JPH08294916A - Manufacture of fine particlelike thermosetting resin - Google Patents

Manufacture of fine particlelike thermosetting resin

Info

Publication number
JPH08294916A
JPH08294916A JP7104354A JP10435495A JPH08294916A JP H08294916 A JPH08294916 A JP H08294916A JP 7104354 A JP7104354 A JP 7104354A JP 10435495 A JP10435495 A JP 10435495A JP H08294916 A JPH08294916 A JP H08294916A
Authority
JP
Japan
Prior art keywords
resin
diameter
thermosetting resin
fine
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7104354A
Other languages
Japanese (ja)
Other versions
JP3337861B2 (en
Inventor
Toshio Nakao
俊夫 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Durez Co Ltd
Original Assignee
Sumitomo Durez Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Durez Co Ltd filed Critical Sumitomo Durez Co Ltd
Priority to JP10435495A priority Critical patent/JP3337861B2/en
Publication of JPH08294916A publication Critical patent/JPH08294916A/en
Application granted granted Critical
Publication of JP3337861B2 publication Critical patent/JP3337861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/10Making granules by moulding the material, i.e. treating it in the molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/10Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic in stationary drums or troughs, provided with kneading or mixing appliances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B2009/125Micropellets, microgranules, microparticles

Abstract

PURPOSE: To largely improve the comminuting efficiency by first discharging a thermosetting resin of a molten state from the opening of a rotating rotor, forming the resin in a fiber state specified in the diameter, and then forming it as a finely particlelike resin by using an arbitrarily comminuting step. CONSTITUTION: A thermosetting resin is formed in a molten state by an extruder 1, introduced from the introducing unit of the upper part of a rotor 1, discharged by a centrifugal force, and formed in a fiber state in which the diameter is 1.0 to 20.0α (where α is the mean particle size of the obtained finely particlelike thermosetting resin). The diameter of the fiber is regulated according to the supplying speed and viscosity of the resin of the molten state and the rotating speed of the rotor 2 in addition to a disc shape. If the diameter of the fiber is 20.0α or less, the mean diameter of the powder after comminuting cannot be made to be α. Thereafter, the resin is transferred to and comminuted by a comminutor 3 with the air used also for cooling, fine particles are removed by a cyclone 4 to obtain a fine particlelike resin having the particle size distribution of the α of the mean particle size.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は熔融状の原料熱硬化性樹
脂を回転体を用い、遠心力により吐出させ、微粒子状の
熱硬化性樹脂を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a particulate thermosetting resin by discharging a molten raw material thermosetting resin by a centrifugal force using a rotating body.

【0002】[0002]

【従来の技術】熱硬化性樹脂は成形材料用、積層板用、
あるいは鋳物や砥石の結合材のような工業材料用として
直接粉体をあるいは一旦粉体を経由して利用されること
が多い。従って、いかに合理的な粉体製造方法を選ぶか
は当該分野では重要なポイントとなっている。反応法や
造粒による方法等も知られており一部採用されている
が、通常は、よりサイズの大きなバルク状態から粉体化
することが多いので、粉砕は最も広く利用されている粉
体製造法となっている。
2. Description of the Related Art Thermosetting resins are used for molding materials, laminates,
Alternatively, it is often used directly as a powder for industrial materials such as a casting or a binder for a grindstone, or once through the powder. Therefore, how to select a reasonable powder manufacturing method is an important point in this field. Although a reaction method and a method by granulation are also known and partially adopted, pulverization is the most widely used powder because it is usually powdered from a bulk state with a larger size. It is a manufacturing method.

【0003】しかし、公知の様に粉砕は投入されたエネ
ルギーに対する固体表面の生成に消費されるエネルギー
の割合、すなわち粉砕の効率が非常に低く、高々0.0
1程度であるといわれている。従来より粉砕効率を向上
させる為に種々の改良が検討され応用されてきたが、い
ずれもまだ充分とは言えないのが現状である。
However, as is well known, the ratio of the energy consumed for the production of the solid surface to the energy input, that is, the efficiency of the crushing is very low, and the crushing is at most 0.0.
It is said to be about 1. Various improvements have been studied and applied in order to improve the pulverization efficiency, but none of them are still sufficient.

【0004】例えばピンミル、ハンマミル等の高速回転
式衝撃粉砕機が知られている。構造が単純でメンテナン
スが容易である、適応材料に制限が少なく、粒度分布の
調整が容易である等の利点を有する為広く利用されてい
る。しかし、本質点に連続工程であり、粉砕時間(装置
内滞留時間)を長く取れないとか、高速運転故摩耗と発
熱の問題もあり、効率を今以上大幅に向上させることは
困難である。
High-speed rotary impact crushers such as pin mills and hammer mills are known. It is widely used because of its advantages such as simple structure, easy maintenance, few restrictions on applicable materials, and easy adjustment of particle size distribution. However, since it is essentially a continuous process, there is a problem that the crushing time (residence time in the device) cannot be long, and there are problems of wear and heat generation due to high-speed operation, so it is difficult to further improve efficiency.

【0005】また、数個のローラが粉砕室内に押しつけ
られて回ることにより粉砕を行なう、ゼゴミル等のロー
ラミルが知られている。石炭や金属粉スラリーの製造に
広く利用されているが、効率の点でまだ改良の余地があ
り、粒度分布の調整についても制限がある。ボールミル
方式も効率向上を目的としたコニカルボールミル、コン
パートメントミル、トリコンミル、遊星ミル等が知られ
ている。また、ジェットミルも微粒子の製造に有用であ
ることが知られている。いずれも広く利用されている方
式であるが、消費電力が大きい等、効率は悪い。
Further, there is known a roller mill such as a Zego mill, in which several rollers are pressed into a crushing chamber and rotated to perform crushing. It is widely used for the production of coal and metal powder slurries, but there is still room for improvement in terms of efficiency, and there is a limitation in adjusting the particle size distribution. As for the ball mill system, conical ball mills, compartment mills, tricone mills, planetary mills and the like are known for the purpose of improving efficiency. Jet mills are also known to be useful for producing fine particles. Both are widely used, but their efficiency is poor due to high power consumption.

【0006】粉砕における効率の悪さの理由の1つに、
系内に既に粉砕された微粉末が残存することが知られて
いる。微粉末が残存すると、衝撃に対して緩衝作用を生
じたり、与えたエネルギーが、2次凝集の解離に使用さ
れたりすることが原因と考えられる。従って効率を向上
させる為には系内から粉砕された微粉末を除去すること
が必要であり、例えばACMペルパライザーのように多
くの高速回転式衝撃粉砕機はスクリーンや、エアセパレ
ーターと組合わせられている。ボールミル方式について
もコボールミル、CFミル等が知られている。
One of the reasons for inefficiency in grinding is
It is known that fine powder that has already been crushed remains in the system. It is considered that if the fine powder remains, it may cause a buffering effect against impact or the applied energy may be used for dissociation of secondary aggregation. Therefore, in order to improve the efficiency, it is necessary to remove the pulverized fine powder from the system. For example, many high-speed rotary impact pulverizers such as ACM Perparizer are combined with a screen and an air separator. There is. Also known as the ball mill system are co-ball mills, CF mills and the like.

【0007】また粉砕は液体中で行う湿式法と気体中で
行う乾式法とがあり、粉砕効率の点からは湿式の方が約
20〜40%高い。しかし、可溶性物質が含まれている
場合だけでなく、液体により変質するものが含まれてい
る場合にも適用できないので、熱硬化性樹脂に広く応用
する為には、乾式の必要がある。湿式に比較し乾式法は
微粉末の除去が難しく、これも熱硬化性樹脂の粉砕効率
を大幅に向上させる制約となっている。また、粉砕方式
は粒度によって効率が異なるので、異種の粉砕機を組み
合わせることも行われる。例えばハンマーミルは粒度3
00〜2000μm、ボールミルは60〜300μm、
ジェットミルは50μm以下の粉体を製造する場合にそ
れぞれ適した方法であると言われている。
There are two methods of crushing: a wet method performed in a liquid and a dry method performed in a gas. The wet method is about 20 to 40% higher in terms of crushing efficiency. However, since it cannot be applied not only when a soluble substance is contained but also when a substance which is deteriorated by a liquid is contained, a dry type is required for wide application to a thermosetting resin. Compared with the wet method, the dry method is more difficult to remove fine powder, which is also a constraint to greatly improve the pulverization efficiency of the thermosetting resin. Further, since the efficiency of the crushing system varies depending on the particle size, it is possible to combine different crushers. For example, a hammer mill has a grain size of 3
00-2000 μm, ball mill 60-300 μm,
The jet mill is said to be a method suitable for producing powder of 50 μm or less.

【0008】その他粉砕機の大型化、分級器と粉砕機と
の組み合わせでリサイクル方式をとる等の工夫も知られ
ているが、いずれの方式についても今以上に大幅な効率
向上は困難なのが現状である。
[0008] In addition, it has been known that the crusher is upsized and the recycling system is combined with the classifier and the crusher. However, it is difficult to improve the efficiency of any of the systems. Is.

【0009】[0009]

【発明が解決しようとする課題】本発明は、微粒子状の
熱硬化性樹脂を製造するに関し、粉砕工程に於いて特に
粉砕効率を低下させる過粉砕による過度に微細化された
微粉末の発生防止と、同様に粉砕効率を低下させる粗大
粒子の粉砕部への導入低減のために種々検討した結果な
されたものであり、本発明の目的とする所は、上述のよ
うな従来法の組合わせでは得られない大幅な粉砕効率の
向上にある。
The present invention relates to the production of a thermosetting resin in the form of fine particles, and prevents the generation of excessively fine powder due to over-milling, which particularly reduces the milling efficiency in the milling process. And, similarly, the results of various studies for reducing the introduction of coarse particles into the crushing section, which lowers the crushing efficiency, are made, and the object of the present invention is to combine the conventional methods as described above. This is a significant improvement in grinding efficiency that cannot be obtained.

【0010】[0010]

【課題を解決するための手段】本発明は、熔融状態にあ
る熱硬化性樹脂を、先ず回転する回転子の開口部より吐
出させて径が1.0α〜20.0α(但し、αは得られ
る微粒子状熱硬化性樹脂の平均粒径とする。)の繊維状
とし、次いでこれを任意の粉砕工程を用い、平均粒径が
αの粒度分布を有する微粒子状とすることを特徴とする
微粒子状の熱硬化性樹脂の製造方法である。
According to the present invention, a thermosetting resin in a molten state is first discharged from an opening of a rotating rotor to have a diameter of 1.0α to 20.0α (where α is obtained). The average particle diameter of the fine particle thermosetting resin to be used is 1), and the fine particle is then formed into a fine particle having an average particle diameter of α by an arbitrary pulverizing step. It is a method for producing a thermosetting resin.

【0011】熱硬化性樹脂は、加熱による化学反応で三
次元的な構造となり不溶、不融の状態となるものであ
り、フェノール樹脂、フラン樹脂、キシレンホルムアル
デヒド樹脂、ユリア樹脂、メラミン樹脂、アニリン樹
脂、アルキド樹脂、不飽和ポリエステル樹脂、エポキシ
樹脂、ポリイミド樹脂、トリアジン系樹脂、ポリアミド
樹脂、シリコーン樹脂等が例示される。これらの樹脂の
変性物あるいは他の樹脂との複合物も利用することがで
きる。
The thermosetting resin has a three-dimensional structure and becomes insoluble and infusible by a chemical reaction due to heating. It is a phenol resin, a furan resin, a xylene formaldehyde resin, a urea resin, a melamine resin, an aniline resin. , Alkyd resins, unsaturated polyester resins, epoxy resins, polyimide resins, triazine resins, polyamide resins, silicone resins and the like. Modified products of these resins or composites with other resins can also be used.

【0012】また、ガラス転移温度が高く、粉砕により
微粒子化できる場合には通常熱可塑性に類別される樹脂
についても本発明を適応することができる。そのような
樹脂としてはポリフェニレン、ポリキシリレン、ポリフ
ェニレンオキシド、ポリスルホン、ポリエーテルスルホ
ン、ポリエーテルイミド、ポリフェニレンスルフィド等
が例示される。
Further, the present invention can be applied to resins that are usually classified into thermoplastics when they have a high glass transition temperature and can be pulverized into fine particles. Examples of such a resin include polyphenylene, polyxylylene, polyphenylene oxide, polysulfone, polyethersulfone, polyetherimide, polyphenylene sulfide and the like.

【0013】本発明にいう熱硬化性樹脂とは熱硬化性樹
脂単独、及び他の物質との反応または混合物を意味す
る。他の物質とは、樹脂の硬化剤、顔料、充填剤、およ
び可塑剤、安定剤、滑材、光安定剤等必要に応じて用い
られる各種添加剤を意味する。硬化剤は樹脂に応じて選
ばれる。顔料は特に制限されるものではなく、酸化チタ
ン、黄色酸化鉄、ベンガラ、カーボンブラック、フタロ
シアニン系有機顔料、ジアゾ系イエロー、キナクリドン
系赤色顔料等が例示される。充填剤も特に制限されるも
のではなく、シリカ、炭酸カルシウム、タルク、木粉等
が例示される。
The thermosetting resin referred to in the present invention means the thermosetting resin alone or a reaction or mixture with other substances. The other substance means various additives used as necessary such as a resin curing agent, a pigment, a filler, a plasticizer, a stabilizer, a lubricant, and a light stabilizer. The curing agent is selected according to the resin. The pigment is not particularly limited, and examples thereof include titanium oxide, yellow iron oxide, red iron oxide, carbon black, phthalocyanine organic pigments, diazo yellow, quinacridone red pigments and the like. The filler is also not particularly limited, and examples thereof include silica, calcium carbonate, talc, and wood powder.

【0014】本発明にいう回転子とは、移動されて来た
熔融状態にある熱硬化性樹脂を遠心力で飛散させること
により微粒子状とするもので、ディスク式アトマイザー
回転盤が代表的なものである。ベーン型、椀型、ケスナ
ー型、ピン型等いずれも利用でき、一般にケスナー型、
ピン型は径の分布が狭く、ベーン型は高粘度物の処理が
有利等の特徴があるので対象とする樹脂や粒度分布に応
じて使い分けることができる。特に限定するものではな
いが、図1に回転子の形状の一例を示す。この例では溶
融状態の樹脂が回転子上部の導入部(11)より導入さ
れ、遠心力により開口部(12)から吐出される。(1
3)は回転軸である。
The rotor referred to in the present invention is made into fine particles by scattering the moved thermosetting resin by centrifugal force, and a disk type atomizer rotating disk is typical. Is. Any of vane type, bowl type, Kessner type, pin type, etc. can be used, and generally, Kessner type,
The pin type has a narrow distribution of diameters, and the vane type has the advantage that it is advantageous to treat high-viscosity substances, so it can be used properly according to the target resin and particle size distribution. Although not particularly limited, FIG. 1 shows an example of the shape of the rotor. In this example, the molten resin is introduced from the introduction portion (11) above the rotor and is discharged from the opening portion (12) by centrifugal force. (1
3) is a rotating shaft.

【0015】目標とする粉体の平均粒径をαとすると、
吐出される繊維状樹脂の径は1.0α〜20.0αに調
整される。αの絶対値について制限されるものでない
が、1μ〜4mmの範囲で特に有効な微粒子を得ること
ができる。繊維の径の調整はディスク形状以外に主とし
て熔融状態の熱硬化性樹脂の供給速度、粘度、および回
転子の回転速度とによる。繊維の径が20.0α以上で
あると後の粉砕工程での省力化効果が充分得られない、
また繊維の径が1.0α以下であると粉砕後の粉体の平
均粒径をαとすることができない。一方、繊維の長さに
ついては制限されない。
If the target average particle size of the powder is α,
The diameter of the fibrous resin discharged is adjusted to 1.0α to 20.0α. Although not limited to the absolute value of α, particularly effective fine particles can be obtained in the range of 1 μm to 4 mm. The fiber diameter is adjusted mainly by the feed rate of the thermosetting resin in the molten state, the viscosity, and the rotation speed of the rotor, in addition to the disk shape. If the fiber diameter is 20.0α or more, the labor-saving effect in the subsequent pulverization step cannot be sufficiently obtained.
If the fiber diameter is 1.0α or less, the average particle size of the powder after crushing cannot be α. On the other hand, the fiber length is not limited.

【0016】一般に粘度が低く、回転速度も低い場合に
は繊維は短かく、逆に粘度が高く回転速度も高いと繊維
は長くなる傾向があるが、後の粉砕工程への輸送に支障
がない限り長くても良い。短い方が後の粉砕が容易であ
るが、短くするのに粘度を低くすると高温となる為か熱
硬化性樹脂のゲルタイムが短くなる、繊維化した後に再
融着し易い等の問題も生じるので好ましくない。
Generally, when the viscosity is low and the rotation speed is low, the fiber is short, and conversely, when the viscosity is high and the rotation speed is high, the fiber tends to be long, but it does not hinder the transportation to the subsequent crushing step. It can be as long as possible. Shorter is easier to grind later, but if the viscosity is lowered to shorten it, the temperature will rise to high temperature, and the gel time of the thermosetting resin will be shortened, and problems such as easy re-fusion after fiberization will occur. Not preferable.

【0017】回転子の装着されている装置の内径は小さ
すぎると繊維状物がまだ充分表面の冷却が終っていない
為に再融着するので好ましくない。回転子が回転すると
空気の流れが生じるのである程度の冷却効果があるが、
一般的には、回転子の直径が10mmの場合、装置の内
径は50mmあれば充分再融着を防ぐことができる。必
要に応じて冷風を導入してもよい。
If the inner diameter of the apparatus in which the rotor is mounted is too small, the fibrous material will not be sufficiently cooled on the surface and will be remelted, which is not preferable. When the rotor rotates, air flow occurs, so there is a certain cooling effect,
Generally, when the diameter of the rotor is 10 mm, the inner diameter of the device is 50 mm, so that re-fusion can be sufficiently prevented. If necessary, cold air may be introduced.

【0018】繊維の粉砕には、任意の方法が利用でき
る。ボールミル、ビクトリミル、ジェットミル、パルペ
ライザー等、前述のいずれの方式も適応可能であるが、
注意すべきは過粉砕とならないことであり、繊維径を保
つ程度に止めることが重要である。粉砕は乾式法、湿式
法いずれの方法も利用できるが、乾式法が前述の理由に
より好ましい。
Any method can be used for pulverizing the fibers. Ball mill, Victory mill, jet mill, palperizer, etc. are all applicable,
It should be noted that over-milling does not occur, and it is important to stop it so that the fiber diameter is maintained. For the pulverization, either a dry method or a wet method can be used, but the dry method is preferable for the above reason.

【0019】図2は、本発明の微粒子状熱硬化性樹脂の
製造フローの一例を示す概略図であり、(1)はエクス
トルーダ、(2)は回転子、(3)は粉砕機、(4)は
サイクロンを示す。この例では、原料樹脂をエクストル
ーダ(1)にて溶融状態とし、回転子(2)に導入し遠
心力で吐出させ繊維状とした後、冷却を兼ねた空気にて
ACMペルパライザー等の粉砕機(3)に移送し粉砕
し、サイクロン(4)により微粉末を除去して所望の微
粒子状樹脂を得る。
FIG. 2 is a schematic view showing an example of the production flow of the particulate thermosetting resin of the present invention. (1) is an extruder, (2) is a rotor, (3) is a crusher, and (4) ) Indicates a cyclone. In this example, the raw material resin is melted by the extruder (1), introduced into the rotor (2) and discharged by centrifugal force into a fibrous form, and then crushed by a crusher (such as an ACM perparizer) with air that also serves as cooling. It is transferred to 3) and pulverized, and fine powder is removed by a cyclone (4) to obtain a desired fine particle resin.

【0020】本発明により得られた微粒子状はこの段階
で粒度分布が狭く、従来のように粉砕後の分級工程は省
略できるか、または省力化できる。
The fine particles obtained by the present invention have a narrow particle size distribution at this stage, and thus the classification step after pulverization as in the conventional case can be omitted or labor can be saved.

【0021】[0021]

【実施例】以下、本発明の実施例を示す。EXAMPLES Examples of the present invention will be shown below.

【0022】《実施例1》オルソクレゾールノボラック
エポキシ樹脂(軟化点65℃、エポキシ当量200)1
0重量部、1,6−ビス(2,3−エポキシプロポキ
シ)ナフタレン4.2重量部、ノボラック(軟化点10
5℃、水酸基当量100)7.2重量部、溶融シリカ粉
末75重量部、トリフェニルホスフィン0.2重量部、
カーボンブラック0.3重量部、カルナバワックス0.
5重量部をドライブレンド後エクトルーダーで加熱混練
し、110℃の熔融状態の熱硬化性樹脂を得た。これを
周縁部に5.0mm巾のスリットを多数有する直径10
mmで、195℃に加熱され、1200rpmで回転し
ている回転子に導入し吐出させ、径が3.0〜5.0μ
m、長さが10〜20mmの短繊維状物とし、これをジ
ェットミル粉砕により粉砕し、顕微鏡で測定した平均粒
径が約2μmの微粒子状エポキシ樹脂組成物を得た。得
られた組成物にはサブミクロンの粒子が実質的に含まれ
ておらず、従来のロール混練後、ACMペルパライザー
にて粉砕したものよりも容易にタブレット化でき、トラ
ンスファー成形用材料として好適であった。
Example 1 Orthocresol novolac epoxy resin (softening point 65 ° C., epoxy equivalent 200) 1
0 parts by weight, 4.2 parts by weight of 1,6-bis (2,3-epoxypropoxy) naphthalene, novolac (softening point 10
5 ° C., hydroxyl equivalent 100) 7.2 parts by weight, fused silica powder 75 parts by weight, triphenylphosphine 0.2 parts by weight,
Carbon black 0.3 parts by weight, carnauba wax 0.
After dry blending 5 parts by weight, the mixture was heated and kneaded with an ectruder to obtain a thermosetting resin in a molten state at 110 ° C. This has a diameter of 10 with a number of 5.0 mm wide slits on the periphery.
mm, heated to 195 ° C., introduced into a rotor rotating at 1200 rpm and discharged, and the diameter is 3.0 to 5.0 μ.
A short fibrous material having a length of m and a length of 10 to 20 mm was crushed by jet mill grinding to obtain a fine particle epoxy resin composition having an average particle diameter of about 2 μm measured by a microscope. The obtained composition contains substantially no submicron particles, and can be tableted more easily than the one obtained by crushing with an ACM perparizer after conventional roll kneading, and is suitable as a transfer molding material. It was

【0023】《実施例2》ノボラック樹脂100重量
部、ヘキサメチレンテトラミン15重量部、シリカ粉末
140部を実施例1と同様エクストルーダーにて加熱混
練し、100℃の熔融物とした。これを130℃で、4
000rpmで回転している実施例1と同じ回転子に導
入し吐出させ、径が3.0〜5.0μm、長さが5〜1
5mmの短繊維状物とし、これをボールミル粉砕により
粉砕し、顕微鏡で測定した平均粒径が約3μmの微粒子
状のフェノール樹脂組成物を得た。得られた組成物は従
来のピンミル粉砕物より5μm以下の粒子が少く秤量作
業性の良い組成物であり、成形材料として好適であっ
た。
Example 2 100 parts by weight of novolak resin, 15 parts by weight of hexamethylenetetramine, and 140 parts of silica powder were heated and kneaded in an extruder as in Example 1 to obtain a melt at 100 ° C. This at 130 ℃, 4
It is introduced into the same rotor as in Example 1 rotating at 000 rpm and discharged, and has a diameter of 3.0 to 5.0 μm and a length of 5 to 1
A short fiber material having a diameter of 5 mm was crushed by ball milling to obtain a fine particle phenol resin composition having an average particle diameter of about 3 μm measured by a microscope. The obtained composition had less particles of 5 μm or less than the conventional pin mill pulverized product and had good workability in weighing and was suitable as a molding material.

【0024】《実施例3》フェノール10重量部、37
重量%ホルマリン6重量部、シュウ酸0.1重量部を1
00℃2時間反応させ、次に脱水しノボラック樹脂を製
造した。これを120℃の状態で190℃で、2000
rpmで回転している2mm巾のスリットを有する直径
10cmの回転子の上部より導入し吐出させ、短繊維状
物とした。これをボールミルに入れ50回転処理し、8
0メッシュカットしたところ、マイクロトラックにて測
定した平均粒径が40μmの微粒を得た。得られた樹脂
は粗粒もサブミクロンの微粉も実質的に含まず、従来の
レイモンドミル粉砕品よりもヘキサメチレンテトラミン
との混合作業性が良好な工業用ノボラック樹脂であっ
た。
Example 3 Phenol 10 parts by weight, 37
6% by weight of formalin and 0.1 part by weight of oxalic acid
The reaction was carried out at 00 ° C. for 2 hours, and then dehydration was performed to produce a novolak resin. 2000 at 190 ℃ at 120 ℃
A rotor having a diameter of 10 cm and having a slit with a width of 2 mm rotating at rpm was introduced from the upper portion and discharged to obtain a short fibrous material. Put this in a ball mill and process 50 times,
When 0 mesh was cut, fine particles having an average particle diameter of 40 μm measured by Microtrac were obtained. The resin obtained was an industrial novolak resin which contained substantially neither coarse particles nor submicron fine powder and had better workability in mixing with hexamethylenetetramine than the conventional crushed Raymond mill product.

【0025】[0025]

【発明の効果】本発明の微粒子状熱硬化性樹脂の製造方
法は、以下の特長を有している。 (1) 熔融状態から直接所望粒度の微粒子とするので、従
来の粉砕工程のように熔融混練後シート状等にして冷
却、これを一旦中間サイズの粗粒に予備粉砕する工程を
省略することができる。 (2) 従来のように粗粒からの粉砕の場合には、過粉砕に
より所望粒度以下の微粉末も多数生成することから、粉
砕効率の低下をきたしたり、複雑な分級工程との組合わ
せが必要であったが、本発明によれば所望粒度以下の凝
集を生じ易い微粉が実質的に生成しないので、効率の良
いかつ簡略な粉砕方法である。 (3) 本発明によれば、従来のように熔融混練後の冷却工
程が不要なことからこの工程での熱硬化性樹脂の硬化反
応は生じない。従って硬化反応時間の短い組成物も安定
して製造することができる (4) 粉砕工程では主に繊維状物を折ることで所望粒度の
微粒とする為に粉砕装置が利用される。従来のように冷
却された塊状物あるいは予備的に粉砕された粗粒から粉
砕工程に入る場合と異なり、粉砕工程は省力化され、装
置の摩耗が少ない。また得られた微粒の粒度分布も狭
い。
The method for producing a particulate thermosetting resin of the present invention has the following features. (1) Since the fine particles having a desired particle size are directly obtained from the molten state, it is possible to omit the step of temporarily pulverizing the mixture into a sheet shape or the like after melt kneading and preliminarily crushing it into coarse particles of an intermediate size like a conventional pulverizing step. it can. (2) In the case of crushing from coarse particles as in the conventional method, a large number of fine powders having a desired particle size or less are generated by over-milling, which causes a decrease in crushing efficiency and a combination with a complicated classification process. Although required, the present invention is an efficient and simple pulverization method because fine powders that are less than the desired particle size and that easily cause aggregation are not substantially generated. (3) According to the present invention, unlike the conventional case, the cooling step after the melt-kneading is not necessary, so that the curing reaction of the thermosetting resin does not occur in this step. Therefore, a composition having a short curing reaction time can be stably produced. (4) In the crushing step, a crushing device is mainly used to break the fibrous material into fine particles having a desired particle size. Unlike the conventional case in which the crushing process is started from a cooled lump or coarsely crushed coarse particles, the crushing process is labor-saving and wear of the device is small. The particle size distribution of the obtained fine particles is also narrow.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に使用する回転子(例)の正面図(右
半分は断面図)である。
FIG. 1 is a front view (right half is a sectional view) of a rotor (example) used in the present invention.

【図2】 本発明の微粒子状樹脂の製造方法を実施する
ためのフローの概略図。
FIG. 2 is a schematic diagram of a flow for carrying out the method for producing a fine particle resin of the present invention.

【符号の説明】[Explanation of symbols]

1 エクストルーダー 2 回転子 3 粉砕機 4 サイクロン 11 溶融樹脂導入部 12 開口部 13 回転軸 1 Extruder 2 Rotor 3 Crusher 4 Cyclone 11 Molten Resin Introduction Portion 12 Opening Portion 13 Rotating Shaft

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熔融状態にある熱硬化性樹脂を、先ず回
転する回転子の開口部より吐出させて径が1.0α〜2
0.0α(但し、αは得られる微粒子状熱硬化性樹脂の
平均粒径とする。)の繊維状とし、次いでこれを任意の
粉砕工程を用い、平均粒径がαの粒度分布を有する微粒
子状とすることを特徴とする微粒子状熱硬化性樹脂の製
造方法。
1. A molten thermosetting resin is first discharged from an opening of a rotating rotor to have a diameter of 1.0α-2.
Fine particles having a particle size distribution of 0.0α (where α is the average particle size of the resulting fine particle thermosetting resin) and then using an arbitrary pulverization process A method for producing a fine particle thermosetting resin, characterized by comprising:
JP10435495A 1995-04-27 1995-04-27 Method for producing fine-particle thermosetting resin Expired - Fee Related JP3337861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10435495A JP3337861B2 (en) 1995-04-27 1995-04-27 Method for producing fine-particle thermosetting resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10435495A JP3337861B2 (en) 1995-04-27 1995-04-27 Method for producing fine-particle thermosetting resin

Publications (2)

Publication Number Publication Date
JPH08294916A true JPH08294916A (en) 1996-11-12
JP3337861B2 JP3337861B2 (en) 2002-10-28

Family

ID=14378545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10435495A Expired - Fee Related JP3337861B2 (en) 1995-04-27 1995-04-27 Method for producing fine-particle thermosetting resin

Country Status (1)

Country Link
JP (1) JP3337861B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11309713A (en) * 1998-02-16 1999-11-09 Sumitomo Bakelite Co Ltd Milling apparatus for resin composition
WO2001098046A1 (en) * 2000-06-23 2001-12-27 Sumitomo Bakelite Company Limited Grinding device for resin composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103831433A (en) * 2013-11-21 2014-06-04 江苏博迁新材料有限公司 Device and method for processing ultrafine nickel powder through high speed rotating airflow

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11309713A (en) * 1998-02-16 1999-11-09 Sumitomo Bakelite Co Ltd Milling apparatus for resin composition
WO2001098046A1 (en) * 2000-06-23 2001-12-27 Sumitomo Bakelite Company Limited Grinding device for resin composition
US6631861B1 (en) 2000-06-23 2003-10-14 Sumitomo Bakelite Company Limited Grinding device for resin composition

Also Published As

Publication number Publication date
JP3337861B2 (en) 2002-10-28

Similar Documents

Publication Publication Date Title
KR900005175B1 (en) Particulate material treating apparatus
JP6581508B2 (en) Classifier and classifier operation method
CN100482775C (en) Solid lubricant agglomerates and method for producing same for coating applications
KR100855897B1 (en) Ultra-Fine Powders of Ginseng or Red Ginseng
WO2007097475A1 (en) Particulate crushing sizing apparatus
JP2010030885A (en) Method for reducing unburnt carbon content in coal ash
JPH0237220B2 (en)
JPH05253509A (en) Flowing type medium agitating ultra-fine crusher
JP4205888B2 (en) Powder processing apparatus and powder processing method
JP2005211777A (en) Plant raw material pulverizing method and its apparatus
JP3337861B2 (en) Method for producing fine-particle thermosetting resin
JP2003275685A (en) Air current type grinding classifier
FI74890B (en) FOERFARANDE OCH ANORDNING FOER FRAMSTAELLNING AV EN KLASSIFICERAD FRAKTION AV FINFOERDELAT MATERIAL.
EP1302291A1 (en) Grinding device for resin composition
JP3625256B2 (en) Resin composition milling equipment
JP2967859B2 (en) Manufacturing method of composite powder
KR100462271B1 (en) Manufacturing method of ultra fine quartz powder
JPH10338518A (en) Production of calcium carbonate
JPH03115144A (en) Production of highly pulverized blast-furnace cement
US5686219A (en) Toner extruder feed port insert
JP3695689B2 (en) Resin composition milling equipment
JP2003181323A (en) Method and device for manufacturing fine particles from brittle material
JP2673916B2 (en) High bulk density wood flour and method for producing high bulk density wood flour
JPH0515803A (en) Grinding method and device by jet mill
KR960006220B1 (en) Apparatus and method for cement of powder phase

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080809

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110809

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120809

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130809

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130809

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140809

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees