JPH08294861A - Manufacture of semiconductor device and its polishing device - Google Patents

Manufacture of semiconductor device and its polishing device

Info

Publication number
JPH08294861A
JPH08294861A JP10086895A JP10086895A JPH08294861A JP H08294861 A JPH08294861 A JP H08294861A JP 10086895 A JP10086895 A JP 10086895A JP 10086895 A JP10086895 A JP 10086895A JP H08294861 A JPH08294861 A JP H08294861A
Authority
JP
Japan
Prior art keywords
polishing
liquid
polished
dressing
cloth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10086895A
Other languages
Japanese (ja)
Other versions
JP3240247B2 (en
Inventor
Haruki Noujiyou
治輝 能條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10086895A priority Critical patent/JP3240247B2/en
Publication of JPH08294861A publication Critical patent/JPH08294861A/en
Application granted granted Critical
Publication of JP3240247B2 publication Critical patent/JP3240247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Abstract

PURPOSE: To provide a manufacturing method for semiconductor device and its polishing device, with which a polished film having a uniform thickness can be yielded and the manufacturing efficiency be enhanced. CONSTITUTION: A polish cloth 15 is placed on a rotary surface plate 13 rotating in one direction, and a semiconductor wafer 16 to be polished is held rotatably on a wafer retaining board 14, and a chemical-mechanical polishing is conducted while a polishing liquid is supplied from a supply pipe 17 to the slide contacting part of the polishing surface 15a of the cloth 15 with the wafer surface to be polished 16a, and in a position behind the slide contacting part about the surface plate 13 rotating direction, a liquid discharging mechanism 23 is furnished which removes the waste liquid from the polishing surface 15a of the cloth 15 during the polishing process. This allows conducting the polishing process with the surface 15a which gets rid of liquid at all times, and there is less change in the polishing rate because the surface 15a does not go in clogging even through a long time service, and the polishing work can be performed continuously without interruption.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体ウェハの表面を
平坦化する半導体装置の製造方法及び研磨装置に関し、
特に化学的機械研磨法により平坦化するようにした半導
体装置の製造方法及び研磨装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device manufacturing method and a polishing apparatus for flattening the surface of a semiconductor wafer,
In particular, the present invention relates to a method for manufacturing a semiconductor device and a polishing apparatus that are planarized by a chemical mechanical polishing method.

【0002】[0002]

【従来の技術】周知の通り、半導体装置に対する高密度
化、微細化の要求に伴い、これらの要求を満たすべく種
々の製造方法及び製造装置の開発検討がなされている。
このうちで半導体ウェハの表面の高低差が1μm足らず
の凹凸を平坦化することは必須となっており、例えば層
間絶縁膜の平坦化やプラグの形成、埋め込み金属配線の
形成、さらに埋め込み素子分離等を行う際に必須の技術
となっている。こうした半導体ウェハの表面の平坦化は
化学的機械研磨法(Chemical Mechani
cal Polishing法:以下、CMP法と記
す)により行われている。
2. Description of the Related Art As is well known, with the demand for higher density and finer semiconductor devices, various manufacturing methods and manufacturing devices have been studied to meet these demands.
Among them, it is indispensable to flatten the unevenness of the surface of the semiconductor wafer with a height difference of less than 1 μm. For example, flattening of the interlayer insulating film, formation of plugs, formation of embedded metal wiring, and further isolation of embedded elements, etc. It has become an indispensable technology when doing. The planarization of the surface of such a semiconductor wafer is performed by a chemical mechanical polishing method (Chemical Mechanical Method).
cal polishing method: hereinafter referred to as CMP method).

【0003】以下、従来のCMP法による半導体ウェハ
の表面の平坦化技術について図11乃至図15を参照し
て説明する。図11は化学的機械研磨装置の要部の斜視
図であり、図12は化学的機械研磨装置のポリッシング
レートの経時変化を示す図であり、図13は研磨クロス
の接触比率を説明するための図で、図13(a)は研磨
クロスの半径に対する接触比率示す図、図13(b)は
接触比率の定義を説明するための図であり、図14は半
導体ウェハの研磨加工前の部分断面図であり、図15は
半導体ウェハの研磨加工後の部分断面図である。
A conventional flattening technique for the surface of a semiconductor wafer by the CMP method will be described below with reference to FIGS. 11 to 15. FIG. 11 is a perspective view of a main part of the chemical mechanical polishing apparatus, FIG. 12 is a view showing a change with time of a polishing rate of the chemical mechanical polishing apparatus, and FIG. 13 is a view for explaining a contact ratio of a polishing cloth. 13A is a diagram showing a contact ratio with respect to the radius of the polishing cloth, FIG. 13B is a diagram for explaining the definition of the contact ratio, and FIG. 14 is a partial cross section of the semiconductor wafer before polishing. FIG. 15 is a partial cross-sectional view after polishing the semiconductor wafer.

【0004】図11乃至図15において、1は化学的機
械研磨装置(以下、CMP装置と記す)の矢印Aの方向
に回転する回転定盤で、その上面には研磨クロス2が装
着されている。3は研磨クロス2の上面に水等に研磨粒
子を懸濁させた研磨液を先端部から供給する研磨液供給
管である。
In FIGS. 11 to 15, reference numeral 1 denotes a rotary platen which rotates in the direction of arrow A of a chemical mechanical polishing apparatus (hereinafter referred to as a CMP apparatus), and a polishing cloth 2 is mounted on the upper surface thereof. . Reference numeral 3 is a polishing liquid supply pipe for supplying a polishing liquid, in which polishing particles are suspended in water or the like, to the upper surface of the polishing cloth 2 from the tip.

【0005】また、4は矢印Bの方向に回転する回転定
盤1の半径より直径が小さいウェハ保持盤で、このウェ
ハ保持盤4はその下面が回転定盤1の回転中心に対向配
置されないように設けられている。さらに、ウェハ保持
盤4は半導体ウェハ5を真空チャックにより下面に保持
し、この半導体ウェハ5を保持したままの状態で研磨ク
ロス2の上面に対し直交する方向に進退可能となってお
り、半導体ウェハ5の下面を研磨クロス2の上面に所定
圧力で押圧することにより研磨が行えるようになってい
る。
Reference numeral 4 denotes a wafer holding plate having a diameter smaller than the radius of the rotary platen 1 which rotates in the direction of arrow B. The lower surface of the wafer holder 4 is arranged so as not to face the center of rotation of the rotary platen 1. It is provided in. Further, the wafer holding plate 4 holds the semiconductor wafer 5 on the lower surface by a vacuum chuck, and is capable of advancing and retracting in a direction orthogonal to the upper surface of the polishing cloth 2 with the semiconductor wafer 5 being held. Polishing can be performed by pressing the lower surface of 5 against the upper surface of the polishing cloth 2 with a predetermined pressure.

【0006】そして上記のように構成されたCMP装置
による半導体ウェハ5の研磨加工は次のようにして行わ
れる。先ず回転させた状態の回転定盤1の研磨クロス2
の上面に研磨液供給管3から研磨液を供給し、その後、
ウェハ保持盤4を回転させながら半導体ウェハ5の下面
を研磨クロス2の上面に所定圧力で押圧する。この押圧
状態を所定時間継続した後にウェハ保持盤4を後退さ
せ、研磨クロス2から半導体ウェハ5を引き離すことに
よって研磨加工を終了する。
Then, the polishing processing of the semiconductor wafer 5 by the CMP apparatus configured as described above is performed as follows. First, the polishing cloth 2 of the rotating surface plate 1 in the rotated state
The polishing liquid is supplied from the polishing liquid supply pipe 3 to the upper surface of the
While rotating the wafer holding plate 4, the lower surface of the semiconductor wafer 5 is pressed against the upper surface of the polishing cloth 2 with a predetermined pressure. After this pressing state is continued for a predetermined time, the wafer holding platen 4 is retracted, and the semiconductor wafer 5 is separated from the polishing cloth 2 to complete the polishing process.

【0007】しかしながら上記の従来技術においては、
同一の研磨クロス2を長時間使用して研磨を行った場
合、半導体ウェハ5の被研磨面の中心部分Xと半径方向
の中間部分Y、さらに外周部分Zでのポリッシングレー
トに差が生じてくる。例えば水に過酸化水素(H
2 2 )とアルミナ(Al2 3 )の微粒子を混合させ
て形成した研磨液で、半導体ウェハ5の被研磨面に対し
所定の研磨加工を行った場合のポリッシングレートの経
時変化は図12に示すようなものとなっている。なお、
X は中心部分Xの変化曲線、LY は中間部分Yの変化
曲線、LZ は外周部分Zの変化曲線である。
However, in the above prior art,
When polishing is performed using the same polishing cloth 2 for a long time, a difference occurs in the polishing rate between the central portion X of the surface to be polished of the semiconductor wafer 5, the intermediate portion Y in the radial direction, and the outer peripheral portion Z. . For example, hydrogen peroxide (H
2 O 2 ) and fine particles of alumina (Al 2 O 3 ) are mixed to form a polishing liquid on the surface of the semiconductor wafer 5, and the polishing rate changes with time as shown in FIG. It is as shown in. In addition,
L X is a change curve of the central portion X, L Y is a change curve of the intermediate portion Y, and L Z is a change curve of the outer peripheral portion Z.

【0008】すなわち、研磨クロス2を使用し始めた初
期段階のポリッシングレートは、半導体ウェハ5の被研
磨面の中心部分Xと中間部分Y、外周部分Zで約0.2
7μm/minとほぼ等しく、半導体ウェハ5は面内で
略均一となるよう研磨される。しかし、例えば累積研磨
時間が30分間を越えた後においては中心部分Xのポリ
ッシングレートは0.38μm/min、中間部分Yの
ポリッシングレートは0.32μm/min、外周部分
Zのポリッシングレートは0.29μm/minとばら
ついたものとなってしまい、半導体ウェハ5は略均一に
研磨されなくなってしまう。
That is, the polishing rate at the initial stage of using the polishing cloth 2 is about 0.2 in the central portion X, the intermediate portion Y and the outer peripheral portion Z of the surface to be polished of the semiconductor wafer 5.
It is approximately equal to 7 μm / min, and the semiconductor wafer 5 is polished to be substantially uniform in the plane. However, for example, after the cumulative polishing time exceeds 30 minutes, the polishing rate of the central portion X is 0.38 μm / min, the polishing rate of the intermediate portion Y is 0.32 μm / min, and the polishing rate of the outer peripheral portion Z is 0. The variation is 29 μm / min, and the semiconductor wafer 5 cannot be polished substantially uniformly.

【0009】このため、長時間使用した研磨クロス2に
よって研磨した半導体ウェハ5では、被研磨膜の厚さに
ばらつきが生じる。また、長時間使用した研磨クロス2
をさらに使い続けると、研磨した面に傷が付くなどの不
具合が生じる虞がある。
Therefore, in the semiconductor wafer 5 polished by the polishing cloth 2 used for a long time, the thickness of the film to be polished varies. In addition, polishing cloth 2 used for a long time
If the tool is further used, there is a possibility that problems such as scratches on the polished surface may occur.

【0010】このような半導体ウェハ5の被研磨面の面
内位置によるポリッシングレートの経時変化の差は、研
磨クロス2と半導体ウェハ5の接触比率が図13(a)
に示すように異なり、研磨クロス2の表面が劣化した
り、被研磨物や研磨粒子等による研磨クロス2の目詰ま
りなどが起こり、研磨面の表面状態が一様でなくなるこ
とによって生じるものと考えられる。なお、接触比率は
図13(b)に示すようにl/2πRで表されるもの
で、Rは半導体ウェハ5の面内を横切る任意円の半径で
あり、lは半導体ウェハ5の面内を横切る半径Rの任意
円の部分円周の長さである。
The difference in the change over time in the polishing rate depending on the in-plane position of the surface to be polished of the semiconductor wafer 5 is that the contact ratio between the polishing cloth 2 and the semiconductor wafer 5 is as shown in FIG.
It is considered that this is caused by the surface condition of the polishing surface not being uniform due to deterioration of the surface of the polishing cloth 2 or clogging of the polishing cloth 2 due to an object to be polished or polishing particles. To be The contact ratio is represented by l / 2πR as shown in FIG. 13B, R is the radius of an arbitrary circle that traverses the surface of the semiconductor wafer 5, and l is the surface of the semiconductor wafer 5. It is the length of the partial circumference of an arbitrary circle with a radius R that traverses.

【0011】こうした接触比率が異なり研磨クロス2の
表面が劣化することで、研磨クロス2の研磨面における
研磨液の保持力や、研磨クロス2の研磨面と半導体ウェ
ハ5の被研磨面との摩擦係数が変化し、半導体ウェハ5
の被研磨面の面内位置によってポリッシングレートが変
化し、ばらついたものとなってしまう。また研磨クロス
2が目詰まりなどを起こすと、研磨面の一部で部分的に
研磨粒子の濃度が高くなり、同様に半導体ウェハ5の被
研磨面の面内位置によってポリッシングレートが変化
し、ばらついたものとなってしまう。
Due to the different contact ratios and deterioration of the surface of the polishing cloth 2, the holding force of the polishing liquid on the polishing surface of the polishing cloth 2 and the friction between the polishing surface of the polishing cloth 2 and the surface to be polished of the semiconductor wafer 5 are obtained. Coefficient changes, semiconductor wafer 5
The polishing rate changes depending on the in-plane position of the surface to be polished, resulting in variations. Further, when the polishing cloth 2 is clogged, the concentration of polishing particles partially increases in a part of the polishing surface, and similarly, the polishing rate changes depending on the in-plane position of the surface to be polished of the semiconductor wafer 5, and the polishing rate varies. It becomes a thing.

【0012】そして、研磨クロス2の研磨面の変化に対
応するよう常に半導体ウェハ5の被研磨膜の厚さを測定
しなければ正確な研磨量の把握ができず、CMP装置に
よる研磨加工は非常に煩雑なものとなっていた。
If the thickness of the film to be polished of the semiconductor wafer 5 is not always measured so as to correspond to the change of the polishing surface of the polishing cloth 2, the accurate polishing amount cannot be grasped, and the polishing process by the CMP apparatus is extremely difficult. It was complicated.

【0013】さらに、例えば図14に示すようにシリコ
ン基板6上にシリコン酸化膜7を積層し、積層したシリ
コン酸化膜7に溝部8を形成し、溝部8を埋めるように
しながらシリコン酸化膜7上に導電層となるタングステ
ン(W)膜9を堆積して半導体ウェハ5を構成する。そ
して、この半導体ウェハ5を溝部8内にタングステン膜
9を残すようにして他のタングステン膜9を除去し上面
をCMP装置による研磨加工によって平坦化しようとす
る際に、次のような不具合が生じる虞がある。
Further, for example, as shown in FIG. 14, a silicon oxide film 7 is laminated on a silicon substrate 6, a groove portion 8 is formed in the laminated silicon oxide film 7, and the silicon oxide film 7 is formed on the silicon oxide film 7 while filling the groove portion 8. A tungsten (W) film 9 to be a conductive layer is deposited on the semiconductor wafer 5 to form the semiconductor wafer 5. Then, when the other tungsten film 9 is removed so that the tungsten film 9 is left in the groove 8 and the upper surface of the semiconductor wafer 5 is flattened by polishing by the CMP apparatus, the following problems occur. There is a risk.

【0014】その不具合は、長時間使用した研磨クロス
2によって研磨加工を行った場合、半導体ウェハ5の被
研磨面の面内位置によってポリッシングレートが異なる
ため、先にタングステン膜9が除去されて露出したシリ
コン酸化膜7が継続して研磨され、その際に研磨クロス
2に付着したシリコン酸化膜7よりも硬いタングステン
膜9の研磨かすによって図15に示すように傷付けられ
てしまう虞がある。
The problem is that when polishing is performed with the polishing cloth 2 used for a long time, the polishing rate varies depending on the in-plane position of the surface to be polished of the semiconductor wafer 5, so that the tungsten film 9 is first removed and exposed. The silicon oxide film 7 is continuously polished, and at that time, the tungsten dust film 9 harder than the silicon oxide film 7 adhered to the polishing cloth 2 may be damaged as shown in FIG.

【0015】そして、上述のような長時間使用した研磨
クロス2による研磨によって被研磨膜の膜厚のばらつき
や被研磨面の傷付きの不具合を解消するため、研磨クロ
ス2に対し表面状態を一様に保つためのクリーニング作
業であるドレッシングが行われる。このドレッシングに
は水が用いられるが、水は研磨クロス2を劣化させず、
研磨粒子や被研磨物の研磨かすによる目詰まりを解消す
る上で非常に有効であるが、研磨中に研磨クロス2上に
水を流すと研磨液がドレッシング用の水によって希釈さ
れ濃度が変化してしまい、この濃度変化で研磨量が一定
せず所定量の研磨が所定時間では行えなくなる。
Then, in order to eliminate the problems such as the variation in the film thickness of the film to be polished and the scratches on the surface to be polished by polishing with the polishing cloth 2 used for a long time as described above, the surface state of the polishing cloth 2 is set to one. Dressing, which is a cleaning operation, is performed to keep the same. Water is used for this dressing, but water does not deteriorate the polishing cloth 2,
It is very effective in eliminating the clogging caused by polishing particles and polishing residue of the object to be polished. However, if water is flown over the polishing cloth 2 during polishing, the polishing liquid will be diluted by the dressing water and the concentration will change. Due to this change in concentration, the polishing amount is not constant and a predetermined amount cannot be polished in a predetermined time.

【0016】このため、所定時間使用した研磨クロス2
については、その時点でCMP装置の運転を停止して研
磨クロス2のドレッシングのみを行い、その後に再び研
磨加工を行うようにしている。しかしCMP装置の運転
を研磨クロス2のドレッシングを行う間一時停止するた
め、CMP装置の稼動率が低いものとなっていた。特
に、被研磨膜の厚さを均一にするためには1枚の半導体
ウェハ5を研磨する度に研磨加工後にCMP装置の運転
を停止させ、研磨クロス2のドレッシングを行う必要が
あり、この場合にはCMP装置の稼動率が非常に低いも
のとなっていた。
Therefore, the polishing cloth 2 used for a predetermined time
With respect to the above, the operation of the CMP apparatus is stopped at that time, only the dressing of the polishing cloth 2 is performed, and then the polishing process is performed again. However, since the operation of the CMP apparatus is temporarily stopped while the polishing cloth 2 is being dressed, the operating rate of the CMP apparatus is low. In particular, in order to make the thickness of the film to be polished uniform, it is necessary to stop the operation of the CMP apparatus and perform the dressing of the polishing cloth 2 after polishing each time one semiconductor wafer 5 is polished. The operating rate of the CMP device was extremely low.

【0017】[0017]

【発明が解決しようとする課題】上記のように従来のC
MP装置では、研磨クロスの使用時間によって半導体ウ
ェハ5の被研磨面の面内位置によってポリッシングレー
トが変化し、被研磨膜の厚さがばらつくために膜厚の測
定を常に行わないと正確な研磨量の把握ができず、研磨
加工が非常に煩雑なものとなっており、また、使用時間
によるポリッシングレートの変化や研磨かす等による被
研磨面の傷付きを解消するために水による研磨クロスの
ドレッシングを行う場合、研磨加工中に行うと研磨液の
濃度が変化してしまうのでCMP装置の運転を停止させ
なければならず、CMP装置の稼動率が低く製造効率向
上の妨げとなっていた。このような状況に鑑みて本発明
はなされたもので、その目的とするところは長時間使用
しても被研磨面の面内位置によるポリッシングレートの
変化が少なく、均一な厚さの被研磨膜を得ることがで
き、また製造効率を向上させることができる半導体装置
の製造方法及び研磨装置を提供することにある。
As described above, the conventional C
In the MP apparatus, the polishing rate changes depending on the in-plane position of the surface to be polished of the semiconductor wafer 5 depending on the time of use of the polishing cloth, and the thickness of the film to be polished varies. It is not possible to grasp the amount, and the polishing process is very complicated.Also, in order to eliminate scratches on the surface to be polished due to changes in the polishing rate due to use time and polishing residue, etc. If dressing is performed during polishing, the concentration of the polishing liquid changes, so the operation of the CMP apparatus must be stopped, and the operating rate of the CMP apparatus is low, which hinders improvement of manufacturing efficiency. The present invention has been made in view of such circumstances, and an object of the present invention is to obtain a film to be polished having a uniform thickness, which has a small change in the polishing rate depending on the in-plane position of the surface to be polished even when used for a long time. It is an object of the present invention to provide a method for manufacturing a semiconductor device and a polishing apparatus capable of obtaining the above-mentioned characteristics and improving manufacturing efficiency.

【0018】[0018]

【課題を解決するための手段】本発明の半導体装置の製
造方法及び研磨装置は、一方向に移動するよう設けられ
た研磨部材の研磨面と半導体ウェハの被研磨面との間に
研磨液を供給し、研磨面を被研磨面に繰り返し摺接させ
るようにして該被研磨面の研磨加工を行う化学的機械研
磨工程を備える半導体装置の製造方法において、研磨加
工を行いながら研磨加工で生じた研磨廃液が再度研磨面
に到達するのを防止するよう該研磨廃液を除去すること
を特徴とする方法であり、また、一方向に移動するよう
設けられた研磨部材の研磨面と半導体ウェハの被研磨面
との間に研磨液を供給し、研磨面を被研磨面に繰り返し
摺接させるようにして該被研磨面の研磨加工を行う化学
的機械研磨工程を備える半導体装置の製造方法におい
て、研磨加工を行いながら研磨加工後の研磨面にドレッ
シング液を供給してドレッシングを行うと共に、ドレッ
シング後に研磨面からドレッシング液と研磨廃液を除去
し、さらに研磨廃液を除去した後の研磨面を被研磨面に
摺接させて再び研磨加工を行うようにしたことを特徴と
する方法であり、さらに、ドレッシング液が水であるこ
とを特徴とする方法であり、さらに、被研磨面の少なく
とも一部がタングステン膜で構成されていることを特徴
とする方法であり、また、一方向に回転する回転定盤
と、この回転定盤上に貼付された研磨クロスと、この研
磨クロスの研磨面に被研磨面が対向するよう被研磨部材
を回転保持する回転定盤より小径の保持盤と、研磨面と
被研磨面との摺接部分に研磨液を供給する研磨液供給部
とを備えて化学的機械研磨加工を行うようにした研磨装
置において、摺接部分の回転定盤の回転方向後方側に研
磨面から研磨加工中に研磨廃液を除去する液排出機構を
設けたことを特徴とするものであり、また、一方向に回
転する回転定盤と、この回転定盤上に貼付された研磨ク
ロスと、この研磨クロスの研磨面に被研磨面が対向する
よう被研磨部材を回転保持する回転定盤より小径の保持
盤と、研磨面と被研磨面との摺接部分に研磨液を供給す
る研磨液供給部とを備えて化学的機械研磨加工を行うよ
うにした研磨装置において、摺接部分の回転定盤の回転
方向後方側に研磨面から研磨加工中に研磨廃液を除去す
る液排出機構と、この液排出機構と摺接部分との間の研
磨面にドレッシング液を研磨加工中に噴射するドレッシ
ング液供給部とを設けたことを特徴とするものであり、
さらに、液排出機構が、研磨面を半径方向に横断する回
収板と、この回収板の近傍に吸引スリットを備えている
ことを特徴とするものである。
A semiconductor device manufacturing method and a polishing apparatus according to the present invention provide a polishing liquid between a polishing surface of a polishing member provided so as to move in one direction and a surface to be polished of a semiconductor wafer. In a method of manufacturing a semiconductor device including a chemical mechanical polishing step of supplying and polishing a surface to be polished so that the surface to be polished is repeatedly slidably contacted with the surface to be polished, a polishing process is performed while the polishing is being performed. The polishing waste liquid is removed so as to prevent the polishing waste liquid from reaching the polishing surface again, and the polishing surface of the polishing member provided so as to move in one direction and the semiconductor wafer are covered. In a method for manufacturing a semiconductor device, which comprises a chemical mechanical polishing step in which a polishing liquid is supplied between the polishing surface and the polishing surface, so that the polishing surface is repeatedly brought into sliding contact with the polishing surface, Processing The dressing liquid is supplied to the polishing surface after the grit polishing to perform dressing, the dressing liquid and the polishing waste liquid are removed from the polishing surface after the dressing, and the polishing surface after removing the polishing waste liquid is slidably contacted with the surface to be polished. The method is characterized in that the polishing process is performed again, and further, the method is characterized in that the dressing liquid is water, and further, at least a part of the surface to be polished is composed of a tungsten film. The method is characterized in that the rotating surface plate that rotates in one direction, a polishing cloth attached on the rotating surface plate, the surface to be polished is opposed to the polishing surface of the polishing cloth. As described above, the chemical mechanical polishing process is performed by including a holding plate having a diameter smaller than that of a rotary platen for rotatingly holding the member to be polished, and a polishing liquid supply unit for supplying a polishing liquid to a sliding contact portion between the polishing surface and the polishing surface. Yo In the polishing apparatus described above, a liquid discharging mechanism for removing a polishing waste liquid during polishing from the polishing surface is provided on the rear side in the rotation direction of the rotary platen in the sliding contact portion, and the one-way direction is also provided. A rotating surface plate that rotates in a rotating manner, a polishing cloth attached to the rotating surface plate, and a holding plate having a diameter smaller than that of the rotating surface plate that rotates and holds the member to be polished so that the surface to be polished faces the polishing surface of the polishing cloth. And a polishing liquid supply part for supplying a polishing liquid to the sliding contact part between the polishing surface and the surface to be polished to perform the chemical mechanical polishing process. A liquid discharging mechanism for removing polishing waste liquid from the polishing surface to the rear side in the direction during polishing, and a dressing liquid supplying unit for spraying the dressing liquid on the polishing surface between the liquid discharging mechanism and the sliding contact portion during polishing. Is provided,
Further, the liquid discharging mechanism is characterized by including a recovery plate that traverses the polishing surface in the radial direction, and a suction slit near the recovery plate.

【0019】[0019]

【作用】上記のように構成された半導体装置の製造方法
及び研磨装置は、半導体装置の製造方法が、一方向に移
動する研磨部材の研磨面と半導体ウェハの被研磨面との
間に研磨液を供給して化学的機械研磨加工を行いながら
研磨加工中の部分の後方側の研磨面から研磨廃液を除去
し、この研磨廃液を除去した後の研磨面に研磨液を再度
供給して被研磨面の研磨加工を行うようにした方法であ
るので、また研磨装置が、一方向に回転する回転定盤上
の研磨クロスの研磨面と、保持盤に回転保持された被研
磨部材の被研磨面との摺接部分に、研磨液を研磨液供給
部から供給して化学的機械研磨加工を行い、摺接部分の
回転定盤の回転方向後方側に研磨面から研磨加工中に研
磨廃液を除去する液排出機構を備えているので、研磨加
工は常に研磨廃液が除去された研磨面によって行われる
ことになり、長時間使用しても研磨面が目詰まりしない
ためにポリッシングレートの変化が少なく、また研磨加
工を途中で止めずに継続して研磨を行うことができる。
According to the method of manufacturing a semiconductor device and the polishing apparatus having the above-described structure, the method of manufacturing a semiconductor device is such that a polishing liquid is applied between a polishing surface of a polishing member that moves in one direction and a surface to be polished of a semiconductor wafer. Is supplied to perform a chemical mechanical polishing process to remove the polishing waste liquid from the polishing surface on the rear side of the portion being polished, and after removing the polishing waste liquid, the polishing liquid is supplied again to the surface to be polished. Since it is a method of polishing the surface, the polishing apparatus has a polishing surface of a polishing cloth on a rotating surface plate that rotates in one direction and a surface to be polished of a member to be polished that is rotationally held by a holding plate. The polishing liquid is supplied from the polishing liquid supply part to the sliding contact part with and the chemical mechanical polishing process is performed, and the polishing waste liquid is removed from the polishing surface to the rear side in the rotation direction of the rotary platen of the sliding contact part during the polishing process. Since it is equipped with a liquid discharging mechanism, It will be performed by the removed polishing surface, the polishing surface will not be clogged even if it is used for a long time, the change in polishing rate is small, and it is possible to continue polishing without stopping the polishing process on the way. it can.

【0020】[0020]

【実施例】以下、本発明の一実施例を図1乃至図10を
参照して説明する。図1は化学的機械研磨装置を示す概
略の構成図であり、図2は要部の平面図であり、図3は
要部の斜視図であり、図4は液排出機構の斜視図であ
り、図5は半導体ウェハの研磨加工前の部分断面図であ
り、図6は半導体ウェハの研磨加工後の部分断面図であ
り、図7はポリッシングレートの経時変化を示す図であ
り、図8は液排出機構の第1の変形例の斜視図であり、
図9は液排出機構の第1の変形例の断面図であり、図1
0は液排出機構の第2の変形例の断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 1 is a schematic configuration diagram showing a chemical mechanical polishing apparatus, FIG. 2 is a plan view of a main part, FIG. 3 is a perspective view of the main part, and FIG. 4 is a perspective view of a liquid discharge mechanism. 5, FIG. 5 is a partial cross-sectional view of a semiconductor wafer before polishing, FIG. 6 is a partial cross-sectional view of a semiconductor wafer after polishing, FIG. 7 is a view showing a change in polishing rate with time, and FIG. It is a perspective view of the 1st modification of a liquid discharge mechanism,
FIG. 9 is a sectional view of a first modification of the liquid discharge mechanism.
0 is a cross-sectional view of a second modification of the liquid discharge mechanism.

【0021】図1乃至図7において、化学的機械研磨装
置11は研磨ブース12内に水平面内で回転する半径3
00mmの回転定盤13を備え、この回転定盤13の上
方には回転定盤13の上面に下面を対向させ、同じく水
平面内で回転するウェハ保持盤14を備えて構成されて
いる。なお、ウェハ保持盤14の回転中心Cは回転定盤
13の回転中心Dに対して約140mmのオフセット距
離Eを有するように設けられている。13aは研磨ブー
ス12の底面を貫通して回転定盤13を回転駆動する定
盤回転軸であり、14aは研磨ブース12の天井面を貫
通してウェハ保持盤14を回転駆動する保持盤回転軸で
ある。
In FIGS. 1 to 7, a chemical mechanical polishing apparatus 11 has a radius 3 which rotates in a horizontal plane in a polishing booth 12.
A rotary platen 13 of 00 mm is provided, and above the rotary platen 13, there is provided a wafer holding platen 14 whose lower surface faces the upper surface of the rotary platen 13 and which also rotates in a horizontal plane. The rotation center C of the wafer holding plate 14 is provided so as to have an offset distance E of about 140 mm with respect to the rotation center D of the rotation platen 13. Reference numeral 13a is a surface plate rotating shaft that penetrates the bottom surface of the polishing booth 12 and drives the rotary surface plate 13 to rotate, and reference numeral 14a denotes a holding plate rotating shaft that penetrates the ceiling surface of the polishing booth 12 and drives the wafer holding plate 14 to rotate. Is.

【0022】また、回転定盤13は上面に研磨部材の研
磨クロス15が貼付されてていると共に、矢印Aの方向
に通常は20rpm〜50rpm、最高でも100rp
m程度の速度で定速回転するものであり、研磨クロス1
5はポリエーテル系ポリウレタンやポリエステル系ポリ
ウレタン、ポリアミド系ポリウレタンなどの合成繊維に
より構成され、さらに合成樹脂で固められた不織布や織
布、あるいは直径が10μm〜数mm程度の独立気泡を
有する所定発泡倍率の発泡ポリウレタン樹脂などで形成
された平板状の研磨部材である。
Further, the rotary platen 13 has a polishing cloth 15 as a polishing member adhered to the upper surface thereof, and is usually 20 rpm to 50 rpm in the direction of arrow A, and a maximum of 100 rp.
The polishing cloth 1 rotates at a constant speed at a speed of about m.
5 is a non-woven fabric or woven fabric composed of synthetic fibers such as polyether polyurethane, polyester polyurethane, polyamide polyurethane, etc., and further hardened with synthetic resin, or a predetermined expansion ratio having closed cells with a diameter of about 10 μm to several mm. Is a flat plate-like polishing member formed of the foamed polyurethane resin.

【0023】一方、ウェハ保持盤14は回転定盤13の
半径より直径が200mmと小さく、下面に直径が20
0mmのシリコンウェハ等の被研磨部材である半導体ウ
ェハ16を真空チャックにより保持するようになってお
り、その回転は矢印Bの方向に通常は20rpm〜50
rpm、最高でも100rpm程度の速度の定速回転と
なっている。そしてウェハ保持盤14は半導体ウェハ1
6を保持し水平面内で回転した状態で研磨クロス15の
上面に対し直交する方向に進退可能となっていて、研磨
加工を行う際には半導体ウェハ16の下面側となってい
る被研磨面16aを研磨クロス15の上面側の研磨面1
5aに、例えば通常400g/cm2 〜500g/cm
2 の範囲の所定圧力、最高でも1kg/cm2 で押圧す
るようになっている。なお、押圧力は圧縮空気により制
御できるようになっている。
On the other hand, the wafer holding plate 14 has a diameter of 200 mm smaller than the radius of the rotary platen 13 and has a diameter of 20 mm on the lower surface.
A semiconductor wafer 16, which is a member to be polished such as a 0 mm silicon wafer, is held by a vacuum chuck, and its rotation is usually 20 rpm to 50 rpm in the direction of arrow B.
The rotation speed is constant at a rpm of about 100 rpm at maximum. The wafer holding plate 14 is the semiconductor wafer 1
6 can be moved forward and backward in a direction orthogonal to the upper surface of the polishing cloth 15 while being rotated in a horizontal plane while holding 6 and the surface to be polished 16a, which is the lower surface side of the semiconductor wafer 16 when polishing is performed. The polishing surface 1 on the upper surface side of the polishing cloth 15
5a, for example, usually 400 g / cm 2 to 500 g / cm
It is designed to press at a predetermined pressure within the range of 2 , and at most 1 kg / cm 2 . The pressing force can be controlled by compressed air.

【0024】17は回転定盤13の上方側に設けられた
研磨液供給管で、この研磨液供給管17には流量調整器
18を介して供給された研磨液を、研磨加工時に研磨ク
ロス15の研磨面15aに供給できるよう研磨液タンク
19が接続されている。さらに、研磨液供給管17から
回転定盤13上の研磨クロス15の研磨面15aに供給
される研磨液は、水等に研磨粒子を懸濁させたもので、
例えば水に過酸化水素20%と一次粒子径が0.01μ
m〜5μm程度のアルミナの微粒子を混合させたものな
どである。
Reference numeral 17 denotes a polishing liquid supply pipe provided on the upper side of the rotary platen 13. The polishing liquid supplied to the polishing liquid supply pipe 17 through a flow rate controller 18 is used as a polishing cloth 15 during polishing. A polishing liquid tank 19 is connected so that it can be supplied to the polishing surface 15a. Further, the polishing liquid supplied from the polishing liquid supply pipe 17 to the polishing surface 15a of the polishing cloth 15 on the rotary platen 13 is a suspension of polishing particles in water or the like,
For example, 20% hydrogen peroxide in water and a primary particle size of 0.01μ
For example, a mixture of alumina fine particles of about m to 5 μm is used.

【0025】また研磨液供給管17の研磨液を吐出する
先端開口17aは、研磨クロス15の研磨面15aに近
接して設けられている。先端開口17aが設けられてい
る位置は、研磨加工時に押圧された半導体ウェハ16の
外周部分が研磨クロス15の回転中心側部位に描く軌跡
Fの近傍であると共に、研磨クロス15の研磨面15a
に供給された研磨液の下流側に半導体ウェハ16が配置
される位置となっている。そして研磨液は、研磨加工中
は常時、研磨液の組成等により異なるが50cc/mi
n〜500cc/minの範囲の所定流量で研磨面15
aに供給される。
The tip opening 17a of the polishing liquid supply pipe 17 for discharging the polishing liquid is provided near the polishing surface 15a of the polishing cloth 15. At the position where the tip opening 17a is provided, the outer peripheral portion of the semiconductor wafer 16 pressed during polishing is near the trajectory F drawn on the rotation center side portion of the polishing cloth 15, and the polishing surface 15a of the polishing cloth 15 is located.
The semiconductor wafer 16 is located downstream of the polishing liquid supplied to the semiconductor wafer 16. The polishing liquid is always 50 cc / mi during the polishing process, depending on the composition of the polishing liquid and the like.
Polishing surface 15 at a predetermined flow rate in the range of n to 500 cc / min
is supplied to a.

【0026】20は回転定盤13の上方側に設けられた
ドレッシング液供給管で、このドレッシング液供給管2
0には供給量や供給圧力が調整可能なドレッシング液供
給調整器21を介して供給された例えば純水や希塩酸
(希HCl)、塩酸と硫酸の混合液(HCl+H2 SO
4 )、希弗酸(希HF)、過酸化水素水、あるいはスル
ホン酸系の界面活性剤を添加した水、カルボン酸系の界
面活性剤を添加した水等のドレッシング液を、研磨加工
中に研磨クロス15の研磨面15aに供給できるようド
レッシング液タンク22が接続されている。またドレッ
シング液供給管20の先端部20aには管軸方向に配列
された複数の噴射孔20bが形成されており、ドレッシ
ング液供給管20の先端は閉塞されたものとなってい
る。
Reference numeral 20 denotes a dressing liquid supply pipe provided above the rotary platen 13.
For example, pure water, diluted hydrochloric acid (dilute HCl), a mixed solution of hydrochloric acid and sulfuric acid (HCl + H 2 SO) supplied through a dressing liquid supply controller 21 whose supply amount and supply pressure can be adjusted to 0.
4 ), dilute hydrofluoric acid (dilute HF), hydrogen peroxide water, water containing sulfonic acid type surfactant, water containing carboxylic acid type surfactant, etc. during dressing A dressing liquid tank 22 is connected so that it can be supplied to the polishing surface 15a of the polishing cloth 15. Further, a plurality of injection holes 20b arranged in the pipe axis direction are formed in the tip portion 20a of the dressing liquid supply pipe 20, and the tip of the dressing liquid supply pipe 20 is closed.

【0027】そしてドレッシング液供給管20は、その
先端部20aが半導体ウェハ16の研磨時の押圧位置よ
りも回転定盤13の回転方向の後方側の研磨面15a
を、この面に対して平行となるように半径方向に横断し
ていて、先端部20aの噴射孔20bからは研磨加工中
に研磨面15aに0.1kgf/cm2 〜5kgf/c
2 の範囲の所定圧力で噴出させるようにしてドレッシ
ング液が供給されるようになっている。
The tip portion 20a of the dressing liquid supply pipe 20 is a polishing surface 15a on the rear side in the rotation direction of the rotary platen 13 from the pressing position at the time of polishing the semiconductor wafer 16.
Is crossed in the radial direction so as to be parallel to this surface, and from the injection hole 20b of the tip portion 20a to 0.1 kgf / cm 2 to 5 kgf / c on the polishing surface 15a during polishing.
The dressing liquid is supplied so as to be ejected at a predetermined pressure within the range of m 2 .

【0028】さらに、23は回転定盤13の上方側に設
けられた研磨かすを含む研磨加工後の研磨液でなる研磨
廃液及びドレッシング液を排出するための液排出機構で
ある。液排出機構23は、略筒状の先端部23aを有
し、その中間部分には排出管23bが接続されている。
また先端部23aは、ドレッシング液供給管20の先端
部20aが設けられている位置よりも回転定盤13の回
転方向の後方側の研磨面15aを半径方向に横断してい
る。
Further, reference numeral 23 is a liquid discharge mechanism provided on the upper side of the rotary platen 13 for discharging a polishing waste liquid and a dressing liquid which are polishing liquids including polishing dusts after polishing. The liquid discharge mechanism 23 has a substantially cylindrical tip portion 23a, and a discharge pipe 23b is connected to an intermediate portion thereof.
Further, the tip portion 23a radially crosses the polishing surface 15a on the rear side in the rotation direction of the rotary platen 13 from the position where the tip portion 20a of the dressing liquid supply pipe 20 is provided.

【0029】そして液排出機構23の先端部23aに
は、細長い長方形状の回収板24が一方の長辺部分を固
定し、他方の先端を研磨面15aに当接するよう設けら
れていて、研磨加工中に研磨面15aに保持され矢印G
方向に回転定盤13の回転により送られてくる研磨廃液
を掻き出し、ドレッシング液と共に掻き集めるようにな
っている。この回収板24は、研磨クロス15の半径に
略等しい長さを有すると共に先端にかけて厚さが漸減す
るよう形成され、研磨クロス15の研磨面15aは弗素
系ゴムやシリコン系ゴム、ウレタン系ゴム、あるいは塩
化ビニルやテフロンの合成樹脂やアルミナセラミックス
などを成形することにより形成されている。また回収板
24の液排出機構23の先端部23aへの取り付けは、
研磨面15aの回転方向に対して90度より大きい角度
を有するようにして研磨面15aを略半径方向に横断す
るものとなっている。さらに、回収板24は図示しない
調圧機構によって研磨面15aにへの先端の当接圧力が
所定圧力となるよう制御可能となっている。
At the tip portion 23a of the liquid discharging mechanism 23, a long and narrow rectangular collecting plate 24 is provided so that one long side portion is fixed and the other tip is brought into contact with the polishing surface 15a. An arrow G held inside the polishing surface 15a
The polishing waste liquid sent by the rotation of the rotary platen 13 in the direction is scraped out and collected together with the dressing liquid. The recovery plate 24 has a length substantially equal to the radius of the polishing cloth 15 and is formed so that the thickness gradually decreases toward the tip. The polishing surface 15a of the polishing cloth 15 has a polishing surface 15a made of fluorine-based rubber, silicon-based rubber, urethane-based rubber, Alternatively, it is formed by molding a synthetic resin such as vinyl chloride or Teflon or alumina ceramics. Further, the attachment of the recovery plate 24 to the distal end portion 23a of the liquid discharge mechanism 23 is
The polishing surface 15a crosses the polishing surface 15a in a substantially radial direction with an angle larger than 90 degrees with respect to the rotation direction of the polishing surface 15a. Further, the recovery plate 24 can be controlled by a pressure adjusting mechanism (not shown) so that the contact pressure of the tip of the recovery plate 24 against the polishing surface 15a becomes a predetermined pressure.

【0030】さらに、液排出機構23の先端部23aに
は、回収板24の回転定盤13の回転方向の前方側に隣
接して、回収板24で掻き集められた研磨廃液とドレッ
シング液とを排出管23bの中間部に挿入された吸引ポ
ンプ25により内部側を負圧にして吸引する吸引スリッ
ト26が設けられている。吸引スリット26は長さが回
収板24と略等しく、隙間の幅寸法が1mm〜50mm
程度のものとなっている。また、図示しない間隔調節機
構によって研磨面15aと吸引スリット26との間隔が
任意に調節可能となっていて、最適な吸引が行えるよう
になっている。
Further, the tip 23a of the liquid discharge mechanism 23 is adjacent to the front side of the recovery plate 24 in the rotation direction of the rotary platen 13, and the polishing waste liquid and the dressing liquid scraped by the recovery plate 24 are discharged. A suction slit 26 is provided to suck a negative pressure on the inner side by a suction pump 25 inserted in the middle portion of the pipe 23b. The length of the suction slit 26 is substantially equal to that of the recovery plate 24, and the width of the gap is 1 mm to 50 mm.
It has become something of a degree. Further, the gap between the polishing surface 15a and the suction slit 26 can be arbitrarily adjusted by a gap adjusting mechanism (not shown) so that optimum suction can be performed.

【0031】そして、吸引スリット26から内部に取り
込まれた研磨廃液とドレッシング液は図示しない回収槽
に導かれるようになっており、また研磨ブース12内に
こぼれ出たドレッシング液や研磨液等も、研磨ブース1
2の底部に取り付けられた回収管27を介して回収槽に
導かれるようになっている。
The polishing waste liquid and the dressing liquid taken in through the suction slit 26 are guided to a recovery tank (not shown), and the dressing liquid and the polishing liquid spilled into the polishing booth 12 are also Polishing booth 1
It is adapted to be guided to a recovery tank via a recovery pipe 27 attached to the bottom of No. 2.

【0032】なお、回転定盤13に対するウェハ保持盤
14、研磨液供給管17、ドレッシング液供給管20、
液排出機構23の配置関係は、図2に示す平面図におけ
る回転定盤13の回転中心Dを原点とした平行座標系に
おいて次の通りになっている。すなわち、研磨液供給管
17の先端開口17aが第1象限に位置し、ウェハ保持
盤14の回転中心Cは第1象限と第2象限の境界の直交
軸上にあるとした場合、ドレッシング液供給管20の先
端部20aは、研磨加工中の半導体ウェハ16にドレッ
シング液が掛かったり研磨液濃度を変化させないよう第
2象限と第3象限の境界の直交軸の近傍の第3象限内
で、回転定盤13の外周縁から回転中心Dの近傍にまで
延在するものとなっている。また液排出機構23の先端
部23aは第4象限内で回転定盤13の外周縁から回転
中心Dの近傍にまで延在するものとなっていて、研磨ク
ロス15の研磨面15aが回転することで回収板24に
より研磨廃液とドレッシング液が外周方向にも押し出さ
れるようになっている。
A wafer holding plate 14, a polishing liquid supply pipe 17, a dressing liquid supply pipe 20 for the rotary platen 13,
The arrangement relationship of the liquid discharge mechanism 23 is as follows in the parallel coordinate system with the origin of the rotation center D of the rotary platen 13 in the plan view shown in FIG. That is, when the tip opening 17a of the polishing liquid supply pipe 17 is located in the first quadrant and the rotation center C of the wafer holding plate 14 is on the orthogonal axis of the boundary between the first quadrant and the second quadrant, the dressing liquid supply is performed. The tip portion 20a of the tube 20 rotates in the third quadrant near the orthogonal axis of the boundary between the second quadrant and the third quadrant so as to prevent the dressing liquid from being applied to the semiconductor wafer 16 being polished and the concentration of the polishing liquid to be changed. It extends from the outer peripheral edge of the surface plate 13 to the vicinity of the rotation center D. Further, the tip portion 23a of the liquid discharge mechanism 23 extends from the outer peripheral edge of the rotary platen 13 to the vicinity of the rotation center D in the fourth quadrant, and the polishing surface 15a of the polishing cloth 15 rotates. Thus, the recovery plate 24 allows the polishing waste liquid and the dressing liquid to be pushed out also in the outer peripheral direction.

【0033】そして上記のように構成されたCMP装置
11による半導体ウェハ16の研磨は次のようにして行
われる。
Then, the polishing of the semiconductor wafer 16 by the CMP apparatus 11 configured as described above is performed as follows.

【0034】先ず、20rpm〜50rpmの範囲で定
速度回転させた状態の回転定盤13のポリエーテル系ポ
リウレタン等の合成繊維により構成され、さらに合成樹
脂で固められた織布でなる研磨クロス15の研磨面15
aに、研磨液供給管17の先端開口17aから水に過酸
化水素20%と一次粒子径が0.01μm〜5μm程度
のアルミナの微粒子を混合させた研磨液を供給する。
First, a polishing cloth 15 made of a woven cloth composed of synthetic fibers such as polyether polyurethane of the rotary platen 13 in a state of being rotated at a constant speed in the range of 20 rpm to 50 rpm, and further made of a woven cloth hardened with a synthetic resin. Polished surface 15
To a, a polishing liquid in which 20% hydrogen peroxide and fine particles of alumina having a primary particle diameter of about 0.01 μm to 5 μm are mixed with water is supplied from a tip opening 17a of the polishing liquid supply pipe 17.

【0035】また同時に、ドレッシング液供給管20の
先端部20aからドレッシング液の水を、研磨クロス1
5の研磨面15aに2kgf/cm2 の圧力で噴出させ
る。さらに液排出機構23も動作させ、先端部23aに
よって流下してくる研磨廃液とドレッシング液を回収槽
に回収する。
At the same time, the dressing solution water is supplied from the tip portion 20a of the dressing solution supply pipe 20 to the polishing cloth 1.
5 is ejected onto the polishing surface 15a of No. 5 at a pressure of 2 kgf / cm 2 . Further, the liquid discharge mechanism 23 is also operated to collect the polishing waste liquid and the dressing liquid flowing down by the tip portion 23a into the recovery tank.

【0036】一方、ウェハ保持盤14に、その下面に真
空チャックにより半導体ウェハ16を被研磨面16aが
下側になるよう吸着させて固定する。半導体ウェハ16
は、その断面を図5に示すように、シリコン基板27上
にシリコン酸化膜28を積層し、積層したシリコン酸化
膜28に溝部29を形成し、溝部29を埋めるようにし
ながらシリコン酸化膜28上に導電層となる被研磨膜の
タングステン膜30を堆積して構成されており、研磨加
工前の被研磨面16aであるタングステン膜30の表面
には微小の高低差の凹凸が形成されている。
On the other hand, the semiconductor wafer 16 is attracted and fixed to the wafer holding plate 14 by a vacuum chuck on its lower surface so that the surface 16a to be polished is on the lower side. Semiconductor wafer 16
As shown in the cross section of FIG. 5, a silicon oxide film 28 is stacked on a silicon substrate 27, a groove 29 is formed in the stacked silicon oxide film 28, and the silicon oxide film 28 is formed on the silicon oxide film 28 while filling the groove 29. A tungsten film 30 as a film to be polished which is a conductive layer is deposited on the surface of the tungsten film 30 which is the surface 16a to be polished before polishing and minute unevenness of height difference is formed.

【0037】続いて、半導体ウェハ16が固定されたウ
ェハ保持盤14を20rpm〜50rpmの範囲で定速
度回転させ、この回転させたままの状態でウェハ保持盤
14を下方に移動させる。そして半導体ウェハ16の被
研磨面16aを、研磨液が供給され続けている研磨クロ
ス15の研磨面15aに約500g/cm2 の圧力で押
圧させ、被研磨面16aの研磨加工を行う。
Subsequently, the wafer holding plate 14 to which the semiconductor wafer 16 is fixed is rotated at a constant speed in the range of 20 rpm to 50 rpm, and the wafer holding plate 14 is moved downward while keeping the rotation. Then, the surface 16a to be polished of the semiconductor wafer 16 is pressed against the polishing surface 15a of the polishing cloth 15 to which the polishing liquid is continuously supplied with a pressure of about 500 g / cm 2 to polish the surface 16a to be polished.

【0038】この研磨加工中も研磨クロス15の研磨面
15aにドレッシング液供給管20からドレッシング液
を供給し続けると共に、液排出機構23によって研磨廃
液とドレッシング液の回収も行い続ける。これによって
研磨加工で生じた目詰まりの原因となる研磨クロス15
の研磨面15aに保持された研磨かすは、ドレッシング
液供給管20の噴射孔20bから噴射されたドレッシン
グ液によって研磨面15a内から表面上に浮き出ると共
に下流に押し流される。そして一部の研磨かすを含む研
磨加工後の研磨液の研磨廃液とドレッシング液は、遠心
力により外周方向に流され、研磨面15a上から研磨ブ
ース12内に排出される。
During this polishing process, the dressing liquid is continuously supplied from the dressing liquid supply pipe 20 to the polishing surface 15a of the polishing cloth 15, and the polishing liquid waste and the dressing liquid are also continuously collected by the liquid discharge mechanism 23. As a result, the polishing cloth 15 that causes clogging caused by the polishing process
The polishing dust retained on the polishing surface 15a of the above is floated on the surface from the inside of the polishing surface 15a by the dressing liquid sprayed from the spraying holes 20b of the dressing liquid supply pipe 20 and is swept downstream. Then, the polishing waste liquid and the dressing liquid of the polishing liquid containing a part of the polishing dust are flown in the outer peripheral direction by the centrifugal force and are discharged from the polishing surface 15a into the polishing booth 12.

【0039】さらに、研磨クロス15の研磨面15a上
に残った研磨廃液とドレッシング液は、液排出機構23
によってその先端部23aに設けられた回収板24によ
り研磨クロス15の研磨面15a内から研磨かすを掻き
出すようにして集められ、吸引スリット26から回収さ
れる。こうして表面状態が一様となるようにドレッシン
グされた研磨面15aが回転定盤13の回転により移動
し、その表面に再び研磨液供給管17から研磨液が供給
され、半導体ウェハ16の研磨加工がドレッシングされ
た研磨面15aで行われる。なお、ドレッシング液等は
殆どが液排出機構23で回収されるか、あるいはそれ以
前に研磨面15a上から排出されてしまうため、研磨液
供給管17から供給された研磨液が希釈されてしまう虞
はなく、濃度変化が生じないために半導体ウェハ16の
被研磨面16aの研磨面15aによる研磨量は一定した
ものとなる。
Further, the polishing waste liquid and the dressing liquid remaining on the polishing surface 15a of the polishing cloth 15 are discharged into the liquid discharging mechanism 23.
By the collecting plate 24 provided at the tip 23a, the polishing dust is collected from the polishing surface 15a of the polishing cloth 15 so as to be scraped out, and is collected from the suction slit 26. In this way, the polishing surface 15a dressed so that the surface condition becomes uniform is moved by the rotation of the rotary platen 13, and the polishing liquid is supplied again to the surface from the polishing liquid supply pipe 17, so that the semiconductor wafer 16 is polished. It is performed on the dressed polishing surface 15a. Most of the dressing liquid or the like is collected by the liquid discharge mechanism 23 or is discharged from the polishing surface 15a before that, so that the polishing liquid supplied from the polishing liquid supply pipe 17 may be diluted. However, since the concentration does not change, the polishing amount by the polishing surface 15a of the polished surface 16a of the semiconductor wafer 16 becomes constant.

【0040】そして被研磨膜であるタングステン膜30
の膜厚が所定寸法になるまで、所定時間にわたり研磨加
工を行う。この研磨加工によってタングステン膜30の
表面の凹凸はなくなり、研磨加工後の半導体ウェハ16
は図6に示すように被研磨面16aが平坦なものとな
る。
Then, the tungsten film 30 which is the film to be polished
The polishing process is performed for a predetermined time until the film thickness becomes a predetermined size. This polishing process eliminates the unevenness of the surface of the tungsten film 30, and the semiconductor wafer 16 after the polishing process is finished.
The surface 16a to be polished becomes flat as shown in FIG.

【0041】そして上記のように研磨加工中も研磨面1
5aにドレッシング液供給管20からドレッシング液を
供給し続けると共に、液排出機構23によって研磨廃液
とドレッシング液の回収も行い続けるようにして使用し
た研磨クロス15のポリッシングレートを測定したとこ
ろ、図7に横軸に経過時間を取り、縦軸にポリッシング
レートを取って示すように半導体ウェハ16の被研磨面
16aの中心部分Xと中間部分Y、さらに外周部分Zで
のポリッシングレートに差は少ないものとなっていた。
なお、LXOは中心部分Xのポリッシングレートの変化曲
線、LYOは中間部分Yの変化曲線、LZOは外周部分Zの
変化曲線である。
As described above, the polishing surface 1 is also maintained during polishing.
The polishing rate of the polishing cloth 15 used was measured by continuously supplying the dressing solution from the dressing solution supply pipe 20 to 5a and also continuously collecting the polishing waste solution and the dressing solution by the solution discharging mechanism 23. As indicated by the elapsed time on the horizontal axis and the polishing rate on the vertical axis, there is little difference in the polishing rates between the central portion X and the intermediate portion Y of the polished surface 16a of the semiconductor wafer 16 and the outer peripheral portion Z. Was becoming.
Note that L XO is a change curve of the polishing rate of the central portion X, L YO is a change curve of the intermediate portion Y, and L ZO is a change curve of the outer peripheral portion Z.

【0042】すなわち、研磨クロス15を使用し始めた
初期段階のポリッシングレートは、半導体ウェハ16の
被研磨面16aの中心部分Xと中間部分Y、外周部分Z
で約0.25μm/minとほぼ等しく、半導体ウェハ
16は面内で略均一となるよう研磨される。そして、例
えば累積研磨時間が30分を越えた後においては中心部
分Xのポリッシングレートは0.30μm/min、中
間部分Yのポリッシングレートは0.28μm/mi
n、外周部分Zのポリッシングレートは0.27μm/
minと初期段階に比べてやや速く各部分間に若干の差
があるが、それらの差は少ないものとなっている。さら
に90分を越えた後においてもポリッシングレートは、
各部分間に若干の差があるが安定したものとなってい
る。
That is, the polishing rate at the initial stage of using the polishing cloth 15 is as follows: the central portion X, the intermediate portion Y and the outer peripheral portion Z of the surface 16a to be polished of the semiconductor wafer 16.
Is approximately equal to about 0.25 μm / min, and the semiconductor wafer 16 is polished to be substantially uniform in the plane. Then, for example, after the cumulative polishing time exceeds 30 minutes, the polishing rate of the central portion X is 0.30 μm / min, and the polishing rate of the intermediate portion Y is 0.28 μm / mi.
n, the polishing rate of the outer peripheral portion Z is 0.27 μm /
Although there is a slight difference between min and the initial stage, which is slightly faster than the initial stage, these differences are small. After more than 90 minutes, the polishing rate is
There is some difference between each part, but it is stable.

【0043】この結果、研磨クロス15を途中で運転を
停止させることなく長時間使用しても、半導体ウェハ1
6の被研磨膜の厚さはばらつきが少ない均一なものとな
り、また研磨した面に傷が付くなどの不具合が生じる虞
が減少する。このため、常に研磨加工の途中で行わなけ
ればならなかった半導体ウェハ16の被研磨膜の厚さの
測定が不要となり、さらにドレッシングのためにCMP
装置11の運転を一時停止する必要がなく、CMP装置
11の稼動率が上がって製造効率が向上する。
As a result, even if the polishing cloth 15 is used for a long time without stopping the operation on the way, the semiconductor wafer 1
The thickness of the film-to-be-polished 6 is uniform with little variation, and the possibility of causing defects such as scratches on the polished surface is reduced. Therefore, it becomes unnecessary to always measure the thickness of the film to be polished of the semiconductor wafer 16 which must be performed during the polishing process.
It is not necessary to temporarily stop the operation of the apparatus 11, and the operating rate of the CMP apparatus 11 is increased and the manufacturing efficiency is improved.

【0044】なお、上記の実施例では研磨する全ての半
導体ウェハ16の研磨加工中にドレッシング液を供給
し、常にドレッシングを行うようにしているが、ポリッ
シングレートの変化の状況によっては大きくポリッシン
グレートが変化しない範囲で、複数枚の研磨加工を行う
毎に研磨加工中にドレッシングを行うようにしてもよ
い。また、被研磨膜がタングステン膜30である場合に
ついて説明したが、被研磨膜はシリコン酸化膜(SiO
2 膜)やチタン(Ti)膜、窒化チタン(TiN)膜、
アルミニウム(Al)膜、銅(Cu)膜、銀(Ag)
膜、金(Au)膜、ポリシリコン膜、窒化シリコン(S
iN)膜などであっても適用できる。
In the above embodiment, the dressing liquid is supplied during the polishing process of all the semiconductor wafers 16 to be polished so that the dressing is always performed. However, depending on the change of the polishing rate, the polishing rate may be large. The dressing may be performed during the polishing process every time a plurality of polishing processes are performed within a range that does not change. Although the case where the film to be polished is the tungsten film 30 has been described, the film to be polished is a silicon oxide film (SiO 2 film).
2 film), titanium (Ti) film, titanium nitride (TiN) film,
Aluminum (Al) film, copper (Cu) film, silver (Ag)
Film, gold (Au) film, polysilicon film, silicon nitride (S
It can also be applied to an iN) film or the like.

【0045】さらに、ドレッシング液として水を用いて
いるが、これに限るものではなく、被研磨膜等を構成す
る材料に応じて酸やアルカリを用いて研磨かす等を溶解
させて研磨面15a上から排除するようにしたり、ある
いは界面活性剤を用いて研磨かす等の排出が容易に行わ
れるようにしてもよい。
Further, although water is used as the dressing liquid, the dressing liquid is not limited to this, and depending on the material constituting the film to be polished or the like, an acid or an alkali is used to dissolve the polishing residue or the like and the surface to be polished 15a. It may be eliminated from the above, or a polishing agent or the like may be used to easily discharge the polishing dust.

【0046】例えば被研磨膜がシリコン酸化膜(SiO
2 )の場合はドレッシング液にカルボン酸系の界面活性
剤や希弗酸を用い、被研磨膜がアルミニウムや銅の場合
はドレッシング液に希弗酸や硝酸(HNO3 )、あるい
は塩酸と硫酸の混合液を用いるようにすればよい。
For example, the film to be polished is a silicon oxide film (SiO 2
In the case of 2 ), a carboxylic acid type surfactant or dilute hydrofluoric acid is used in the dressing solution, and when the film to be polished is aluminum or copper, the dressing solution is diluted with dilute hydrofluoric acid, nitric acid (HNO 3 ) or hydrochloric acid and sulfuric acid. A mixed solution may be used.

【0047】またさらに、上記実施例では液排出機構2
3の回収板24と吸引スリット26とを同時に用いて研
磨廃液とドレッシング液の回収、排除を行うようにして
いるが、状況によっては回収板24のみを用いて研磨ク
ロス15の研磨面15aから研磨廃液をドレッシング液
と共に掻き落とし排除するようにしてもよい。また、液
排出機構23に代えて、以下に図8及び図9に示して説
明する第1の変形例や図10に示して説明する第2の変
形例のように液排出機構は構成してもよい。
Furthermore, in the above embodiment, the liquid discharge mechanism 2
The recovery plate 24 and the suction slit 26 of No. 3 are used at the same time to recover and remove the polishing waste liquid and the dressing liquid, but depending on the situation, only the recovery plate 24 is used to polish the polishing surface 15a of the polishing cloth 15 from the polishing surface 15a. The waste liquid may be scraped off together with the dressing liquid and eliminated. Further, instead of the liquid discharging mechanism 23, the liquid discharging mechanism is configured as in the first modified example shown in FIGS. 8 and 9 and described below or the second modified example shown in FIG. 10 and described below. Good.

【0048】すなわち、図8及び図9により第1の変形
例を説明すると、液排出機構31は略筒状の先端部31
aを有し、その中間部分には先端部31a内を負圧にす
るよう吸引ポンプが挿入された排出管31bが接続され
ている。また先端部31aには研磨面15aに対向する
ように細長形状の開口31cが形成されている。さらに
略筒状の先端部31a内には、先端部31aの長手方向
に軸方向を有し、矢印H方向に図示しない駆動源により
回転駆動される回収部材32が設けられている。
That is, the first modification will be described with reference to FIGS. 8 and 9. The liquid discharging mechanism 31 has a substantially cylindrical tip portion 31.
A discharge pipe 31b having a suction pump inserted therein is connected to the middle portion of the suction pipe 31a. Further, an elongated opening 31c is formed in the tip portion 31a so as to face the polishing surface 15a. Further, inside the substantially cylindrical tip portion 31a, there is provided a recovery member 32 which has an axial direction in the longitudinal direction of the tip portion 31a and is rotationally driven in the direction of arrow H by a drive source (not shown).

【0049】回収部材32は、円柱状の軸材33の円柱
面に、複数の長方形状の回収板34が回転方向に配列さ
れるようその一方の長辺を軸方向に沿うよう固定するこ
とによって構成されている。そして回収部材32は、先
端部31a内に回収板34の他方の長辺が開口31cの
開口面から外方に出るように設けられている。
The recovery member 32 is fixed to the cylindrical surface of the cylindrical shaft member 33 by fixing one long side along the axial direction so that a plurality of rectangular recovery plates 34 are arranged in the rotational direction. It is configured. The recovery member 32 is provided in the tip portion 31a such that the other long side of the recovery plate 34 extends outward from the opening surface of the opening 31c.

【0050】これにより、研磨廃液とドレッシング液の
研磨面15aからの回収、排除は、回収部材32を回転
させることで矢印G方向に送られてくる研磨廃液を回収
板34で研磨面15aから掻き出し、ドレッシング液と
共に掻き集めて負圧となっている先端部31a内に取り
込むようにして行われる。このため、本変形例の液排出
機構31を用いることでも上記と同様の効果が得られ
る。
With this, the collection and removal of the polishing waste liquid and the dressing liquid from the polishing surface 15a is performed by rotating the recovery member 32 to scrape the polishing waste liquid sent in the direction of arrow G from the polishing surface 15a by the recovery plate 34. It is carried out so that it is scraped together with the dressing liquid and taken into the tip portion 31a having a negative pressure. Therefore, the same effect as above can be obtained by using the liquid discharge mechanism 31 of this modification.

【0051】また、図10により第2の変形例を説明す
ると、液排出機構35は略筒状の先端部35aを有し、
その中間部分には先端部35a内を負圧にするよう吸引
ポンプが挿入された排出管35bが接続されている。ま
た先端部35aには研磨面15aに対向するように細長
形状の開口35cが形成されている。
A second modification will be described with reference to FIG. 10. The liquid discharging mechanism 35 has a substantially cylindrical tip portion 35a,
A discharge pipe 35b, into which a suction pump is inserted so that the inside of the tip portion 35a has a negative pressure, is connected to the intermediate portion. An elongated opening 35c is formed in the tip portion 35a so as to face the polishing surface 15a.

【0052】このように構成された液排出機構35で
は、研磨廃液とドレッシング液の研磨面15aからの回
収、排除に際して研磨面15aに開口35cを近接さ
せ、排出管35bに挿入された吸引ポンプにより負圧と
なっている先端部31a内に研磨廃液とドレッシング液
を取り込むようにして行われる。このため、本変形例の
液排出機構35を用いることによっても上記と略同様の
効果が得られる。
In the liquid discharge mechanism 35 having such a structure, when the polishing waste liquid and the dressing liquid are collected from and removed from the polishing surface 15a, the opening 35c is brought close to the polishing surface 15a, and the suction pump is inserted into the discharge pipe 35b. The polishing waste liquid and the dressing liquid are taken into the negative pressure end 31a. Therefore, by using the liquid discharge mechanism 35 of this modified example, substantially the same effect as described above can be obtained.

【0053】[0053]

【発明の効果】以上の説明から明らかなように、本発明
は上記のように構成したことにより、長時間にわたり研
磨加工を行っても被研磨面の面内位置によるポリッシン
グレートの変化を少なくすることができ、均一な厚さで
良好な表面を有する被研磨膜を得ることができ、また研
磨工程途中での運転停止時間を低減し装置の稼動率を高
くして製造効率を向上させることができる半導体装置の
製造方法及び研磨装置を提供することができる等の効果
を奏する。
As is apparent from the above description, the present invention configured as described above reduces the change in the polishing rate due to the in-plane position of the surface to be polished even when polishing is performed for a long time. It is possible to obtain a film to be polished having a uniform thickness and a good surface, and it is possible to reduce the operation stop time during the polishing process and increase the operation rate of the apparatus to improve the production efficiency. It is possible to provide a method of manufacturing a semiconductor device and a polishing apparatus that can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の化学的機械研磨装置を示す
概略の構成図である。
FIG. 1 is a schematic configuration diagram showing a chemical mechanical polishing apparatus of an embodiment of the present invention.

【図2】本発明の一実施例における要部の平面図であ
る。
FIG. 2 is a plan view of a main part in one embodiment of the present invention.

【図3】本発明の一実施例における要部の斜視図であ
る。
FIG. 3 is a perspective view of a main part in one embodiment of the present invention.

【図4】本発明の一実施例における液排出機構の斜視図
である。
FIG. 4 is a perspective view of a liquid discharging mechanism according to an embodiment of the present invention.

【図5】本発明の一実施例に係る半導体ウェハの研磨加
工前の部分断面図である。
FIG. 5 is a partial cross-sectional view of a semiconductor wafer according to an embodiment of the present invention before polishing.

【図6】本発明の一実施例に係る半導体ウェハの研磨加
工後の部分断面図である。
FIG. 6 is a partial cross-sectional view of a semiconductor wafer according to an embodiment of the present invention after polishing.

【図7】本発明の一実施例に係るポリッシングレートの
経時変化を示す図である。
FIG. 7 is a diagram showing a change with time of a polishing rate according to an embodiment of the present invention.

【図8】本発明の一実施例に係る液排出機構の第1の変
形例の斜視図である。
FIG. 8 is a perspective view of a first modification of the liquid discharge mechanism according to the embodiment of the present invention.

【図9】本発明の一実施例に係る液排出機構の第1の変
形例の断面図である。
FIG. 9 is a sectional view of a first modification of the liquid discharge mechanism according to the embodiment of the present invention.

【図10】本発明の一実施例に係る液排出機構の第2の
変形例の断面図である。
FIG. 10 is a sectional view of a second modification of the liquid discharge mechanism according to the embodiment of the present invention.

【図11】従来の化学的機械研磨装置の要部を示す斜視
図である。
FIG. 11 is a perspective view showing a main part of a conventional chemical mechanical polishing apparatus.

【図12】従来の化学的機械研磨装置のポリッシングレ
ートの経時変化を示す図である。
FIG. 12 is a view showing a change with time of a polishing rate of a conventional chemical mechanical polishing apparatus.

【図13】研磨クロスの接触比率を説明するための図
で、図13(a)は研磨クロスの半径に対する接触比率
示す図、図13(b)は接触比率の定義を説明するため
の図である。
13A and 13B are diagrams for explaining the contact ratio of the polishing cloth, FIG. 13A is a diagram showing the contact ratio with respect to the radius of the polishing cloth, and FIG. 13B is a diagram for explaining the definition of the contact ratio. is there.

【図14】従来例に係る半導体ウェハの研磨加工前の部
分断面図である。
FIG. 14 is a partial cross-sectional view of a conventional semiconductor wafer before polishing.

【図15】従来例に係る半導体ウェハの研磨加工後の部
分断面図である。
FIG. 15 is a partial cross-sectional view after polishing a semiconductor wafer according to a conventional example.

【符号の説明】[Explanation of symbols]

13…回転定盤 14…ウェハ保持盤 15…研磨クロス 15a…研磨面 16…半導体ウェハ 16a…被研磨面 17…研磨液供給管 20…ドレッシング液供給管 23…液排出機構 24…回収板 26…吸引スリット 30…タングステン膜 13 ... Rotating surface plate 14 ... Wafer holding plate 15 ... Polishing cloth 15a ... Polishing surface 16 ... Semiconductor wafer 16a ... Surface to be polished 17 ... Polishing liquid supply pipe 20 ... Dressing liquid supply pipe 23 ... Liquid discharging mechanism 24 ... Recovery plate 26 ... Suction slit 30 ... Tungsten film

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 一方向に移動するよう設けられた研磨部
材の研磨面と半導体ウェハの被研磨面との間に研磨液を
供給し、前記研磨面を前記被研磨面に繰り返し摺接させ
るようにして該被研磨面の研磨加工を行う化学的機械研
磨工程を備える半導体装置の製造方法において、研磨加
工を行いながら研磨加工で生じた研磨廃液が再度研磨面
に到達するのを防止するよう該研磨廃液を除去すること
を特徴とする半導体装置の製造方法。
1. A polishing liquid is supplied between a polishing surface of a polishing member provided so as to move in one direction and a surface to be polished of a semiconductor wafer, and the polishing surface is repeatedly brought into sliding contact with the surface to be polished. In a method of manufacturing a semiconductor device including a chemical mechanical polishing step for polishing the surface to be polished, the polishing waste liquid generated during the polishing is prevented from reaching the polishing surface again while performing the polishing. A method of manufacturing a semiconductor device, comprising removing a polishing waste liquid.
【請求項2】 一方向に移動するよう設けられた研磨部
材の研磨面と半導体ウェハの被研磨面との間に研磨液を
供給し、前記研磨面を前記被研磨面に繰り返し摺接させ
るようにして該被研磨面の研磨加工を行う化学的機械研
磨工程を備える半導体装置の製造方法において、研磨加
工を行いながら研磨加工後の前記研磨面にドレッシング
液を供給してドレッシングを行うと共に、ドレッシング
後に前記研磨面から前記ドレッシング液と研磨廃液を除
去し、さらに前記研磨廃液を除去した後の前記研磨面を
前記被研磨面に摺接させて再び研磨加工を行うようにし
たことを特徴とする半導体装置の製造方法。
2. A polishing liquid is supplied between a polishing surface of a polishing member provided so as to move in one direction and a surface to be polished of a semiconductor wafer, and the polishing surface is repeatedly brought into sliding contact with the surface to be polished. In the method for manufacturing a semiconductor device, which comprises a chemical mechanical polishing step of polishing the surface to be polished, while performing the polishing, the dressing liquid is supplied to the polished surface after the polishing and the dressing is performed. After that, the dressing liquid and the polishing waste liquid are removed from the polishing surface, and the polishing surface after removing the polishing waste liquid is slid on the surface to be polished to perform polishing again. Manufacturing method of semiconductor device.
【請求項3】 ドレッシング液が水であることを特徴と
する請求項2記載の半導体装置の製造方法。
3. The method of manufacturing a semiconductor device according to claim 2, wherein the dressing liquid is water.
【請求項4】 被研磨面の少なくとも一部がタングステ
ン膜で構成されていることを特徴とする請求項1もしく
は請求項2記載の半導体装置の製造方法。
4. The method of manufacturing a semiconductor device according to claim 1, wherein at least a part of the surface to be polished is made of a tungsten film.
【請求項5】 一方向に回転する回転定盤と、この回転
定盤上に貼付された研磨クロスと、この研磨クロスの研
磨面に被研磨面が対向するよう被研磨部材を回転保持す
る前記回転定盤より小径の保持盤と、前記研磨面と前記
被研磨面との摺接部分に研磨液を供給する研磨液供給部
とを備えて化学的機械研磨加工を行うようにした研磨装
置において、前記摺接部分の回転定盤の回転方向後方側
に前記研磨面から研磨加工中に研磨廃液を除去する液排
出機構を設けたことを特徴とする研磨装置。
5. A rotary platen that rotates in one direction, a polishing cloth attached on the rotary platen, and a member to be rotated is held so that the surface to be polished faces the polishing surface of the polishing cloth. In a polishing apparatus configured to perform a chemical mechanical polishing process, including a holding plate having a diameter smaller than that of a rotary platen, and a polishing liquid supply unit that supplies a polishing liquid to a sliding contact portion between the polishing surface and the surface to be polished. A polishing apparatus provided with a liquid discharge mechanism for removing a polishing waste liquid from the polishing surface during polishing, on the rear side in the rotation direction of the rotary platen of the sliding contact portion.
【請求項6】 一方向に回転する回転定盤と、この回転
定盤上に貼付された研磨クロスと、この研磨クロスの研
磨面に被研磨面が対向するよう被研磨部材を回転保持す
る前記回転定盤より小径の保持盤と、前記研磨面と前記
被研磨面との摺接部分に研磨液を供給する研磨液供給部
とを備えて化学的機械研磨加工を行うようにした研磨装
置において、前記摺接部分の回転定盤の回転方向後方側
に前記研磨面から研磨加工中に研磨廃液を除去する液排
出機構と、この液排出機構と前記摺接部分との間の研磨
面にドレッシング液を研磨加工中に噴射するドレッシン
グ液供給部とを設けたことを特徴とする研磨装置。
6. A rotary platen that rotates in one direction, a polishing cloth adhered to the rotary platen, and a member to be rotated and held so that the surface to be polished faces the polishing surface of the polishing cloth. In a polishing apparatus configured to perform a chemical mechanical polishing process, including a holding plate having a diameter smaller than that of a rotary platen, and a polishing liquid supply unit that supplies a polishing liquid to a sliding contact portion between the polishing surface and the surface to be polished. A liquid discharging mechanism for removing polishing waste liquid from the polishing surface during polishing processing on the rear side in the rotation direction of the rotary platen of the sliding contact portion, and dressing on the polishing surface between the liquid discharging mechanism and the sliding contact portion. A polishing apparatus comprising: a dressing liquid supply unit for spraying the liquid during polishing.
【請求項7】 液排出機構が、研磨面を半径方向に横断
する回収板と、この回収板の近傍に吸引スリットを備え
ていることを特徴とする請求項5もしくは請求項6記載
の研磨装置。
7. The polishing apparatus according to claim 5, wherein the liquid discharging mechanism includes a recovery plate that traverses the polishing surface in the radial direction, and a suction slit near the recovery plate. .
JP10086895A 1995-04-25 1995-04-25 Semiconductor device manufacturing method and polishing apparatus Expired - Fee Related JP3240247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10086895A JP3240247B2 (en) 1995-04-25 1995-04-25 Semiconductor device manufacturing method and polishing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10086895A JP3240247B2 (en) 1995-04-25 1995-04-25 Semiconductor device manufacturing method and polishing apparatus

Publications (2)

Publication Number Publication Date
JPH08294861A true JPH08294861A (en) 1996-11-12
JP3240247B2 JP3240247B2 (en) 2001-12-17

Family

ID=14285302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10086895A Expired - Fee Related JP3240247B2 (en) 1995-04-25 1995-04-25 Semiconductor device manufacturing method and polishing apparatus

Country Status (1)

Country Link
JP (1) JP3240247B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000024548A1 (en) * 1998-10-28 2000-05-04 Hitachi, Ltd. Polishing apparatus and a semiconductor manufacturing method using the same
US6099393A (en) * 1997-05-30 2000-08-08 Hitachi, Ltd. Polishing method for semiconductors and apparatus therefor
US6213852B1 (en) 1999-01-27 2001-04-10 Mitsubishi Denki Kabushiki Kaisha Polishing apparatus and method of manufacturing a semiconductor device using the same
JP2001244224A (en) * 1999-10-19 2001-09-07 Applied Materials Inc Elimination of pad glazing for chemical/mechanical polishing of aluminus
WO2003090964A1 (en) * 2002-04-23 2003-11-06 Sony Corporation Polishing system and polishing method
US6800556B2 (en) 2001-05-30 2004-10-05 Renesas Technology Corp. Polishing method using ceria slurry, and method of manufacturing semiconductor device
US7166013B2 (en) 1998-10-28 2007-01-23 Hitachi, Ltd. Polishing apparatus and method for producing semiconductors using the apparatus
JP2007520084A (en) * 2004-01-26 2007-07-19 ティービーダブリュ インダストリーズ,インコーポレーテッド Multi-stage in-situ pad conditioning system and method for chemical mechanical planarization
JP2008279539A (en) * 2007-05-10 2008-11-20 Nomura Micro Sci Co Ltd Method and device for recovering polishing fluid
KR20180114834A (en) * 2017-04-11 2018-10-19 가부시키가이샤 에바라 세이사꾸쇼 Polishing apparatus and polishing method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6099393A (en) * 1997-05-30 2000-08-08 Hitachi, Ltd. Polishing method for semiconductors and apparatus therefor
KR100566787B1 (en) * 1997-05-30 2006-07-03 가부시끼가이샤 히다치 세이사꾸쇼 Semiconductor polishing method and apparatus
US7166013B2 (en) 1998-10-28 2007-01-23 Hitachi, Ltd. Polishing apparatus and method for producing semiconductors using the apparatus
WO2000024548A1 (en) * 1998-10-28 2000-05-04 Hitachi, Ltd. Polishing apparatus and a semiconductor manufacturing method using the same
US7137866B2 (en) 1998-10-28 2006-11-21 Hitachi Ltd. Polishing apparatus and method for producing semiconductors using the apparatus
US6213852B1 (en) 1999-01-27 2001-04-10 Mitsubishi Denki Kabushiki Kaisha Polishing apparatus and method of manufacturing a semiconductor device using the same
JP2001244224A (en) * 1999-10-19 2001-09-07 Applied Materials Inc Elimination of pad glazing for chemical/mechanical polishing of aluminus
US6800556B2 (en) 2001-05-30 2004-10-05 Renesas Technology Corp. Polishing method using ceria slurry, and method of manufacturing semiconductor device
WO2003090964A1 (en) * 2002-04-23 2003-11-06 Sony Corporation Polishing system and polishing method
JP2007520084A (en) * 2004-01-26 2007-07-19 ティービーダブリュ インダストリーズ,インコーポレーテッド Multi-stage in-situ pad conditioning system and method for chemical mechanical planarization
JP2008279539A (en) * 2007-05-10 2008-11-20 Nomura Micro Sci Co Ltd Method and device for recovering polishing fluid
KR20180114834A (en) * 2017-04-11 2018-10-19 가부시키가이샤 에바라 세이사꾸쇼 Polishing apparatus and polishing method
JP2018176339A (en) * 2017-04-11 2018-11-15 株式会社荏原製作所 Polishing device and polishing method
JP2021181154A (en) * 2017-04-11 2021-11-25 株式会社荏原製作所 Polishing device and polishing method
TWI771404B (en) * 2017-04-11 2022-07-21 日商荏原製作所股份有限公司 Polishing apparatus and polishing method
US11612983B2 (en) 2017-04-11 2023-03-28 Ebara Corporation Polishing apparatus and polishing method
TWI837669B (en) * 2017-04-11 2024-04-01 日商荏原製作所股份有限公司 Polishing apparatus and polishing method

Also Published As

Publication number Publication date
JP3240247B2 (en) 2001-12-17

Similar Documents

Publication Publication Date Title
KR100566787B1 (en) Semiconductor polishing method and apparatus
EP1633527B1 (en) Vacuum-assisted pad conditioning system and method utilizing an apertured conditioning disk
US6022807A (en) Method for fabricating an integrated circuit
KR100264756B1 (en) Method for dressing pad, polishing apparatus and method for manufacturing semiconductor device
US20010055941A1 (en) Method of chemical mechanical polishing
US6179693B1 (en) In-situ/self-propelled polishing pad conditioner and cleaner
TW201620627A (en) System and process for in situ byproduct removal and platen cooling during CMP
US20100120336A1 (en) Polishing method and polishing apparatus
US6227947B1 (en) Apparatus and method for chemical mechanical polishing metal on a semiconductor wafer
US6341997B1 (en) Method for recycling a polishing pad conditioning disk
US6220941B1 (en) Method of post CMP defect stability improvement
JP3240247B2 (en) Semiconductor device manufacturing method and polishing apparatus
JP3767787B2 (en) Polishing apparatus and method
US6213852B1 (en) Polishing apparatus and method of manufacturing a semiconductor device using the same
JP3708740B2 (en) Polishing apparatus and polishing method
JP3192346B2 (en) Semiconductor device manufacturing method and semiconductor manufacturing apparatus
US20020187731A1 (en) In-situ pad and wafer cleaning during chemical mechanical polishing
US20050266688A1 (en) Semiconductor device fabrication method
JP2003347256A (en) Abrasive cloth cleaning plate and abrasive cloth cleaning method
US7223157B2 (en) Chemical-mechanical polishing apparatus and method of conditioning polishing pad
EP1345735A1 (en) Method and apparatus for chemical-mechanical polishing (cmp) using upstream and downstream fluid dispensing means
JPH10118915A (en) Chemical mechanical polishing method and device
JP2002299289A (en) Chemical mechanical polishing method and manufacturing method for semiconductor device
KR200274610Y1 (en) CMP with a Modified Dresser
JP2005040916A (en) Polishing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081012

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081012

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091012

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees