JPH08293297A - Alkaline storage battery - Google Patents

Alkaline storage battery

Info

Publication number
JPH08293297A
JPH08293297A JP7098277A JP9827795A JPH08293297A JP H08293297 A JPH08293297 A JP H08293297A JP 7098277 A JP7098277 A JP 7098277A JP 9827795 A JP9827795 A JP 9827795A JP H08293297 A JPH08293297 A JP H08293297A
Authority
JP
Japan
Prior art keywords
separator
battery
storage battery
alkaline storage
porous membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7098277A
Other languages
Japanese (ja)
Inventor
Takuma Iida
琢磨 飯田
Ko Gomikawa
香 五味川
Koji Yuasa
浩次 湯浅
Hideo Kaiya
英男 海谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7098277A priority Critical patent/JPH08293297A/en
Publication of JPH08293297A publication Critical patent/JPH08293297A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To provide an alkaline storage battery excellent in discharge and life characteristics by improving a separator. CONSTITUTION: This alkaline storage battery comprises a positive electrode composed chiefly of a metal oxide, a negative electrode, a separator, and an alkali electrolyte. As for the separator a porous film made from a sulfonated fluororesin with a hydroxyl group content of 0.01 to 2mm equivalent weight/g in terms of the amount of ion exchange of potassium ions is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアルカリ蓄電池の改良、
とくにセパレータの改良に関するものである。
FIELD OF THE INVENTION The present invention is an improvement of an alkaline storage battery,
In particular, it relates to the improvement of the separator.

【0002】[0002]

【従来の技術】近年、電気機器の軽薄短小化に伴い、小
型高容量電池の要望が高まってきている。高信頼性電池
であるアルカリ蓄電池においてもこれらの時代の流れに
沿って、従来のニカド電池の高容量化、さらには負極に
エネルギー密度の高い水素吸蔵合金を用いた金属酸化物
−水素蓄電池の開発が進められている。アルカリ蓄電池
は、負極と金属酸化物からなる正極との間にセパレータ
を介在させ、電解液としてアルカリ水溶液を用いて構成
されている。セパレータとしては、ポリアミドまたはポ
リオレフィン製不織布が通常用いられているが、電池の
さらなる高容量化を目指してこれらのセパレータの薄型
化が検討されている。しかしながら、セパレータを単純
に薄型化するとセパレータの空間体積が減少し、電解液
の保液性能が低下してしまう。その結果、電池の内部抵
抗が上昇し放電特性が低下する。
2. Description of the Related Art In recent years, there has been an increasing demand for small high-capacity batteries as electric appliances have become lighter, thinner, shorter and smaller. For alkaline storage batteries, which are highly reliable batteries, along with the trends of these times, we will increase the capacity of conventional NiCd batteries and further develop metal oxide-hydrogen storage batteries that use a hydrogen storage alloy with a high energy density for the negative electrode. Is being promoted. The alkaline storage battery is configured by interposing a separator between a negative electrode and a positive electrode made of a metal oxide and using an alkaline aqueous solution as an electrolytic solution. As a separator, a nonwoven fabric made of polyamide or polyolefin is usually used, and thinning of these separators is being studied in order to further increase the capacity of the battery. However, if the separator is simply thinned, the space volume of the separator is reduced and the electrolyte retaining performance is deteriorated. As a result, the internal resistance of the battery increases and the discharge characteristics deteriorate.

【0003】この問題を解決するためには、セパレータ
の単位面積当たりの繊維量(目付重量)を減少させて、
空間体積を確保する必要がある。しかし、不織布の場合
には、セパレータの表面積の減少や目付重量バラツキが
大きくなるため、保液能力の低下や保液ムラが顕著にな
り、放電特性は期待通りには向上しない。そこで従来の
不織布に代わり、均一な高多孔度をもったフィルム状の
多孔膜からなるセパレータの開発が検討されている。
In order to solve this problem, the amount of fiber per unit area of the separator (weight per unit area) is reduced to
It is necessary to secure a space volume. However, in the case of a non-woven fabric, since the surface area of the separator is reduced and the variation in weight per unit area is increased, the liquid retaining ability is reduced and the liquid retaining unevenness becomes remarkable, and the discharge characteristics are not improved as expected. Therefore, in place of the conventional non-woven fabric, development of a separator made of a film-like porous film having a uniform high porosity is under study.

