば不純物が含有されても
よい。また、シリコン層は、後述のように異方性エッチ
ングを用いる関係上、単結晶が通常用いられる。
As the material of the glass layer, any glass that can be used for anodic bonding may be used, and among them, those containing Na are particularly preferable. For example, Pyrex glass (Corning Co., trade name), SD2 (HOYA Co., trade name). ) And the like. The silicon layer is made of Si, but may contain impurities as long as the object of the present invention is achieved. Further, a single crystal is usually used for the silicon layer because of the use of anisotropic etching as described later.

【0012】積層構造には、この接続ユニットが管状物
に装着され得るように、管状物によって貫通される貫通
孔11が層拡張方向に設けられる。層拡張方向とは、層
が拡張する方向、即ち、積層方向に対して垂直な方向で
ある。貫通孔の形成位置や形成方法は限定されないが、
本実施例では図2のように、第3層のガラス層2cの下
面に溝11aを形成し、この溝と、第4層のシリコン層
2dの上面の一部11bとによって断面形状四角形の貫
通孔11を形成している。このような形成方法によっ
て、穿孔加工を必要とせず、端面からの切削・除去加工
と接合加工だけで孔が形成でき、微細な孔径であっても
簡単で正確な形状に加工できる。貫通孔の穴形状は、本
実施例のような四角形に限定されず、管状物に対して最
も好ましく適合するものであればよい。管状物と接続ユ
ニットとの固定方法としては、紫外線硬化樹脂、エポキ
シ樹脂等が挙げられる。
In the laminated structure, a through hole 11 which is penetrated by the tubular object is provided in the layer expanding direction so that the connecting unit can be attached to the tubular object. The layer expansion direction is a direction in which the layers expand, that is, a direction perpendicular to the stacking direction. The formation position and the formation method of the through hole are not limited,
In this embodiment, as shown in FIG. 2, a groove 11a is formed in the lower surface of the glass layer 2c of the third layer, and this groove and a part 11b of the upper surface of the silicon layer 2d of the fourth layer form a rectangular cross section. The hole 11 is formed. With such a forming method, it is possible to form a hole only by cutting / removing processing from the end face and joining processing without the need for drilling processing, and it is possible to process a simple and accurate shape even with a fine hole diameter. The hole shape of the through hole is not limited to the quadrangular shape as in this embodiment, and may be any shape that is most suitable for a tubular object. Examples of a method for fixing the tubular object and the connection unit include ultraviolet curable resin and epoxy resin.

【0013】上記積層構造の外部表面には、形状記憶部
材の端部が個々に接続される接続部が必要数設けられ
る。本実施例では、隣合った接続ユニット間には3本の
形状記憶部材が連結に用いられている。従って、1つの
接続ユニットが、前後両方に隣合った接続ユニットと連
結される場合、その接続ユニットには前後用に各3箇
所、計6箇所の形状記憶部材用の接続部が設けられる。
この接続部は、形状記憶部材の端部の接続が意図される
部分であって、特にその周囲と区別できる形状に加工さ
れる必要はないが、形状記憶部材の端部を容易に充分な
機械的強度で接続するためには、凹状や凸状に形成する
ことが好ましい。本実施例では、図2に示すように、第
3層の両側面および第4層下面に各1条、計3条の溝1
2、13、14が前後の端面にわたるよう設け、各溝の
前後端部を前後の形状記憶部材の接続部としている。
The outer surface of the laminated structure is provided with a required number of connecting portions to which the end portions of the shape memory member are individually connected. In this embodiment, three shape memory members are used for connection between the adjacent connection units. Therefore, when one connection unit is connected to adjacent connection units on both front and rear sides, the connection unit is provided with front and rear connecting portions for the shape memory member at three positions, respectively, for a total of six positions.
This connecting portion is a portion intended to be connected to the end portion of the shape memory member, and does not need to be processed into a shape that can be particularly distinguished from its surroundings, but the end portion of the shape memory member can be easily machined with a sufficient machine. In order to make a connection with a desired strength, it is preferable to form a concave shape or a convex shape. In this embodiment, as shown in FIG. 2, there are three grooves 1 on each side surface of the third layer and on the lower surface of the fourth layer.
2, 13, 14 are provided so as to extend over the front and rear end faces, and the front and rear end portions of each groove are used as connecting portions of the front and rear shape memory members.

【0014】上記溝12、13は、第3層の上面と側面
が交わる頂部を切欠いて設けられており、第1層の下面
の両側縁部が露出している。溝の長手方向に垂直な断面
の形状としては、形状記憶部材の接続に好ましいもので
あればよく、V字、U字、コの字等が挙げられる。本実
施例では、溝12、13の断面形状をコの字、第4層下
面に設けられる溝14の断面形状をV字とした。
The grooves 12 and 13 are provided by notching the top where the upper surface and the side surface of the third layer intersect, and both side edges of the lower surface of the first layer are exposed. The shape of the cross section perpendicular to the longitudinal direction of the groove may be any shape that is preferable for connecting the shape memory member, and examples thereof include V-shape, U-shape, and U-shape. In this embodiment, the cross-sectional shapes of the grooves 12 and 13 are U-shaped, and the cross-sectional shape of the groove 14 provided on the lower surface of the fourth layer is V-shaped.

【0015】形状記憶部材は、通電によって温度上昇し
長手方向に収縮または伸長し得るものであればよい。温
度上昇によって記憶された原形状に向かう変化を、収縮
とするか伸長とするかは特に限定されないが、形状記憶
処理およびその後の変形の容易性(形状記憶部材を所望
の位置に取付ける際には、予め形状記憶処理を行いその
後変形させて取付けるが、形状記憶部材もまた微細であ
るため直線性を保ったまま収縮させるといった変形は困
難であるため通常伸長の変形を行い取付けられる。つま
り温度上昇によって原形状に戻る際には収縮する)等か
ら収縮するほうが好ましい。形状記憶部材は、形状記憶
合金だけで形成し、通電によるそれ自体の発熱を利用す
る態様や、通電で発熱する物質と形状記憶合金とを組合
せ、発熱機能と機械的な伸縮機能とを分担させる態様、
例えば形状記憶合金に絶縁層を被覆しさらにNiメッキ
を行い、Ni層に発熱機能を、形状記憶合金に機械的な
伸縮機能を持たせる態様等が例示される。形状記憶合金
としては、Ti−Ni系の合金として、Ti−Ni二元
合金、Ti−Ni−Cu合金、Ti−Ni−Nb合金、
Ti−Ni−Fe合金等が挙げられ、また、銅系の合金
として、Cu−Zn−Al合金、Cu−Al−Ni合金
等が挙げられる。形状記憶部材の形状は、温度上昇によ
る形状の変化が長手方向の変化分を有するものであれば
よく、例えば、コイル状、波状等の形状が挙げられる。
本実施例では、形状記憶合金だけをコイル状に加工し、
温度上昇によって収縮するよう形状を記憶させた。
The shape memory member may be any member that is capable of contracting or expanding in the longitudinal direction due to temperature rise due to energization. Whether the change toward the original shape memorized by the temperature rise is contraction or extension is not particularly limited, but it is easy to perform the shape memory process and the subsequent deformation (when attaching the shape memory member to a desired position, The shape memory member is deformed and then mounted, but since the shape memory member is also fine, it is difficult to deform it such that it contracts while maintaining its linearity. It shrinks when returning to the original shape). The shape memory member is formed of only a shape memory alloy, and uses the heat generated by itself when energized, or combines a substance that generates heat when energized and a shape memory alloy to share the heat generating function and the mechanical stretching function. Aspect,
For example, a mode in which the shape memory alloy is covered with an insulating layer and further Ni-plated to give the Ni layer a heat generating function and the shape memory alloy a mechanical expansion / contraction function is exemplified. As the shape memory alloy, a Ti—Ni-based alloy such as a Ti—Ni binary alloy, a Ti—Ni—Cu alloy, a Ti—Ni—Nb alloy,
Examples thereof include Ti-Ni-Fe alloys, and examples of copper-based alloys include Cu-Zn-Al alloys and Cu-Al-Ni alloys. The shape memory member may have any shape as long as the change in shape due to temperature rise has a change in the longitudinal direction, and examples thereof include a coil shape and a wavy shape.
In this embodiment, only the shape memory alloy is processed into a coil shape,
The shape was memorized so that it contracted with increasing temperature.

【0016】形状記憶部材に個別に通電するための導線
は、電力線だけからなるものであっても、これに電力の
供給を先端部で制御するための信号線を加えたものであ
ってもよい。導線の材料、態様は公知のものであってよ
く、絶縁電線等が挙げられる。導線は、管状物の操作側
端部から管状物に沿って必要本数だけ設けられ、各接続
ユニットに接続される。電力を供給する導線は、隣合っ
た接続ユニットをもって一対の電極となるよう接続さ
れ、形状記憶部材の両端部へと接続される。導線の配線
としては、高電位側または低電位側のいずれかを共通線
として導線の配線本数を少なくすることが好ましい。ま
た、各接続ユニットに多重化伝送の端末としての機能を
与え、手元側から共通の回線によってこれらの電気的な
開閉を制御し、さらにその制御信号を電力線上で搬送す
ることによって、より少ない本数の導線で、全ての形状
記憶部材への通電を独立に行なうことができる。
The conductive wire for individually energizing the shape memory member may be composed of only a power line, or may be a wire to which a signal line for controlling the supply of electric power is added. . The material and mode of the conductive wire may be publicly known, and examples thereof include an insulated wire. The required number of conductors are provided along the tubular object from the operation side end of the tubular object, and are connected to each connection unit. The power supply wires are connected so as to form a pair of electrodes with adjacent connection units, and are connected to both ends of the shape memory member. As the wiring of the conducting wire, it is preferable to use either the high potential side or the low potential side as a common line to reduce the number of wirings of the conducting wire. In addition, by providing each connection unit with the function of a terminal for multiplexed transmission, controlling the electrical opening / closing of these units by a common line from the hand side, and carrying the control signal on the power line, a smaller number of lines can be used. It is possible to independently energize all the shape memory members with the conducting wire.

【0017】各接続ユニットにおいて導線と形状記憶部
材とを接続するには、例えば、導線を所望の形状記憶部
材の端部まで配線し直接ハンダ付けする等、どの様な接
続構造を用いてもよいが、本実施例のように、導通路を
積層構造の表面に設け、導線と形状記憶部材の接続部と
を導通路で接続する構造が、容易で信頼性の高い電気的
な接続構造である。この接続構造を次に説明する。
To connect the conductive wire and the shape memory member in each connection unit, any connection structure may be used, for example, the conductive wire is wired to the end of the desired shape memory member and directly soldered. However, as in the present embodiment, the structure in which the conductive path is provided on the surface of the laminated structure and the conductive wire and the connection portion of the shape memory member are connected by the conductive path is an easy and highly reliable electrical connection structure. . This connection structure will be described below.

【0018】先ず、図1、2に示すように、第1層のガ
ラス層2aの上面には導線を安定して固定できるよう
に、管状物の長手方向に溝16a、16b、16cが設
けられている。一方、形状記憶部材の接続部である第4
層の溝14の前後の端部は、導体15a、15bで覆わ
れ、この導体が導通路として、溝12、13の近傍まで
領域を延ばして形成されている。図1では、この導通路
にハッチングを施して示している。導通路の材料として
は、良導体金属が好ましく、Al、Au、Cu、Ag等
が挙げられる。また、導通路の形成方法としては、スパ
ッタリング法、真空蒸着法、メッキ等、公知の成膜法を
用いてよい。さらに、図2に示すように、第2層2bの
両側面の近傍には、この層を積層方向に貫通する垂直配
線用孔17、18が各側について必要数だけ設けられて
いる。本実施例の垂直配線用孔は、図1に示すように片
側について17a、17b、17cの3箇所に設けられ
ている。この垂直配線用孔の上端は、第1層2aの両側
面の近傍が切欠かれることで開口している。また、垂直
配線用孔の下端は、形状記憶部材の接続部である第3層
の溝12、13内に開口している。垂直配線用孔の内壁
面には、上記導通路と同様の導体層を形成しておくこと
が好ましい。
First, as shown in FIGS. 1 and 2, grooves 16a, 16b and 16c are provided in the longitudinal direction of the tubular article on the upper surface of the first glass layer 2a so that the conducting wire can be stably fixed. ing. On the other hand, a fourth portion that is a connection portion of the shape memory member
The front and rear ends of the groove 14 of the layer are covered with conductors 15a and 15b, and the conductor is formed as a conductive path by extending the region up to the vicinity of the grooves 12 and 13. In FIG. 1, this conducting path is shown by hatching. As a material for the conductive path, a good conductor metal is preferable, and Al, Au, Cu, Ag and the like can be mentioned. Further, as a method of forming the conductive path, a known film forming method such as a sputtering method, a vacuum vapor deposition method, or plating may be used. Further, as shown in FIG. 2, in the vicinity of both side surfaces of the second layer 2b, the required number of vertical wiring holes 17 and 18 penetrating this layer in the stacking direction are provided on each side. As shown in FIG. 1, the vertical wiring holes of this embodiment are provided at three positions 17a, 17b, and 17c on one side. The upper end of this vertical wiring hole is opened by notching the vicinity of both side surfaces of the first layer 2a. Further, the lower ends of the vertical wiring holes are opened in the grooves 12 and 13 of the third layer which are the connecting portions of the shape memory member. On the inner wall surface of the vertical wiring hole, it is preferable to form a conductor layer similar to the above conductive path.

【0019】上記のように導通路と垂直配線用孔を備え
た構造によって、図1に示すように、導通路15aは、
その接続ユニットと、図の左隣の接続ユニットとを連結
する3本の形状記憶部材3d、3e、3fの接続部を全
て導通させることを容易とする。さらに垂直配線用孔を
通してこれを共通のグラウンド線に接続することが容易
となり、配線スペースを取らず高信頼性が得られる。ま
た、導通路15bは、その接続ユニットと、図の右隣の
接続ユニットとを連結する3本の形状記憶部材3a、3
b、3cのうち、3aと導線4とを垂直配線用孔17b
を通して溝12中央部または13中央部の内部で導通さ
せることを容易とする。また、形状記憶部材3b、3c
は、各々溝12、13端部を接続部として溝内に接続さ
れるが、これらと各導線との接続も、垂直配線用孔によ
って容易で省スペースとなり、高い信頼性が得られる。
本実施例は、このような配線によって、個々の形状記憶
部材の一端を共通のグラウンド線に接続し、他端を個々
に導線と接続して、手元操作側からこれら形状記憶部材
に個別に通電する構成である。
Due to the structure having the conductive path and the vertical wiring hole as described above, the conductive path 15a is formed as shown in FIG.
It is easy to electrically connect all the connection portions of the three shape memory members 3d, 3e, 3f that connect the connection unit and the connection unit on the left side of the drawing. Furthermore, it becomes easy to connect this to the common ground line through the vertical wiring hole, and it is possible to obtain high reliability without occupying a wiring space. In addition, the conductive path 15b includes three shape memory members 3a and 3a that connect the connection unit and the connection unit on the right side of the drawing.
b of 3c, 3a and the lead wire 4 are connected to the vertical wiring hole 17b.
It is easy to conduct electricity through the inside of the central portion of the groove 12 or the central portion of the groove 13. In addition, the shape memory members 3b and 3c
Are connected to the inside of the groove with the ends of the grooves 12 and 13 as connecting portions, respectively, and the connection between these and each conducting wire is easy and space-saving due to the vertical wiring hole, and high reliability is obtained.
In this embodiment, one end of each shape memory member is connected to a common ground line and the other end is individually connected to a conductor by such wiring, and the shape memory members are individually energized from the hand operation side. This is the configuration.

【0020】形状記憶部材や導線を、接続部や導通路に
対して機械的に、また、電気的に接続するには、図1に
おいて19として示す紫外線硬化型の導電性樹脂や、半
田、ワイヤボンディング等が例示される。
In order to mechanically and electrically connect the shape memory member and the conducting wire to the connecting portion and the conducting path, an ultraviolet curable conductive resin, solder, wire and the like shown as 19 in FIG. Bonding and the like are exemplified.

【0021】本発明の能動屈曲機構は、実使用上におい
ては、可撓性材料を用いて外側に被覆層を設けることが
好ましく、特に生体内に挿入して用いる場合には、シリ
コーンゴムやテフロン、ポリウレタン、ポリ塩化ビニル
からなる柔軟なチューブを用いて全体を覆うことが好ま
しい。
In actual use, the active bending mechanism of the present invention is preferably provided with a coating layer on the outside using a flexible material. Especially, when it is inserted into a living body and used, silicone rubber or Teflon is used. It is preferable to cover the whole with a flexible tube made of polyurethane, polyvinyl chloride.

【0022】〔製造実験〕カテーテルを管状物として用
いて本発明の能動屈曲機構を実際に製造し、製造時にお
ける接続ユニットの加工の容易さと、製品の性能を確認
した。その製造、組み立て工程を以下に概略的に説明す
る。
[Manufacturing Experiment] The active bending mechanism of the present invention was actually manufactured using a catheter as a tubular object, and the ease of processing the connection unit during manufacturing and the performance of the product were confirmed. The manufacturing and assembling steps will be briefly described below.

【0023】(1)接続ユニットの製作 図3は、接続ユニットの加工工程の概略を模式的に示す
図である。同図の(イ)〜(ニ)は、接続ユニットが加
工されるようすを、装着すべき管状物の長手方向から見
た図である。また、同図の(い)〜(に)は、各々、同
図の(イ)〜(ニ)に対応し、これらを側面方向から見
た図である。工程全体の概略としては、ガラス基板とシ
リコン基板に対して加工と互いの接合を行いながら、1
つの大きな積層体に、接続ユニットをマトリックス状に
多数形成し、最終段階で互いを分断して、一度に大量の
接続ユニットを得るものである。図3に示す各工程の加
工を、1つの接続ユニットについて次に説明する。 図3(イ)および(い);厚さ1.2mmのパイレック
スガラス基板2Cの下面にダイシングソーを用いて、溝
11aを形成した。これと別工程において、厚さ400
μmのシリコン基板2Dに対して、異方性エッチングに
よって溝14や他の切欠き等の形状加工を施した。この
シリコン基板2Dを陽極接合技術によって前記パイレッ
クスガラス基板2Cの下面に接合した。 図3(ロ)および(ろ);パイレックスガラス基板2C
とシリコン基板2Dとの積層体の両側面と下面に、スパ
ッタリング法によってアルミニウムを厚さ1.5μmと
なるよう蒸着し、導通路となる層15を形成した。同図
では、この導通路15にハッチングを施して示してい
る。さらに、ダイシングソーを用いて、パイレックスガ
ラス基板2Cの両側面の上部に長手方向に溝12、13
を形成し、上面からは導通路を分割するための溝m、n
を形成した。 図3(ハ)および(は);厚さ200μmのシリコン基
板2Bに対して、異方性エッチングによって垂直配線用
孔17a〜c(18aの側にも17aに対応する位置に
設けられている)を形成し、これらの孔内にアルミニウ
ムを蒸着した。このシリコン基板2Bをガラス基板2C
の上面に接合した。さらに別工程において、厚さ200
μmのガラス基板2Aの上面に導線を取り付けるための
溝16a〜cを形成し、この基板2Aをシリコン基板2
Bの上面に陽極接合技術によって接合した。 図3(ニ)および(に);ガラス基板2Cとシリコン基
板2Dとからなる積層部分の両側面と下面に蒸着された
アルミニウムからなる層15を、導通路15aと導通路
15bとに完全に分断した。以上の加工によって、2A
〜2Dからなる4層の積層体に、多数の接続ユニットが
完成状態でマトリックス状に形成されたウエハ状態のも
のが得られた。これを、ダイシングソーを用いて分断
し、個々の接続ユニットSを得た。
(1) Manufacture of Connection Unit FIG. 3 is a diagram schematically showing the outline of the processing steps of the connection unit. (A) to (D) of the same figure are views in which the manner in which the connection unit is processed is viewed from the longitudinal direction of the tubular object to be mounted. Further, (i) to (ni) in the figure correspond to (i) to (d) in the figure, respectively, and are views seen from the side direction. The outline of the whole process is as follows:
A large number of connection units are formed in one large laminated body in a matrix form, and they are separated from each other at the final stage to obtain a large number of connection units at one time. The processing of each step shown in FIG. 3 will be described below for one connection unit. 3 (a) and 3 (i); The groove 11a was formed on the lower surface of the Pyrex glass substrate 2C having a thickness of 1.2 mm by using a dicing saw. In another process, the thickness of 400
The silicon substrate 2D having a thickness of μm was subjected to shape processing such as grooves 14 and other notches by anisotropic etching. This silicon substrate 2D was bonded to the lower surface of the Pyrex glass substrate 2C by the anodic bonding technique. Figure 3 (b) and (b); Pyrex glass substrate 2C
Aluminum was vapor-deposited by sputtering to a thickness of 1.5 μm on both side surfaces and the lower surface of the laminated body of the silicon substrate 2D and the silicon substrate 2D to form a layer 15 serving as a conduction path. In the figure, the conducting path 15 is shown by hatching. Further, by using a dicing saw, grooves 12 and 13 are longitudinally formed in the upper portions of both side surfaces of the Pyrex glass substrate 2C.
And grooves m, n for dividing the conducting path from the upper surface.
Was formed. 3 (c) and 3 (c); The vertical wiring holes 17a to 17c are provided by anisotropic etching on the silicon substrate 2B having a thickness of 200 .mu.m (also provided on the side of 18a at a position corresponding to 17a). And aluminum was vapor-deposited in these holes. This silicon substrate 2B is replaced with a glass substrate 2C
Bonded to the upper surface of. In another process, the thickness of 200
Grooves 16a to 16c for attaching a conductive wire are formed on the upper surface of a glass substrate 2A having a thickness of μm, and the substrate 2A is formed on the silicon substrate 2A.
It was bonded to the upper surface of B by the anodic bonding technique. 3 (d) and 3 (b); The layer 15 made of aluminum vapor-deposited on both side surfaces and the lower surface of the laminated portion made of the glass substrate 2C and the silicon substrate 2D is completely divided into the conducting path 15a and the conducting path 15b. did. 2A by the above processing
A wafer-like structure was obtained in which a large number of connection units were completed and formed in a matrix in a 4-layer laminated body of 2D. This was divided using a dicing saw to obtain individual connection units S.

【0024】(2)能動屈曲機構を有するカテーテルの
製作 本実験では、カテーテル上に接続ユニットを5個装着す
るものとした。 図1に示すように、カテーテル1の外側に接続ユニッ
ト2を5個装着し、紫外線硬化樹脂によって固定した。
接続ユニットの配置は、中心間ピッチ3.5mmの等間
隔とした。 カテーテルに配置されたこれら5個の接続ユニット全
てにわたる長さの予め予定量伸長させておいた形状記憶
部材を3本用い、これが5個の接続ユニットの各溝1
2、13、14内におさまるよう装着し、紫外線硬化型
の導電性樹脂を用いて所望の接続部において機械的、電
気的に接続した。 YAGレーザを用いて、上記形状記憶部材を、隣合っ
た接続ユニットの所望の接続部間だけを接続する個々の
形状記憶部材となるように分断し、接続ユニット間のカ
テーテルを独立に屈曲させ得るものとした。 導線をカテーテルに沿って敷設し、各接続ユニットの
導線を取り付けるための溝に取付、所望の導線を接続ユ
ニットの垂直配線用孔を通して形状記憶部材の端部およ
び導通路に接続した。 全体を、シリコーンゴムからなるチューブによって被
覆し、外径φ2.8mmの、能動屈曲可能なカテーテル
を得た。
(2) Manufacture of catheter having active bending mechanism In this experiment, five connection units were mounted on the catheter. As shown in FIG. 1, five connection units 2 were attached to the outside of the catheter 1 and fixed with an ultraviolet curable resin.
The connection units were arranged at equal intervals with a center-to-center pitch of 3.5 mm. Three shape memory members, which have been stretched in advance by a predetermined amount, are used for the length of all of these five connecting units arranged on the catheter, and each shape memory member has a groove 1 of each of the five connecting units.
It was mounted so that it fits inside 2, 13, and 14 and was mechanically and electrically connected at a desired connection portion using an ultraviolet curable conductive resin. Using the YAG laser, the shape memory member can be divided into individual shape memory members that connect only desired connection portions of adjacent connection units, and the catheter between the connection units can be independently bent. I decided. A conductive wire was laid along the catheter and attached to a groove for mounting the conductive wire of each connection unit, and a desired conductive wire was connected to an end of the shape memory member and a conduction path through a vertical wiring hole of the connection unit. The whole was covered with a tube made of silicone rubber to obtain an active bendable catheter having an outer diameter of φ2.8 mm.

【0025】上記製造実験によって、接続ユニットの加
工に、集積回路の製造等におけるシリコンに対する微細
加工技術をそのまま応用できることが確認できた。ま
た、得られたカテーテルの能動屈曲機構を動作させたと
ころ、細径でありながら任意の方向に自在に屈曲させる
ことが可能なことが確認できた。
From the above manufacturing experiment, it was confirmed that the fine processing technique for silicon in the manufacturing of integrated circuits can be applied to the processing of the connection unit as it is. Further, when the active bending mechanism of the obtained catheter was operated, it was confirmed that the catheter could be bent freely in any direction despite its small diameter.

【0026】[0026]

【発明の効果】以上のように、本発明による管状物の能
動屈曲機構は、細径でありながら、外部での操作に従っ
て自ら自在に屈曲できるので、曲がりくねった挿入経路
内を、その湾曲に好ましく沿って進むことができる。従
って、生体内に適用されるカテーテルだけでなく、原子
炉やエンジンの配管内の観察、加工作業に適用でき、複
雑なシステムを分解せずに保守するのに有効な道具にも
なる。
As described above, since the active bending mechanism of the tubular article according to the present invention has a small diameter, it can be flexibly bent by itself in accordance with an external operation, so that it is preferable for the bending in the winding insertion path. You can follow along. Therefore, it can be applied not only to the catheter applied to the living body, but also to the observation and processing work in the piping of the reactor and the engine, and it is also an effective tool for maintaining a complicated system without disassembling it.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による管状物の能動屈曲機構
の一例を模式的に示す斜視図である。
FIG. 1 is a perspective view schematically showing an example of an active bending mechanism of a tubular article according to an embodiment of the present invention.

【図2】接続ユニットの構造を模式的に示す図である。FIG. 2 is a diagram schematically showing the structure of a connection unit.

【図3】接続ユニットの加工工程の概略を模式的に示す
図である。
FIG. 3 is a diagram schematically showing an outline of a processing step of a connection unit.

【符号の説明】[Explanation of symbols]

1 可撓性を有する管状物 2 接続ユニット 3a〜3f 形状記憶部材 4 導線 1 Flexible tubular object 2 Connection unit 3a to 3f Shape memory member 4 Conductive wire

フロントページの続き (72)発明者 杉原 正久 兵庫県伊丹市池尻4丁目3番地 三菱電線 工業株式会社伊丹製作所内 (72)発明者 林 根培 宮城県仙台市太白区茂庭台4丁目25番5号 −504 (72)発明者 南 和幸 宮城県仙台市太白区茂ヶ崎3丁目4番3号 第2三愛荘12 (72)発明者 内山 勝 宮城県仙台市泉区加茂4丁目22番9号(72) Inventor Masahisa Sugihara 4-3 Ikejiri, Itami-shi, Hyogo Prefecture Itami Works, Mitsubishi Cable Industries, Ltd. (72) Inventor Ren Nebayashi 4-25-5 Moiwadai, Taishiro-ku, Sendai, Miyagi Prefecture − 504 (72) Inventor Kazuyuki Minami 3-4-3 Mogasaki, Taichiro-ku, Sendai-shi, Miyagi No. 2 Sanaiso 12 (72) Inventor Masaru Uchiyama 4-22-9 Kamo, Izumi-ku, Sendai-shi, Miyagi

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 可撓性を有する管状物の外側に、少なく
とも、下記(A)の接続ユニットと下記(B)の形状記
憶部材と下記(C)の導線とが装着されてなることを特
徴とする管状物の能動屈曲機構。 (A)管状物の長手方向に所望の間隔をもって所望の数
だけ装着される接続ユニットであって、個々の接続ユニ
ットには、前記管状物によって貫通される貫通孔が設け
られ、前記接続ユニットの外部表面には形状記憶部材が
個々に接続される接続部、導線が接続される接続部、お
よびこれら接続部を所望の組合せに従って接続する導通
路が設けられたものである接続ユニット。 (B)通電によって温度上昇し長手方向に収縮または伸
長し得るよう形成されてなり、その両端部が隣合った接
続ユニットの各々の接続部に接続されてこれらの接続ユ
ニット同士を連結する形状記憶部材であって、隣合った
接続ユニット同士の連結には、その接続ユニット間の管
状物を任意の方向に自在に屈曲させ得るように管状物の
外周に3本以上配置されたものである形状記憶部材。 (C)形状記憶部材に個別に通電し得るように、管状物
の操作側端部から管状物に沿って必要数だけ設けられ、
所望の接続ユニットの接続部に接続された導線。
1. A flexible tubular product is provided with at least a connection unit (A) below, a shape memory member (B) below, and a conductor (C) below mounted on the outside thereof. An active bending mechanism for tubular objects. (A) A connection unit in which a desired number of tubular units are mounted in the longitudinal direction at desired intervals, and each connection unit is provided with a through hole that is penetrated by the tubular unit. A connection unit in which a connection portion to which the shape memory members are individually connected, a connection portion to which a conductive wire is connected, and a conduction path that connects these connection portions according to a desired combination are provided on the outer surface. (B) A shape memory that is formed so as to increase in temperature and contract or expand in the longitudinal direction by energization, and both ends thereof are connected to respective connecting portions of adjacent connecting units to connect these connecting units to each other. A member which is formed by arranging three or more tubular units between adjacent connecting units so that the tubular units between the connecting units can be freely bent in any direction. Memory member. (C) A necessary number are provided along the tubular object from the operation-side end of the tubular object so that the shape memory member can be individually energized.
A conductor connected to the connection of the desired connection unit.
【請求項2】 接続ユニットが、ガラス層とシリコン層
とが交互に積層された積層構造を骨子としたものである
請求項1記載の管状物の能動屈曲機構。
2. The active bending mechanism for a tubular article according to claim 1, wherein the connection unit has a skeleton of a laminated structure in which glass layers and silicon layers are alternately laminated.
【請求項3】 接続ユニットの骨子となる積層構造が、
第1層のガラス層、第2層のシリコン層、第3層のガラ
ス層、第4層のシリコン層が順に積層されてなる六面体
であって、貫通孔が設けられた中間層が、第3層と第4
層とにわたるものであって、導線の接続部が第1層上面
に設けられ、形状記憶部材の接続部が、第3層の両側面
および第4層下面に設けられたものである請求項1また
は2記載の管状物の能動屈曲機構。ただし、積層構造に
おける積層方向の第1層側を上側、第4層側を下側とみ
なし、積層構造の側面のうち管状物の長手方向に垂直な
方向の側面を「側面」という。
3. A laminated structure, which is a skeleton of the connection unit,
A hexahedron formed by sequentially stacking a first glass layer, a second silicon layer, a third glass layer, and a fourth silicon layer, wherein an intermediate layer provided with a through hole is a third layer. Layer and Fourth
2. The layer extending over the first layer, the connecting portion of the conducting wire being provided on the upper surface of the first layer, and the connecting portion of the shape memory member being provided on both side surfaces of the third layer and the lower surface of the fourth layer. Or the active bending mechanism of the tubular article according to 2. However, the first layer side of the laminated structure in the laminating direction is regarded as the upper side and the fourth layer side is regarded as the lower side, and the side surface of the laminated structure in the direction perpendicular to the longitudinal direction of the tubular article is referred to as the “side surface”.
【請求項4】 第2層の両側面の近傍にはこの層を積層
方向に貫通する垂直配線用孔が所定数設けられ、第1層
は、これら垂直配線用孔の上端部が開口するように形成
され、第3層の両側面に設けられる形状記憶部材の接続
部がこの層の両側面に形成された溝であって、これらの
溝が、上記垂直配線用孔の下端部がその溝内に開口する
ように形成されたものである請求項3記載の管状物の能
動屈曲機構。
4. A predetermined number of vertical wiring holes penetrating this layer in the stacking direction are provided in the vicinity of both side surfaces of the second layer, and the first layer has upper end portions of these vertical wiring holes opened. Which are formed on the both sides of the third layer, and the connecting portions of the shape memory member are grooves formed on the both sides of this layer, and these grooves are the lower ends of the vertical wiring holes. The active bending mechanism for a tubular article according to claim 3, wherein the tubular article is formed so as to open inside.
【請求項5】 隣合った接続ユニット同士の連結におけ
る形状記憶部材の配置本数が3本である請求項1または
3記載の管状物の能動屈曲機構。
5. The active bending mechanism for a tubular article according to claim 1, wherein the number of shape memory members arranged in connection between adjacent connection units is three.
【請求項6】 接続ユニットの積層構造の外部表面に設
けられる導通路が下記(イ)および/または(ロ)に記
載の導通領域からなるものである請求項5記載の管状物
の能動屈曲機構。 (イ)当該接続ユニットと一方の隣の接続ユニットとを
連結して当該接続ユニットに接続される3本の形状記憶
部材の接続部を、全て導通させ、所望の1つの導線の接
続部に接続する1つの導通領域。 (ロ)当該接続ユニットと他方の隣の接続ユニットとを
連結して当該接続ユニットに接続される3本の形状記憶
部材の接続部を、各々所望の3つの導線の接続部に接続
する3つの導通領域。
6. The active bending mechanism for a tubular article according to claim 5, wherein the conduction path provided on the outer surface of the laminated structure of the connection unit comprises the conduction region described in (a) and / or (b) below. . (A) All the connection portions of the three shape memory members connected to the connection unit by connecting the connection unit and the adjacent one of the connection units are electrically connected and connected to the connection portion of one desired conductor. One conductive area to do. (B) Three connecting portions of the three shape memory members connected to the connecting unit by connecting the connecting unit and the adjacent connecting unit on the other side are connected to the connecting portions of the desired three conducting wires, respectively. Conduction area.
【請求項7】 形状記憶部材が、形状記憶合金をコイル
状に形成してなるものであって、温度上昇によって長手
方向に収縮し得るよう形状を記憶したものである請求項
1記載の管状物の能動屈曲機構。
7. The tubular article according to claim 1, wherein the shape memory member is formed of a shape memory alloy in a coil shape, and has a shape memorized so that it can be contracted in the longitudinal direction due to a temperature rise. Active bending mechanism.
【請求項8】 管状物が内部にカテーテルを挿通された
もの、または、管状物自体がカテーテルである請求項1
記載の管状物の能動屈曲機構。
8. A tubular article having a catheter inserted therein, or the tubular article itself is a catheter.
An active bending mechanism of the described tubular article.
【請求項9】 さらに全体を覆う柔軟な被覆層が設けら
れてなるものである請求項1記載の管状物の能動屈曲機
構。
9. The active bending mechanism for a tubular article according to claim 1, further comprising a flexible coating layer for covering the whole.
JP7110819A 1995-05-09 1995-05-09 Active bending mechanism of tubular matter Pending JPH08299447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7110819A JPH08299447A (en) 1995-05-09 1995-05-09 Active bending mechanism of tubular matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7110819A JPH08299447A (en) 1995-05-09 1995-05-09 Active bending mechanism of tubular matter

Publications (1)

Publication Number Publication Date
JPH08299447A true JPH08299447A (en) 1996-11-19

Family

ID=14545470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7110819A Pending JPH08299447A (en) 1995-05-09 1995-05-09 Active bending mechanism of tubular matter

Country Status (1)

Country Link
JP (1) JPH08299447A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7033318B2 (en) 2002-11-29 2006-04-25 Pentax Corporation Photothermal actuator and apparatus comprising photothermal actuator
CN115813569A (en) * 2023-02-15 2023-03-21 中南大学湘雅医院 Cardiovascular operation is with putting up

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7033318B2 (en) 2002-11-29 2006-04-25 Pentax Corporation Photothermal actuator and apparatus comprising photothermal actuator
CN115813569A (en) * 2023-02-15 2023-03-21 中南大学湘雅医院 Cardiovascular operation is with putting up
CN115813569B (en) * 2023-02-15 2023-05-26 中南大学湘雅医院 Cardiovascular is rack for operation

Similar Documents

Publication Publication Date Title
EP1432342B1 (en) Robotic endoscope
EP1010440A2 (en) Active slender tubes and method of making the same
US5556370A (en) Electrically activated multi-jointed manipulator
US8434208B2 (en) Two-dimensional layout for use in a complex structure
JPH1148171A (en) Active conduit and manufacture thereof
AU2002343535A1 (en) Robotic endoscope
JP2020513863A6 (en) Manipulable medical devices and their manufacturing methods
JP2005530558A (en) Programmable universal guide catheter
US10697050B2 (en) Shape memory actuator structures and control thereof
US20070037445A1 (en) Tubular compliant shape memory alloy actuators
JPH08299447A (en) Active bending mechanism of tubular matter
US9084871B2 (en) Process for manufacturing a flexible elongate structure having an orientable end
JP2002035132A (en) Method for manufacturing flexible tube having electric wiring and flexible tube having electric wiring
EP3542853A1 (en) Manufacturing method for a microlead
JP4551673B2 (en) Ion exchange resin molded product and actuator element using the same
JPH07259725A (en) Flexible tube curing device
JP2864467B2 (en) Soft tubing
KR102427916B1 (en) Introduction device comprising an electroactive tip on a guidewire
JP7420854B2 (en) catheter
JP2866937B1 (en) Spiral active flexible tube base and spiral active flexible tube
JP2000189518A (en) Spiral structure active flexible tube blank belt and spiral structure active flexible tube
Yokota et al. Development of an active micro catheter using a polymer actuator
JPH0880279A (en) Bending part of endoscope
JPH01227736A (en) Endoscope
JP2016192996A (en) Insertion instrument and manufacturing method for insertion instrument

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041214