JPH08293296A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPH08293296A
JPH08293296A JP7098224A JP9822495A JPH08293296A JP H08293296 A JPH08293296 A JP H08293296A JP 7098224 A JP7098224 A JP 7098224A JP 9822495 A JP9822495 A JP 9822495A JP H08293296 A JPH08293296 A JP H08293296A
Authority
JP
Japan
Prior art keywords
battery
separator
sheet
thickness
electrolyte battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7098224A
Other languages
Japanese (ja)
Inventor
Yukihiro Gotanda
幸宏 五反田
Yoshiki Terao
佳樹 寺尾
Hiromi Sato
裕美 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7098224A priority Critical patent/JPH08293296A/en
Publication of JPH08293296A publication Critical patent/JPH08293296A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To improve a large-current discharge characteristic, reliability and safety simultaneously by using a thin microporous film as a separator. CONSTITUTION: An electrode body, comprising a negative electrode 2 whose active material is a light metal and a positive terminal 1 between which a separator made of a single microporous-film sheet made from a synthetic resin is interposed, is provided. The single microporous-film sheet is 5 to 50μm thick and has an average void ratio of 1 to 10% from each side of the sheet to a depth of 1 to 10μm and 50 to 95% at other parts.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム、ナトリウム
等の軽金属を活物質とする負極と、金属の酸化物、硫化
物あるいはハロゲン化物などを活物質とする正極と、こ
れらの間に配置されるセパレータとからなる電極体を備
えた非水電解液電池に関するものである。
The present invention relates to a negative electrode having a light metal such as lithium or sodium as an active material, a positive electrode having a metal oxide, sulfide or halide as an active material, and a positive electrode disposed between them. The present invention relates to a non-aqueous electrolyte battery including an electrode body including a separator.

【0002】[0002]

【従来の技術】電池から大きな電流を取り出そうとする
場合には、一般に電極体を渦巻状に巻回して、正、負極
間の対向面積を大きくする方法が取られる。しかし、非
水電解液電池では、電解液の電気伝導度が比較的低いの
で対向面積を大きくするだけでは十分でなく、電極間距
離をできるだけ小さくする必要がある。つまり、セパレ
ータの厚みを薄くする必要がある。
2. Description of the Related Art In order to extract a large current from a battery, generally, a method is adopted in which an electrode body is spirally wound to increase a facing area between a positive electrode and a negative electrode. However, in the non-aqueous electrolyte battery, since the electric conductivity of the electrolyte is relatively low, it is not enough to increase the facing area, and it is necessary to make the distance between the electrodes as small as possible. That is, it is necessary to reduce the thickness of the separator.

【0003】しかし、セパレータとして単に膜厚の薄い
微多孔膜を用いるだけでは、放電時のリチウムイオンの
移動距離が短くなるものの、低温での放電特性は十分に
は改善されない。これは微多孔膜内でのリチウムイオン
の移動のし易さに起因していると考えられる。
However, by simply using a thin microporous film as the separator, the movement distance of lithium ions during discharge is shortened, but the discharge characteristics at low temperature are not sufficiently improved. This is considered to be due to the ease of lithium ion migration within the microporous membrane.

【0004】特開平2−304863号公報では、この
膜内に於けるリチウムイオンの移動のし易さは、微多孔
膜の透気度及び空孔率に大きく依存するとして、微多孔
膜の膜厚を10〜40μm、透気度を50〜350se
c/100cc・枚、空孔率を50〜80%と規定する
ことにより、リチウムイオンの移動距離や、低温及び室
温作動時に於けるリチウムイオンの移動の容易さが相互
に効率良く改善されるとしている。
In Japanese Patent Laid-Open No. 2-304863, it is assumed that the ease of lithium ion migration in the membrane depends largely on the air permeability and porosity of the microporous membrane. Thickness 10-40 μm, Air permeability 50-350se
By defining c / 100 cc / sheet and porosity of 50 to 80%, it is assumed that the migration distance of lithium ions and the ease of lithium ion migration at low temperature and room temperature operation are mutually improved efficiently. There is.

【0005】しかしながら、上記の微多孔膜では空孔率
が厚み方向全てにわたって50〜80%と均一になって
いる。このため膜厚が薄い場合には、誤って充電された
時に、極板表面に発生するデンドライトや脱落した微小
な活物質が、この空孔部分を通って相手極と接触し、電
池の内部短絡を起こしていた。
However, in the above microporous film, the porosity is uniform at 50 to 80% over the entire thickness direction. For this reason, when the film thickness is thin, the dendrites or minute active materials that have fallen off on the surface of the electrode plate when they are accidentally charged come into contact with the counter electrode through these holes, causing an internal short circuit in the battery. Was waking up.

【0006】[0006]

【発明が解決しようとする課題】本発明は、膜厚の薄い
微多孔膜をセパレータとして用いた非水電解液電池にお
いて、リチウムイオンのイオン伝導性に優れるととも
に、デンドライト等による内部短絡を防止することがで
きるセパレータを提供して、大電流放電特性を改善する
とともに、電池の信頼性、安全性をさらに改善するもの
である。
DISCLOSURE OF THE INVENTION The present invention provides a non-aqueous electrolyte battery using a thin microporous membrane as a separator, which has excellent lithium ion ionic conductivity and prevents internal short circuit due to dendrite or the like. The present invention provides a separator that can improve the large current discharge characteristics and further improve the reliability and safety of the battery.

【0007】[0007]

【課題を解決するための手段】本発明の非水電解液電池
は、軽金属を活物質とする負極と、正極との間に、合成
樹脂製で単層の微多孔膜シートからなるセパレータを介
在させて構成した電極体を備え、前記単層の多孔膜シー
トは、その膜厚が5〜50μmであり、平均空孔率は、
シートの両表面から1〜10μmの深さの部分までは1
〜10%、その他の部分は50〜95%とすることによ
り、大電流放電特性、信頼性、安全性を改善するもので
ある。
In the non-aqueous electrolyte battery of the present invention, a separator made of a synthetic resin and made of a single-layer microporous membrane sheet is interposed between a negative electrode using a light metal as an active material and a positive electrode. The porous membrane sheet of the single layer has a thickness of 5 to 50 μm, and the average porosity is
1 from both surfaces of the sheet up to a depth of 1-10 μm
By setting 10% to 10% and 50% to 95% in the other portions, the large current discharge characteristics, reliability and safety are improved.

【0008】[0008]

【作用】本発明では、セパレータ内に空孔率が50〜9
0%である中間層を有することにより高い保液力を備え
てリチウムイオンの移動性を高めることができるので、
電池の放電特性が向上される。一方、表面から1〜10
μmの表面層の空孔率は1〜10%であるため、セパレ
ータの引っ張り強度を高めて確実な隔離性によりデンド
ライト等の空孔部分の貫通を防止して内部短絡を防止で
きる。
In the present invention, the porosity in the separator is 50-9.
By having an intermediate layer of 0%, it is possible to increase the mobility of lithium ions with a high liquid retention capacity,
The discharge characteristics of the battery are improved. On the other hand, from the surface 1-10
Since the porosity of the surface layer having a thickness of 1 μm is 1 to 10%, the tensile strength of the separator can be increased to prevent the penetration of pores such as dendrites and the internal short circuit due to the reliable isolation.

【0009】また表面層の空孔率が1〜10%であるた
め、短絡時などに電池温度が上昇した場合も確実に空孔
部分を閉孔するため、電池の信頼性、安全性が向上す
る。
Further, since the porosity of the surface layer is 1 to 10%, the hole portion is surely closed even when the battery temperature rises due to a short circuit or the like, so that the reliability and safety of the battery are improved. To do.

【0010】[0010]

【実施例】以下、本発明の実施例を図面を参照にしなが
ら説明する。図1に本発明の非水電解液電池を示す。図
1中、1は正極であり、二酸化マンガン、導電材及び結
着剤としてのフッ素樹脂を、それぞれ100:10:5
の重量比で混合しぺースト状としたものを、1′のステ
ンレス鋼製の集電金属芯材に塗着、乾燥した後、圧延を
数回行なって所定の厚みにし、これを熱処理して得たも
のである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a non-aqueous electrolyte battery of the present invention. In FIG. 1, reference numeral 1 denotes a positive electrode, which contains manganese dioxide, a conductive material, and a fluororesin as a binder, respectively, at 10: 10: 5.
After being mixed in a weight ratio of 1 to form a paste, it is applied to a 1'stainless steel collector metal core material, dried, and then rolled several times to a predetermined thickness, which is then heat treated. That is what I got.

【0011】2は負極であり、ここではリチウム金属を
用いている。3はセパレータであり、ポリプロピレン製
であって膜厚が10μm、表面から2μmまでの平均空
孔率が3%、厚さ6μmの中間層の平均空孔率が60%
である微多孔膜を用いた。そして、正極1および負極2
の間にセパレータ3を配して巻回してなる渦巻状電極体
を、内部短絡防止のための上部絶縁板4、下部絶縁板5
と共に6の外装缶内に挿入した後、プロピレンカーボネ
ート及び1,2−ジメトキシエタンの等量混合溶媒に、
トリフルオロエタンスルホン酸リチウムを電解質として
溶解してなる電解液を注液し、7の組立封口板と8のガ
スケットとを用いて封口し、本発明電池Aを作製した。
Reference numeral 2 denotes a negative electrode, which uses lithium metal here. 3 is a separator made of polypropylene and having a film thickness of 10 μm, an average porosity of 3 μm from the surface to 2 μm, and an average porosity of an intermediate layer having a thickness of 6 μm of 60%.
Was used. Then, the positive electrode 1 and the negative electrode 2
A spiral electrode body formed by winding a separator 3 between the upper insulating plate 4 and the lower insulating plate 5 for preventing an internal short circuit.
After being inserted into the outer can of 6 together with, in an equal amount mixed solvent of propylene carbonate and 1,2-dimethoxyethane,
An electrolyte solution obtained by dissolving lithium trifluoroethanesulfonate as an electrolyte was poured and sealed using the assembly sealing plate 7 and the gasket 8 to prepare a battery A of the invention.

【0012】また、ポリプロピレン製であり、その膜厚
が25μm、平均空孔率が35%の微多孔膜をセパレー
タとして用いた以外は、本発明と同様の電池を作製し、
これを比較の電池Bとした。
A battery similar to that of the present invention was prepared except that a microporous film made of polypropylene and having a film thickness of 25 μm and an average porosity of 35% was used as a separator.
This was designated as Comparative Battery B.

【0013】A、Bの電池を用いてパルス放電試験を行
った。放電条件は室温と、−20℃において1.2Aの
電流で3秒間放電した後、27秒間放置することを繰り
返し、電池電圧が1.3Vの終始電圧になるまでのパル
ス放電回数を測定するというものである。
A pulse discharge test was conducted using the batteries A and B. The discharge conditions are room temperature and −20 ° C., which is a discharge of 1.2 A for 3 seconds and then left for 27 seconds, which is repeated to measure the number of pulse discharges until the battery voltage reaches 1.3V. It is a thing.

【0014】図2にその結果を示す。図2からわかるよ
うに、本発明の電池では低温での放電特性が向上してい
る。また室温での放電においても、本発明の電池Aは初
期電圧が高くなっている。これはセパレータの膜厚が薄
くなったことによるものである。
The results are shown in FIG. As can be seen from FIG. 2, the battery of the present invention has improved discharge characteristics at low temperatures. Further, the initial voltage of the battery A of the present invention is high even when discharged at room temperature. This is because the film thickness of the separator is thin.

【0015】さらに安全性試験として、短絡試験を行っ
た結果を(表1)に示す。
Further, as a safety test, the result of a short circuit test is shown in (Table 1).

【0016】[0016]

【表1】 [Table 1]

【0017】両者ともピーク電流は変わらないものの、
1Aになるまでに要する時間は本発明の電池Aの方が短
くなっている。これは本発明の電池のセパレータのほう
が早い時期にその空孔部分を閉じる、いわゆるシャット
ダウンしたことを示している。またこれに対応して電池
表面温度も本発明の電池Aの方がBよりも低くなってい
る。以上のことより本発明の電池の安全性が向上してい
ることが判る。
Although both have the same peak current,
The time required to reach 1 A is shorter in the battery A of the present invention. This indicates that the separator of the battery of the present invention closed its void portion at an earlier stage, that is, shut down. Correspondingly, the battery surface temperature of the battery A of the present invention is lower than that of B. From the above, it can be seen that the safety of the battery of the present invention is improved.

【0018】なお上記実施例では、微多孔膜としてポリ
プロピレン製のものを用いたが、ポリオレフィン系の合
成樹脂であれば他のもの、例えばポリエチレン製のもの
を用いても構わない。この場合、ポリエチレンのほうが
ポリプロピレンよりも融点が低いため、安全性の面で有
効であり、ポリエチレンとポリプロピレンとの併用も有
効である。この場合には表面層にポリエチレンを、中間
層にポリプロピレンを用いるとよく、前記と同様の効果
が得られる。
Although polypropylene is used as the microporous film in the above embodiment, other polyolefin synthetic resin such as polyethylene may be used. In this case, since polyethylene has a lower melting point than polypropylene, it is effective in terms of safety, and the combined use of polyethylene and polypropylene is also effective. In this case, it is preferable to use polyethylene for the surface layer and polypropylene for the intermediate layer, and the same effect as described above can be obtained.

【0019】微多孔膜シートの膜厚は、材料樹脂の種類
やその平均空孔率に影響されるが、表面層と中間層から
なるものでは、5〜50μmが、電池特性上から好まし
い。
The thickness of the microporous membrane sheet is affected by the type of material resin and its average porosity, but the thickness of the surface layer and the intermediate layer is preferably 5 to 50 μm from the viewpoint of battery characteristics.

【0020】[0020]

【発明の効果】以上のように、本発明では、非水系電解
液電池のセパレータとして用いる微多孔膜において、そ
の膜厚が5〜50μm、平均空孔率は、表面から1〜1
0μmの深さ位置までを1〜10%、中間層のそれを5
0〜95%としたものであり、セパレータの中間層の平
均空孔率が50〜90%であることにより高い保液力を
備えてリチウムイオンの移動性を高めることができるの
で、電池の放電特性が向上される。一方、表面から1〜
10μmの表面層の平均空孔率が1〜10%であるた
め、セパレータの引っ張り強度を高めて確実な隔離性に
よりデンドライト等の貫通を防止して内部短絡を防止で
きる。また表面層の空孔率が中間層よりもはるかに低い
ため短絡時などにより電池温度が上昇した場合も確実に
空孔部分を閉孔するため、電池の信頼性、安全性が向上
する。その結果、低温作動時におけるこの種の電池の大
電流放電特性を向上しうる。またセパレータの膜厚が薄
いために放電初期電圧が高く保てる。
As described above, according to the present invention, in the microporous membrane used as the separator of the non-aqueous electrolyte battery, the membrane thickness is 5 to 50 μm, and the average porosity is 1 to 1 from the surface.
1 to 10% up to a depth of 0 μm and 5 for the intermediate layer
Since the average porosity of the intermediate layer of the separator is 50 to 90%, it is possible to enhance the mobility of lithium ions with a high liquid retention capacity, and thus to discharge the battery. The characteristics are improved. On the other hand, from the surface 1
Since the average porosity of the surface layer having a thickness of 10 μm is 1 to 10%, the tensile strength of the separator can be increased, and the penetration of dendrite or the like can be prevented and the internal short circuit can be prevented by the reliable isolation property. Further, since the porosity of the surface layer is much lower than that of the intermediate layer, the hole portion is surely closed even when the battery temperature rises due to a short circuit or the like, thereby improving the reliability and safety of the battery. As a result, the large current discharge characteristics of this type of battery during low temperature operation can be improved. In addition, since the thickness of the separator is thin, the initial discharge voltage can be kept high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明電池の縦断面図FIG. 1 is a vertical sectional view of a battery of the present invention.

【図2】パルス放電特性を示す曲線図FIG. 2 is a curve diagram showing pulse discharge characteristics.

【符号の説明】[Explanation of symbols]

1 正極 1′ 集電金属芯材 2 負極 3 セパレータ 4 上部絶縁板 5 下部絶縁板 6 外装缶 7 組立封口板 8 ガスケット 1 Positive Electrode 1'Current Collector Metal Core Material 2 Negative Electrode 3 Separator 4 Upper Insulation Plate 5 Lower Insulation Plate 6 Exterior Can 7 Assembly Sealing Plate 8 Gasket

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】軽金属を活物質とする負極と、正極との間
に、合成樹脂製で単層の微多孔膜シートからなるセパレ
ータを介在させて構成した電極体を備えた電池であっ
て、前記単層の微多孔膜シートはその膜厚が5〜50μ
mであり、平均空孔率は、シートの両表面から1〜10
μmの深さの部分までが1〜10%、その他の部分は5
0〜95%であることを特徴とする非水電解液電池。
1. A battery comprising an electrode body composed of a negative electrode using a light metal as an active material and a positive electrode, with a separator made of a synthetic resin single-layer microporous sheet interposed therebetween. The single layer microporous membrane sheet has a thickness of 5 to 50 μm.
m, and the average porosity is 1 to 10 from both surfaces of the sheet.
1 to 10% up to the depth of μm, 5 for other areas
A non-aqueous electrolyte battery comprising 0 to 95%.
【請求項2】微多孔膜シートは、ポリオレフィン系樹脂
からなる請求項1記載の非水電解液電池。
2. The non-aqueous electrolyte battery according to claim 1, wherein the microporous membrane sheet is made of a polyolefin resin.
JP7098224A 1995-04-24 1995-04-24 Nonaqueous electrolyte battery Pending JPH08293296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7098224A JPH08293296A (en) 1995-04-24 1995-04-24 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7098224A JPH08293296A (en) 1995-04-24 1995-04-24 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPH08293296A true JPH08293296A (en) 1996-11-05

Family

ID=14213997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7098224A Pending JPH08293296A (en) 1995-04-24 1995-04-24 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPH08293296A (en)

Similar Documents

Publication Publication Date Title
JP5937776B2 (en) Battery separator and battery
JPH08167429A (en) Rechargeable electrochemical cell and its manufacture
JPH10241665A (en) Electrode and battery using the same
JP2007042580A (en) Lithium secondary battery
JPH0516139B2 (en)
KR100876271B1 (en) Lithium second battery
JPH0516140B2 (en)
JP5376622B2 (en) Electrochemical element separator and electrochemical element
JP2002246012A (en) Non-aqueous electrolyte secondary battery
JPS63308866A (en) Nonaqueous electrolytic solution battery
JP2003223933A (en) Non-aqueous electrolyte secondary battery
JP2003077448A (en) Non-aqueous electrolyte battery
JPH08293296A (en) Nonaqueous electrolyte battery
JPH0548209U (en) Non-aqueous electrolyte battery
JPH08111214A (en) Organic electrolytic battery
JPH11273692A (en) Battery having spiral electrode body
JP2925631B2 (en) Non-aqueous electrolyte battery
JP3021517B2 (en) Organic electrolyte secondary battery
JPH10241663A (en) Battery
JPH0887995A (en) Organic electrolyte battery
JP2874529B2 (en) Lithium battery
JPH03129678A (en) Nonaqueous electrolyte secondary battery
JP2007207639A (en) Cylindrical non-aqueous electrolytic solution primary battery
JP2792859B2 (en) Non-aqueous electrolyte battery
JPS63205048A (en) Nonaqueous electrolyte battery