【0004】[0004]

【発明が解決しようとする課題】このような多孔膜とし
ては、ポリオレフィン等を材質として親水化を行ったも
のが一般的である。これらの多孔膜を電池のセパレータ
とした場合、電池動作時の温度上昇に伴うセパレータの
耐熱性が問題となる。特に急速充電を行った場合、電池
内の温度上昇が大きく、従来のポリオレフィン製の多孔
膜では耐熱性に乏しく電池の寿命特性などの信頼性が低
下する。この現象は、電池を高容量化し、充放電電流値
が大きくなればなるほど更に顕著になる。また例えば特
開平6−295715号公報では、多孔度が大きいポリ
マー状2軸延伸膜からなるフッ素樹脂の多孔膜をポリビ
ニルアルコールなどで親水化処理したセパレータが開示
されている。しかし、このような多孔膜では親水性が十
分でなく放電特性が低下するという欠点を有していた。
As such a porous film, a film made of polyolefin or the like and made hydrophilic is generally used. When these porous films are used as a battery separator, heat resistance of the separator due to temperature rise during battery operation becomes a problem. In particular, when rapid charging is performed, the temperature inside the battery increases significantly, and the conventional polyolefin porous film has poor heat resistance and the reliability such as the life characteristics of the battery decreases. This phenomenon becomes more remarkable as the battery capacity is increased and the charging / discharging current value is increased. Further, for example, Japanese Patent Application Laid-Open No. 6-295715 discloses a separator in which a porous film of a fluororesin comprising a polymeric biaxially stretched film having a high porosity is hydrophilized with polyvinyl alcohol or the like. However, such a porous film has a drawback that the hydrophilicity is not sufficient and the discharge characteristics are deteriorated.

【0005】本発明は、このような問題点を解決するも
ので、耐熱性と保液性に優れた多孔膜をアルカリ蓄電池
のセパレータとして用いることにより、放電特性と寿命
特性に優れる高容量な蓄電池を提供することを目的とす
るものである。
The present invention solves such a problem, and by using a porous film having excellent heat resistance and liquid retention as a separator of an alkaline storage battery, a high capacity storage battery having excellent discharge characteristics and life characteristics is obtained. It is intended to provide.

【0006】[0006]

【課題を解決するための手段】本発明は上記問題を解決
するために、金属酸化物を主構成材料とする正極と負極
とセパレータとからなるアルカリ蓄電池において、前記
セパレータがフッ素樹脂からなる多孔膜をスルホン化処
理し、カリウムイオンのイオン交換量が0.01〜2ミ
リ当量/gとした多孔膜を用いるものである。好ましく
はここでのフッ素樹脂は、ポリ四フッ化エチレン(以後
PTFEと称す)または四フッ化エチレン−六フッ化プ
ロピレンの共重合体(以後FEPと称す)からなり、多
孔膜の平均細孔径が0.1〜20μmである。
In order to solve the above-mentioned problems, the present invention provides an alkaline storage battery comprising a positive electrode, a negative electrode, and a separator each containing a metal oxide as a main constituent material, wherein the separator is a porous film made of a fluororesin. Is used for sulfonation, and the amount of potassium ion exchanged is 0.01 to 2 meq / g. Preferably, the fluororesin herein is made of polytetrafluoroethylene (hereinafter referred to as PTFE) or a tetrafluoroethylene-hexafluoropropylene copolymer (hereinafter referred to as FEP), and has an average pore diameter of the porous membrane. It is 0.1 to 20 μm.

【0007】[0007]

【作用】上記の構成により、以下に述べるように放電特
性と寿命特性に優れた高容量電池を提供することが可能
となる。
With the above structure, it is possible to provide a high capacity battery having excellent discharge characteristics and life characteristics as described below.

【0008】セパレータの材質として耐熱性に優れたフ
ッ素樹脂を用いることにより、急速充放電サイクルの繰
り返しに伴う、セパレータの劣化が抑制できる。その結
果、セパレータの保液力低下に伴う電池内部抵抗の上昇
が抑制でき、電池の長寿命化が可能となる。
By using a fluororesin having excellent heat resistance as the material of the separator, deterioration of the separator due to repeated rapid charge / discharge cycles can be suppressed. As a result, it is possible to suppress an increase in the internal resistance of the battery due to the decrease in the liquid retention capacity of the separator, and it is possible to extend the life of the battery.

【0009】また、セパレータ形状を従来の不織布から
多孔膜へ変更することにより目付重量が低減し、高多孔
度化した場合にも、細孔分布の均一化が容易に達成でき
る。さらに樹脂表面にスルホン基を導入し、かつカリウ
ムイオンのイオン交換量0.01ミリ当量/g以上とし
てアニオン基を付加することにより撥水性を有するフッ
素樹脂からなる多孔膜でも電解液の主構成成分であるK
+,Na+などのアルカリ金属イオンを捕捉して、電解液
の保液性を向上させることができる。
Further, by changing the separator shape from a conventional non-woven fabric to a porous membrane, the weight per unit area is reduced, and even when the porosity is increased, uniform pore distribution can be easily achieved. Further, the main constituent component of the electrolytic solution even in a porous membrane made of a fluororesin having water repellency by introducing a sulfone group on the resin surface and adding an anion group with an ion exchange amount of potassium ion of 0.01 meq / g or more. Is K
Capable of capturing alkali metal ions such as + and Na + to improve the liquid retaining property of the electrolytic solution.

【0010】その結果、多孔膜中に電解液を均一かつ強
固に保持できる様になり、放電特性が良好な高容量電池
が設計可能となる。更に、イオンの移動性には多孔膜の
細孔径が大きく作用すると推定される。細孔径が小さす
ぎると、保液性がよくても放電時のイオンの移動性が小
さいため分極が大きくなり、放電特性は低下する。逆に
細孔径が大きくなりすぎると微細活物質の移行も生じて
内部短絡が発生しやすくなる。以上の理由により多孔膜
はその平均細孔径が0.1μm〜20μmのものが望ま
しい。
As a result, the electrolytic solution can be uniformly and firmly held in the porous film, and a high capacity battery having good discharge characteristics can be designed. Furthermore, it is presumed that the pore size of the porous membrane has a large effect on the mobility of ions. If the pore size is too small, the liquid retention is good, but the mobility of ions during discharge is small, so that the polarization becomes large and the discharge characteristics deteriorate. On the other hand, if the pore size is too large, the migration of the fine active material occurs and internal short circuits are likely to occur. For the above reasons, it is preferable that the average pore diameter of the porous membrane is 0.1 μm to 20 μm.

【0011】[0011]

【実施例】【Example】

(実施例1)以下、本発明の詳細をニッケル水素電池を
例にとり説明する。
(Example 1) The details of the present invention will be described below by taking a nickel hydrogen battery as an example.

【0012】尚、本実験で用いた多孔膜の物性の試験方
法は次の通りである。親水性を評価するため、親水基量
をカリウムイオンのイオン交換量で換算した。カリウム
イオンのイオン交換量については次のように測定した。
The method for testing the physical properties of the porous membrane used in this experiment is as follows. In order to evaluate hydrophilicity, the amount of hydrophilic groups was converted into the amount of ion exchange of potassium ions. The ion exchange amount of potassium ion was measured as follows.

【0013】まず、スルホン化処理した多孔膜を、1N
のHCl水溶液に一定時間含浸し、SO3Hとして膜は
引出して水洗乾燥後、0.1NのKOH水溶液を10m
l加え、これに希釈水を加えて総量100mlに希釈し
た後、残存のOH基を0.1NのHCl水溶液(力価
a)で指示薬にフェノールフタレインを用いて滴定し
た。滴定量(X)をSO3H状態での乾燥重量Wで割
り、カリウムイオンのイオン交換量を(数1)により求
めた。
First, the sulfonation-treated porous membrane was treated with 1N.
Of a certain time impregnated with aqueous HCl, washed with water dried as SO 3 H film drawer, a KOH aqueous solution of 0.1 N 10 m
1, and diluted water was added to this to dilute it to a total volume of 100 ml, and the residual OH groups were titrated with 0.1 N HCl aqueous solution (titer a) using phenolphthalein as an indicator. The titration amount (X) was divided by the dry weight W in the SO 3 H state, and the ion exchange amount of potassium ion was determined by (Equation 1).

【0014】[0014]

【数1】 [Equation 1]

【0015】また細孔径については、ASTM F−3
16−70に準拠したハーフドライ法より求めた。
Regarding the pore size, ASTM F-3
It was determined by the half dry method according to 16-70.

【0016】セパレータの作製方法について説明する。
まずダイキン工業社製(PTFE)ファインパウダーF
−104(分子量400万〜500万)79重量%に対
し、押し出し助材としてソルベントナフサ21重量%を
加えて均一混合した。その後これを圧力35kg/cm
2で塊状に予備成形後、ペースト押し出し機にかけて押
し出し成形し、熱ロールで圧延してシート状とした後、
トリクロロエチレン中に浸してソルベントナフサを抽出
除去した。これを加熱ロール型延伸機で2軸方向に延伸
し、加熱炉に入れ約400℃で焼結して、厚み100μ
m,多孔度80%、平均細孔径10μmの多孔膜を作製
した。
A method of manufacturing the separator will be described.
First, Daikin Industries Ltd. (PTFE) fine powder F
21% by weight of solvent naphtha as an extrusion aid was added to 79% by weight of −104 (molecular weight of 4,000,000 to 5,000,000) and uniformly mixed. After that, apply a pressure of 35 kg / cm.
After preforming into a lump in 2 and extruded by applying a paste extruder, after rolling with a hot roll into a sheet,
It was immersed in trichlorethylene to extract and remove the solvent naphtha. This is stretched biaxially with a heating roll type stretching machine, put in a heating furnace and sintered at about 400 ° C. to obtain a thickness of 100 μm.
m, a porosity of 80%, and an average pore diameter of 10 μm were produced.

【0017】次に濡れ性を付与するために得られた多孔
膜をポリビニルアルコール(以後PVAと称す)水溶液
中に浸漬させ、電子線を照射して、PVAの不溶化を行
った。次にこの多孔膜を、30℃にて30%発煙硫酸中
に浸漬した後、発煙硫酸を除去し、KOHでアルカリ洗
浄し、過剰なアルカリを水洗して、PTFEフィルム表
面へのスルホン基の導入を行い、カリウムイオンのイオ
ン交換量0.1ミリ当量/gのスルホン化PTFE多孔
膜を作成した。また、FEP、ポリフッ化ビニリデン
(以後PVDFと称す)、ポリプロピレン(以後PPと
称す)製の多孔膜の表面に、スルホン基を導入したセパ
レータも通常の製法により作成した。更に、スルホン基
の導入を行なわないPTFE多孔膜も比較例として作製
した。
Next, the porous film obtained for imparting wettability was immersed in an aqueous solution of polyvinyl alcohol (hereinafter referred to as PVA) and irradiated with an electron beam to insolubilize the PVA. Next, this porous membrane was immersed in 30% fuming sulfuric acid at 30 ° C., and then fuming sulfuric acid was removed, followed by washing with KOH with an alkali and washing with excess alkali with water to introduce a sulfone group to the surface of the PTFE film. Then, a sulfonated PTFE porous membrane having an ion exchange amount of potassium ion of 0.1 meq / g was prepared. Further, a separator in which a sulfone group was introduced on the surface of a porous membrane made of FEP, polyvinylidene fluoride (hereinafter referred to as PVDF) or polypropylene (hereinafter referred to as PP) was also prepared by a usual manufacturing method. Further, a PTFE porous membrane in which no sulfone group was introduced was also prepared as a comparative example.

【0018】正極には発泡状ニッケル基板に、水酸化ニ
ッケルを主成分とした活物質を充填したものを用いた。
負極には、組成MmNi3.55Co0.75Mn0.4Al
0.3(Mmは希土類元素の混合物)の水素吸蔵合金を、
湿式ボ−ルミルにて平均粒径が約30μmに微粉砕した
ものを用いた。この合金粉末を、80℃のKOH水溶液
中で攪拌処理した後、水素吸蔵合金100重量部に対し
てカルボキシメチルセルロースを0.15重量部、カー
ボンブラックを0.3重量部、スチレン−ブタジエン共
重合体を0.8重量部加え、分散剤として水を添加しペ
ーストを作成した。このペーストをパンチングメタルに
塗布、乾燥した後、所定の厚みにプレスした。これらの
極板を所定の寸法に切断し、極板群を構成して電池ケー
スに挿入した後、7.2mol/lのKOH水溶液を電
解液として注液し封口して容量1750mAhの4/5
Aサイズの(表1)に示すA〜Eの5種類の電池を作製
した。
As the positive electrode, a foamed nickel substrate filled with an active material containing nickel hydroxide as a main component was used.
The composition of the negative electrode is MmNi 3.55 Co 0.75 Mn 0.4 Al.
0.3 (Mm is a mixture of rare earth elements) hydrogen storage alloy,
A wet ball mill finely pulverized to an average particle size of about 30 μm was used. After stirring the alloy powder in a KOH aqueous solution at 80 ° C., 0.15 parts by weight of carboxymethyl cellulose, 0.3 part by weight of carbon black, and 100 parts by weight of hydrogen storage alloy, styrene-butadiene copolymer 0.8 part by weight was added, and water was added as a dispersant to prepare a paste. This paste was applied to a punching metal, dried, and then pressed to a predetermined thickness. After cutting these electrode plates into a predetermined size and forming an electrode plate group and inserting them into a battery case, a 7.2 mol / l KOH aqueous solution was injected as an electrolytic solution and sealed to obtain a 4/5 capacity 1750 mAh.
Five kinds of batteries A to E shown in Table 1 of A size were manufactured.

【0019】[0019]

【表1】 [Table 1]

【0020】上記電池を用い、放電特性と寿命特性の試
験を行った。放電特性の試験は、充電を20℃におい
て、電流値1CmAで電池容量の150%行った後、放
電を0℃において電流値1CmAで電池電圧1Vまで行
い、電池容量に対する放電容量比率の評価を行った。寿
命特性は、40℃の雰囲気下にて電流値1CmAで、充
電を電池容量の150%、放電を電池電圧1Vまで行う
充放電サイクルを繰り返し、放電容量が1サイクル目の
放電容量の60%となったサイクル数をその電池の電池
寿命とした。その結果を(表2)に示した。
Using the above battery, the discharge characteristic and the life characteristic were tested. In the discharge characteristic test, charging was performed at 20 ° C. with a current value of 1 CmA and 150% of the battery capacity, and then discharging was performed at 0 ° C. with a current value of 1 CmA up to a battery voltage of 1 V to evaluate the discharge capacity ratio to the battery capacity. It was The life characteristics are as follows: a current value of 1 CmA in an atmosphere of 40 ° C., a charge / discharge cycle in which charging is 150% of the battery capacity and discharging is up to a battery voltage of 1 V, and the discharge capacity is 60% of the discharge capacity in the first cycle. The number of cycles after which the battery life was reached was defined as the number of cycles. The results are shown in (Table 2).

【0021】[0021]

【表2】 [Table 2]

【0022】また、多孔膜の材質に関して検討した。
(表2)の結果から明らかなように、セパレータの材質
として、フッ素樹脂多孔膜を用いた電池A〜Cは、PP
樹脂多孔膜をセパレータとして用いた電池Dと比較し、
放電特性は同等であるが寿命特性が向上した。また、同
じフッ素樹脂でも電池A,Bは電池Cよりも長寿命であ
った。
Further, the material of the porous film was examined.
As is clear from the results of (Table 2), the batteries A to C using the fluororesin porous film as the material of the separator are PP
In comparison with Battery D using a resin porous film as a separator,
The discharge characteristics are the same, but the life characteristics are improved. Further, even with the same fluororesin, batteries A and B had a longer life than battery C.

【0023】この原因は、以下の様に推測できる。一般
に、放電特性及び寿命特性はセパレータの保液能力の低
下に伴う電池の内部抵抗の上昇により特性が劣化する。
電池A〜Cと電池Dは多孔度、親水基量(カリウムイオ
ンのイオン交換量)が同等であり、初期のセパレータの
保液能力は良好であるため、放電特性は同様に良好な結
果を示した。しかし、フッ素樹脂はPPよりも耐熱性に
優れるため、特に充電時の電池温度の上昇によるセパレ
ータの劣化が抑制され、充放電を繰り返しても保液能力
が低下しないため電池の内部抵抗は上昇せず、寿命特性
が向上したと推定される。また、同じフッ素樹脂の中で
もPTFE,FEPは、PVDFよりも耐熱性に優れる
ため、更に良好な結果が得られたものと思われる。
The cause of this can be estimated as follows. In general, the discharge characteristics and the life characteristics are deteriorated due to an increase in the internal resistance of the battery accompanying a decrease in the liquid retaining capacity of the separator.
Since the batteries A to C and the battery D have the same porosity and the same amount of hydrophilic groups (ion exchange amount of potassium ions) and the initial liquid retaining ability of the separator is good, the discharge characteristics similarly show good results. It was However, since fluororesin has higher heat resistance than PP, the deterioration of the separator due to the rise in battery temperature during charging is suppressed, and the liquid retention capacity does not decrease even after repeated charging / discharging, so the internal resistance of the battery increases. However, it is estimated that the life characteristics are improved. Further, among the same fluororesins, PTFE and FEP are more excellent in heat resistance than PVDF, so it is considered that even better results were obtained.

【0024】次に、親水基の種類について検討した。フ
ッ素樹脂の親水基としてはPVA水溶液中への浸漬処理
による水酸基の導入が一般的である。水酸基を親水基と
するセパレータを用いた電池Eと、本発明のようにスル
ホン基を導入したセパレータを用いる電池Aとでは、電
池Aが放電特性に優れていた。これは水酸基よりもスル
ホン基の方が、電解液中のカチオンであるK+やNa+
保持能力に優れるため、セパレータの保液力が高くなる
ためであると推定される。
Next, the kind of hydrophilic group was examined. As a hydrophilic group of the fluororesin, it is common to introduce a hydroxyl group by immersion treatment in an aqueous PVA solution. In the battery E using the separator having the hydroxyl group as the hydrophilic group and the battery A using the separator having the sulfone group introduced therein as in the present invention, the battery A had excellent discharge characteristics. It is presumed that this is because the sulfone group is superior to the hydroxyl group in the ability to retain K + and Na + that are cations in the electrolytic solution, so that the liquid retaining ability of the separator is increased.

【0025】(実施例2)スルホン化PTFE多孔膜を
実施例1と同様な手法を用い、多孔膜の発煙硫酸中への
浸漬時間を変更することにより膜厚、多孔度、平均細孔
径は実施例1と同様で、カリウムイオンのイオン交換量
を0.005〜2ミリ当量/gまで変化させたセパレー
タを作製し、これらのセパレータを用いて実施例1と同
様のニッケル・水素蓄電池を作製した。
(Example 2) Using the same procedure as in Example 1 for the sulfonated PTFE porous membrane, the membrane thickness, porosity, and average pore diameter were determined by changing the dipping time of the porous membrane in fuming sulfuric acid. Similar to Example 1, separators were produced in which the amount of potassium ion exchanged was changed to 0.005 to 2 meq / g, and a nickel-hydrogen storage battery similar to that of Example 1 was produced using these separators. .

【0026】上記電池を実施例1と同様に放電特性と寿
命特性の試験を行った。その結果を図1、図2に示す。
図1、図2から明らかなように、カリウムイオンのイオ
ン交換量の増加に伴い、電池の放電特性、寿命特性は向
上した。
The battery was tested for discharge characteristics and life characteristics in the same manner as in Example 1. The results are shown in FIGS.
As is clear from FIGS. 1 and 2, the discharge characteristics and life characteristics of the battery improved as the amount of ion exchange of potassium ions increased.

【0027】これは、前述したように、カリウムイオン
のイオン交換量の増加に伴いセパレータの充放電サイク
ル初期の保液能力の向上、及び充放電サイクルに伴う保
液能力の低下が抑制されたためであると推測される。0
℃、1CmAでの放電容量が電池容量の75%程度であ
れば実用上問題とならないと思われるため、カリウムイ
オン交換量としては0.01ミリ当量/g以上が望まし
い。
This is because, as described above, the increase in the amount of ion exchange of potassium ions increased the liquid retention capacity of the separator at the beginning of the charge / discharge cycle, and the decrease in the liquid retention capacity due to the charge / discharge cycle was suppressed. Presumed to be. 0
If the discharge capacity at 1 ° C. at 1 ° C. is about 75% of the battery capacity, it is considered to be practically no problem, so the potassium ion exchange amount is preferably 0.01 meq / g or more.

【0028】しかし、一般にセパレータとしてはそのス
ルホン化の進行とともに強度特性は低下することが知ら
れている。従って、カリウムイオンのイオン交換量が大
きくなりすぎると、スルホン化が膜を構成するポリマー
内部まで進行するため機械的強度が低下する。種々検討
の結果、セパレータとして実用上の強度を確保するに
は、カリウムイオンのイオン交換量が2ミリ当量/g以
下であることが望ましかった。
However, it is generally known that as a separator, its strength characteristics decrease with the progress of its sulfonation. Therefore, if the amount of ion exchange of potassium ions is too large, the sulfonation proceeds to the inside of the polymer forming the membrane, and the mechanical strength is lowered. As a result of various studies, it was desired that the ion exchange amount of potassium ions be 2 meq / g or less in order to secure practical strength as a separator.

【0029】以上の結果より、実用的な多孔膜のカリウ
ムイオンのイオン交換量は、0.01〜2ミリ当量/g
である。
From the above results, the ion exchange amount of potassium ions in a practical porous membrane is 0.01 to 2 meq / g.
Is.

【0030】(実施例3)スルホン化PTFE多孔膜を
実施例1と同様な手法を用い、熱ロールの圧延条件、加
熱ロール型延伸機の延伸条件を変更することにより、膜
厚、多孔度、カリウムイオンのイオン交換量は実施例1
と同様で、平均細孔径を0.05〜30μmまで変化さ
せたセパレータを作成し、これを用いてニッケル・水素
蓄電池を作製した。
(Example 3) A sulfonated PTFE porous membrane was prepared in the same manner as in Example 1 by changing the rolling conditions of the hot roll and the stretching conditions of the heating roll type stretching machine to obtain the film thickness, porosity, The amount of potassium ion exchanged was determined as in Example 1.
Similarly to the above, a separator having an average pore diameter varied from 0.05 to 30 μm was prepared, and a separator was used to prepare a nickel-hydrogen storage battery.

【0031】上記電池を実施例1と同様に放電特性と寿
命特性の試験を行った。その結果を図3、図4に示す。
図3、図4から明らかなように、平均細孔径が0.1μ
m以上であれば放電特性、寿命特性は良好な結果を示し
た。しかし、平均細孔径が0.1μm以下になると放電
特性が若干低下する傾向を示した。これは、細孔径が小
さくなることにより正極、負極間のイオンの移動度が低
下し、放電時の分極が大きくなったためであると思われ
る。この結果より、平均細孔径としては0.1μm以上
が望ましい。
The battery was tested for discharge characteristics and life characteristics in the same manner as in Example 1. The results are shown in FIGS. 3 and 4.
As is clear from FIGS. 3 and 4, the average pore diameter is 0.1 μm.
When it was at least m, good results were obtained in the discharge characteristics and the life characteristics. However, when the average pore diameter was 0.1 μm or less, the discharge characteristics tended to deteriorate slightly. It is considered that this is because the mobility of ions between the positive electrode and the negative electrode decreased due to the decrease in the pore size, and the polarization during discharge increased. From this result, it is desirable that the average pore diameter is 0.1 μm or more.

【0032】また平均細孔径の大きいセパレータは電池
特性上は問題がなかったが、電池作製時に電池の微小内
部短絡に起因した不良が増加する傾向があった。このた
め、平均細孔径の上限は20μmが好ましい。
Although the separator having a large average pore size has no problem in battery characteristics, defects due to minute internal short circuit of the battery tended to increase during battery preparation. Therefore, the upper limit of the average pore diameter is preferably 20 μm.

【0033】上記のように本発明の電池は、優れた放電
特性、高温寿命特性を示す。尚、本実施例では、ニッケ
ル水素蓄電池を例にとり説明を行ったが、ニッケルカド
ミウム蓄電池、ニッケル亜鉛蓄電池等のKOHを主体と
するアルカリ電解液を用いる他のアルカリ蓄電池でも、
本発明の多孔膜をセパレータとして用いることにより同
様の効果を得ることができる。
As described above, the battery of the present invention exhibits excellent discharge characteristics and high temperature life characteristics. In addition, in the present embodiment, the nickel-hydrogen storage battery has been described as an example, but other alkaline storage batteries using an alkaline electrolyte mainly containing KOH, such as a nickel-cadmium storage battery and a nickel-zinc storage battery,
The same effect can be obtained by using the porous membrane of the present invention as a separator.

【0034】[0034]

【発明の効果】以上のように本発明は、セパレータに、
フッ素樹脂からなる多孔膜をスルホン化処理し、親水基
量をカリウムイオンのイオン交換量で0.01〜2ミリ
当量/gとした多孔膜を用いることにより、放電特性、
寿命特性に優れたアルカリ蓄電池を得ることができる。
As described above, the present invention provides a separator,
The porous membrane made of fluororesin is subjected to a sulfonation treatment, and the porous membrane having a hydrophilic group content of 0.01 to 2 meq / g in terms of ion exchange amount of potassium ions is used.
It is possible to obtain an alkaline storage battery having excellent life characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例におけるセパレータのカリウム
イオンのイオン交換量と放電特性との関係図
FIG. 1 is a diagram showing the relationship between the ion exchange amount of potassium ions and discharge characteristics of a separator in an example of the present invention.

【図2】同カリウムイオンのイオン交換量と寿命特性と
の関係図
FIG. 2 is a diagram showing the relationship between the ion exchange amount of potassium ions and life characteristics.

【図3】本発明の実施例におけるセパレータの細孔径と
放電特性との関係図
FIG. 3 is a diagram showing the relationship between the pore size of the separator and the discharge characteristics in the example of the present invention.

【図4】同細孔径と寿命特性との関係図FIG. 4 is a diagram showing the relationship between the same pore size and life characteristics.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 海谷 英男 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideo Kaitani 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】金属酸化物を主構成材料とする正極と負極
とセパレータとアルカリ電解液からなるアルカリ蓄電池
において、前記セパレータはフッ素樹脂からなり平均細
孔径が0.1〜20μmの多孔膜をスルホン化処理した
ものであって、親水基量がカリウムイオンのイオン交換
量換算で0.01〜2ミリ当量/gであることを特徴と
するアルカリ蓄電池。
1. An alkaline storage battery comprising a positive electrode, a negative electrode having a metal oxide as a main constituent, a separator and an alkaline electrolyte, wherein the separator is made of fluororesin and has a porous membrane having a mean pore diameter of 0.1 to 20 μm as a sulfone. An alkaline storage battery which has been subjected to a chemical treatment and has a hydrophilic group content of 0.01 to 2 meq / g in terms of ion exchange amount of potassium ions.
【請求項2】セパレータが、ポリ四フッ化エチレンまた
は四フッ化エチレン−六フッ化プロピレン共重合体より
なる多孔膜をスルホン化処理したものである請求項1記
載のアルカリ蓄電池。
2. The alkaline storage battery according to claim 1, wherein the separator is obtained by subjecting a porous membrane made of polytetrafluoroethylene or a tetrafluoroethylene-hexafluoropropylene copolymer to a sulfonation treatment.
JP7098277A 1995-04-24 1995-04-24 Alkaline storage battery Pending JPH08293297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7098277A JPH08293297A (en) 1995-04-24 1995-04-24 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7098277A JPH08293297A (en) 1995-04-24 1995-04-24 Alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH08293297A true JPH08293297A (en) 1996-11-05

Family

ID=14215453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7098277A Pending JPH08293297A (en) 1995-04-24 1995-04-24 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH08293297A (en)

Similar Documents

Publication Publication Date Title
US3661645A (en) Polytetrafluoroethylene battery separator and method for producing same
KR20130114926A (en) Electrode having porous coating layer and electrochemical device containing the same
KR20120009491A (en) Battery electrode plate, preparation method thereof and secondary battery with the same
CN1089192C (en) Separator material for alkaline storage batteries
EP1150372B1 (en) Alkaline storage battery
US6994935B2 (en) Process for producing separator for batteries, the separator for batteries, and alkaline storage batteries using the same
JP2000248095A (en) Partially hydrophilized microporous polyolefin membrane
CN112186189B (en) High-nickel ternary material positive plate and battery
JP3508455B2 (en) Negative electrode plate for lithium ion battery and method for producing the same
JPH07161343A (en) Separator for battery
US6033803A (en) Hydrophilic electrode for an alkaline electrochemical cell, and method of manufacture
JPH08293297A (en) Alkaline storage battery
CN113474920B (en) Electrode for rechargeable energy storage device
EP1199764A1 (en) Polymer electrolyte
JP2003022793A (en) Separator for battery and battery
JP3239767B2 (en) Alkaline storage battery
JP3345788B2 (en) Separator for electrochemical reactor
JP4454260B2 (en) Separator for alkaline secondary battery
KR100389123B1 (en) Separator for alkali secondary battery and preparation method thereof
EP0975032A1 (en) Alkaline storage battery comprising a non-woven, fibrous, polyolefinic separator
JP3436058B2 (en) Alkaline storage battery
KR102151123B1 (en) Surface treated separation film for lithium secondary battery and surface treatment method of separation film
JP2002157988A (en) Nickel hydrogen secondary battery
JP2002063889A (en) Nickel hydride secondary battery
JP2001273879A (en) Nickel - hydrogen secondary battery