JPH0829262A - Radiation detector - Google Patents

Radiation detector

Info

Publication number
JPH0829262A
JPH0829262A JP7108563A JP10856395A JPH0829262A JP H0829262 A JPH0829262 A JP H0829262A JP 7108563 A JP7108563 A JP 7108563A JP 10856395 A JP10856395 A JP 10856395A JP H0829262 A JPH0829262 A JP H0829262A
Authority
JP
Japan
Prior art keywords
radiation
shape
thermoelectric conversion
conversion element
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7108563A
Other languages
Japanese (ja)
Other versions
JP3287729B2 (en
Inventor
Kazuaki Okubo
和明 大久保
Yasuo Nakagawa
靖夫 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10856395A priority Critical patent/JP3287729B2/en
Publication of JPH0829262A publication Critical patent/JPH0829262A/en
Application granted granted Critical
Publication of JP3287729B2 publication Critical patent/JP3287729B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0853Optical arrangements having infrared absorbers other than the usual absorber layers deposited on infrared detectors like bolometers, wherein the heat propagation between the absorber and the detecting element occurs within a solid

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To realize a thermal radiation detector by which a measurement at room temperature can be performed, whose spectral responsivity does not depend on a wavelength and by which a stable output can be obtained. CONSTITUTION:A radiation detector is composed of a fan-shaped filmlike pyroelectric element 3 and of a support plate 5 which is formed of two insulating adiabatic resins which are bonded respectively to both ends to the outer circumference from its pivot. A radiation-absorbing layer 4 is applied and bonded to one face of the pyroelectric element 3. After that, a radiation which is incident from an opening part in the bottom face of a conical part formed by bonding resin plates to each other in such a way that the radiation-absorbing layer 4 becomes the inside and that the pyroelectric element 3 becomes a conical shape is absorbed as heat by the radiation-absorbing layer 4, its temperature rise is converted into an electric signal by the pyroelectric element 3, and a radiation energy amount is detected. A radiation component out of the radiation which is incident on the radiation-absorbing layer 4 is incident again on the radiation-absorbing layer 4, and the incident radiation is reflected and absorbed repeatedly by the radiation-absorbing layer 4 so as to be absorbed and detected nearly one hundred % irrespective of a wavelength.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、放射エネルギーを測定
するための放射検出器に関する。
FIELD OF THE INVENTION The present invention relates to a radiation detector for measuring radiant energy.

【0002】[0002]

【従来の技術】近年の紫外・赤外放射の工業応用は、2
50nmから2.5μmの波長範囲を越えてきており、特
に放電ランプやレーザの紫外・赤外での放射の特性評価
には、放射測定標準の波長範囲の拡大が重要な課題とな
っている。
2. Description of the Related Art Recent industrial applications of ultraviolet and infrared radiation are 2
Since the wavelength range from 50 nm to 2.5 μm has been exceeded, the widening of the wavelength range of the radiation measurement standard has become an important issue for the characteristic evaluation of the radiation of discharge lamps and lasers in the ultraviolet and infrared.

【0003】従来これらの放射照度標準は、黒体炉を使
用する方法と、熱形検出器で構成される絶対放射計が使
用される。
Conventionally, these irradiance standards use the method of using a blackbody furnace and an absolute radiometer consisting of a thermal detector.

【0004】しかし波長250nm以下の紫外波長域で
は、黒体炉の放射エネルギーが微弱となることから、絶
対放射計が使用されている。
However, an absolute radiometer is used because the radiant energy of the black body furnace becomes weak in the ultraviolet wavelength range of 250 nm or less.

【0005】熱形検出器は、サーモパイルや焦電素子な
どの熱エネルギーを電気エネルギーに変換する感熱素子
に受光面として金黒蒸着層や黒色塗料を放射吸収層と
し、放射吸収層で放射エネルギーを熱エネルギーに変換
し、感熱素子で、その熱エネルギーを電気エネルギーに
変換して、放射エネルギーを検出するものである。
The thermal detector is a thermosensitive element such as a thermopile or a pyroelectric element which converts thermal energy into electric energy, and uses a gold black vapor deposition layer or a black paint as a radiation absorption layer as a light receiving surface, and the radiation energy is absorbed by the radiation absorption layer. The thermal energy is converted, and the thermal element converts the thermal energy into electric energy to detect the radiant energy.

【0006】したがって、熱形検出器の相対分光応答度
は、使用する放射吸収層の分光吸収率によって決定され
る。
Therefore, the relative spectral responsivity of the thermal detector is determined by the spectral absorptance of the radiation absorbing layer used.

【0007】このため、その分光応答度に波長依存性の
ない熱形検出器を構成するためには、その分光吸収率が
波長依存性のない放射吸収材料が必要となる。
Therefore, in order to construct a thermal detector whose spectral responsivity does not depend on wavelength, a radiation absorbing material whose spectral absorptivity does not depend on wavelength is required.

【0008】従来この種の目的には、金を窒素雰囲気中
で蒸発させて得られる金黒が使用されているが、その分
光吸収率の波長依存性をなくすためには、金黒の層を厚
くする必要があった。
Conventionally, gold black obtained by evaporating gold in a nitrogen atmosphere has been used for this kind of purpose, but in order to eliminate the wavelength dependence of the spectral absorption coefficient, a gold black layer is used. It had to be thick.

【0009】しかしながら上記従来の構成では、金黒の
厚さが大きいと、その熱損失が大きくなるため、感度が
大きく低下する問題があった。
However, in the above-mentioned conventional structure, when the thickness of the gold black is large, the heat loss thereof is large, so that there is a problem in that the sensitivity is greatly reduced.

【0010】また金黒を使用した熱形検出器は、可視波
長域では、その分光応答度が波長に対して一定である
が、紫外や赤外では、波長依存性が生じ、波長250n
mで3%程度の外れが報告されている(「シーアイイー
パブリケーション 第64号」(CIE Pub.No.
64:Determination of spectral responsivity of op
tical radiation detector))。
Further, the thermal type detector using gold black has a spectral responsivity which is constant with respect to the wavelength in the visible wavelength range, but has wavelength dependence in the ultraviolet or infrared region, resulting in a wavelength of 250 n.
A deviation of about 3% has been reported for m ("CIE Pub. No. 64").
64: Determination of spectral responsivity of op
tical radiation detector)).

【0011】この分光応答度の波長依存性を解消するた
めに、内側を黒色塗料で黒くした銅などの金属キャビテ
ィを液体ヘリウムで5Kまで冷却し、放射をキャビティ
内壁で繰り返し反射させ吸収し、その吸収エネルギーに
よるキャビティの温度上昇を外部に設けた熱電対で測定
する極低温放射計が開発されている。
In order to eliminate this wavelength dependence of the spectral responsivity, a metal cavity such as copper whose inside is blackened with black paint is cooled to 5K with liquid helium, and radiation is repeatedly reflected and absorbed by the inner wall of the cavity. Cryogenic radiometers have been developed that measure the temperature rise of the cavity due to absorbed energy with an external thermocouple.

【0012】[0012]

【発明が解決しようとする課題】しかし、冷却のための
クライオスタットや温度制御装置等が大がかりであるこ
と、検出部であるキャビティがクライオスタット深部に
位置するため、被測定光を広がりの極めて小さいビーム
にする必要があること、結露防止のための窓を通しての
測定となるため、その透過率を精度よく測定する必要が
あるなど測定上の制約が大きいという問題があった。
However, since a cryostat for cooling, a temperature control device, and the like are large-scale, and a cavity as a detection portion is located at a deep portion of the cryostat, the light to be measured is formed into a beam having an extremely small spread. However, there is a problem in that there is a large restriction on measurement such that the transmittance needs to be measured accurately because the measurement is performed through a window for preventing dew condensation.

【0013】本発明は上記従来の放射検出器の課題を解
決するもので、常温での測定が可能で、分光応答度が波
長に依存せず、安定な出力が得られる熱形の放射検出器
を実現することを目的とする。
The present invention solves the above-mentioned problems of the conventional radiation detector, and is a thermal radiation detector capable of performing measurement at room temperature, and having a spectral output that does not depend on the wavelength and can obtain a stable output. The purpose is to realize.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の本願発明は、開口部を有し、内面の一部
もしくは全部に放射吸収層を付着させた所定形状の熱電
変換素子を備え、前記熱電変換素子の開口部から入射し
た被測定光の放射を、前記放射吸収層で熱として吸収
し、その温度上昇を前記熱電変換素子で電気信号に変換
して前記放射のエネルギー量を検出する放射検出器を提
供する。
In order to achieve the above object, the present invention of claim 1 has an opening and a thermoelectric conversion element having a predetermined shape in which a radiation absorption layer is attached to a part or all of the inner surface. The radiation of the light to be measured incident from the opening of the thermoelectric conversion element is absorbed as heat by the radiation absorption layer, and the temperature rise is converted into an electric signal by the thermoelectric conversion element, and the amount of energy of the radiation. A radiation detector for detecting

【0015】又、請求項5の本願発明は、内面の一部も
しくは全部に放射吸収層を付着させた円錐状、円錐台
状、角錐状、又は角錐台状の熱電変換素子を有し、前記
円錐状、角錐状、又は角錐状又は角錐台状の熱電変換素
子の錐部底面の開口部から入射した被測定光の放射を、
前記放射吸収層で熱として吸収し、その温度上昇を前記
熱電変換素子で電気信号に変換して前記放射のエネルギ
ー量を検出する放射検出器を提供する。
Further, the present invention according to claim 5 has a thermoelectric conversion element having a conical shape, a truncated cone shape, a pyramidal shape, or a truncated pyramidal shape, in which a radiation absorption layer is attached to a part or all of the inner surface. The cone-shaped, pyramid-shaped, or pyramidal-shaped or truncated pyramid-shaped thermoelectric conversion element emits radiation of the light to be measured incident from the opening on the bottom surface of the cone.
There is provided a radiation detector that absorbs heat as heat in the radiation absorption layer and converts the temperature rise into an electric signal by the thermoelectric conversion element to detect the amount of energy of the radiation.

【0016】又、請求項6の本願発明は、内面に放射吸
収層を付着させた所定数の熱電変換素子で形成された円
錐状、円錐台状、角錐状、又は角錐台状の熱電変換器を
有し、前記各熱電変換素子を、それぞれの電気発生の極
性が同一方向と成るよう直列に電気接続し、前記各熱電
変換素子で形成された錐部の底面の開口部より入射した
被測定光の放射を電気信号に変換し、そのエネルギー量
を検出する放射検出器を提供する。
Further, the present invention of claim 6 is a thermoelectric converter having a conical shape, a truncated cone shape, a pyramidal shape, or a truncated pyramid shape, which is formed by a predetermined number of thermoelectric conversion elements having a radiation absorption layer attached to the inner surface thereof. And each of the thermoelectric conversion elements is electrically connected in series so that the respective polarities of electricity generation are in the same direction, and the measured object is incident from the opening of the bottom surface of the cone formed by each of the thermoelectric conversion elements. Provided is a radiation detector that converts light radiation into an electric signal and detects the amount of energy.

【0017】又、請求項9の本願発明は、内面に放射吸
収層を付着させた熱電変換素子と、内面が鏡面の鏡体と
を有し、前記熱電変換素子と鏡体とで形成された円錐
状、円錐台状、角錐状、又は角錐台状の底面の開口部か
ら入射した被測定光の放射を、前記放射吸収層で熱とし
て吸収し、その温度上昇を前記熱電変換素子で電気信号
に変換して前記放射のエネルギー量を検出する放射検出
器を提供する。
Further, the present invention of claim 9 has a thermoelectric conversion element having a radiation absorption layer adhered to the inner surface thereof and a mirror body having an inner surface of a mirror surface, and is formed by the thermoelectric conversion element and the mirror body. The radiation of the light to be measured incident from the opening of the bottom of the cone, the truncated cone shape, the pyramid shape, or the truncated pyramid shape is absorbed by the radiation absorption layer as heat, and the temperature rise thereof is converted into an electric signal by the thermoelectric conversion element. A radiation detector for converting the energy into the radiation and detecting the amount of energy of the radiation is provided.

【0018】又、請求項12の本願発明は、外面の一部
又は全部に放射吸収層を付着させた円錐状、円錐台状、
角錐状、又は角錐台状の熱電変換素子と、その円錐状、
円錐台状、角錐状、又は角錐台状の熱電変換素子を内側
に収納し、内面の一部又は全部が鏡面の鏡筒と、その鏡
筒の開口部に設けられた入射アパーチャーとを備え、前
記入射アパーチャより入射した放射を、前記放射吸収層
に入射させ、その反射した放射成分を、前記鏡筒および
前記入射アパーチャにより反射させて再び前記放射吸収
層に入射させ、その繰り返しにより、前記入射した放射
を前記放射吸収層で熱として吸収し、その温度上昇を前
記熱電変換素子で電気信号に変換して前記放射のエネル
ギー量を検出する放射検出器を提供する。
Further, the invention of claim 12 is a conical shape or a truncated cone shape in which a radiation absorption layer is attached to a part or all of the outer surface,
Pyramidal or truncated pyramidal thermoelectric conversion element and its conical shape,
A truncated cone shape, a pyramid shape, or a truncated pyramid shape thermoelectric conversion element is housed inside, and a part or all of the inner surface is a mirror-barrel, and an entrance aperture provided in the opening of the lens-barrel is provided, Radiation incident from the incident aperture is incident on the radiation absorbing layer, and the reflected radiation component is reflected by the lens barrel and the incident aperture and incident on the radiation absorbing layer again, and by repeating the above, the incident There is provided a radiation detector that absorbs the generated radiation as heat in the radiation absorption layer and converts the temperature rise into an electric signal by the thermoelectric conversion element to detect the energy amount of the radiation.

【0019】又、請求項13の本願発明は、外面の一部
又は全部に放射吸収層を付着させた円錐、円錐台、角
錐、又は角錐台状の第1の熱電変換素子と、その円錐、
円錐台、角錐、又は角錐台状の第1熱電変換素子を内側
に収納し、内面の一部又は全部に放射吸収層を付着させ
た筒状の第2熱電変換素子と、その第2熱電変換素子の
開口部に設けられた入射アパーチャーとを備え、前記入
射アパーチャより入射した放射を、前記放射吸収層に入
射させ、その反射した放射成分を、再び前記放射吸収層
に入射させ、その繰り返しにより、前記入射した放射を
前記放射吸収層で熱として吸収し、その温度上昇を前記
熱電変換素子で電気信号に変換して前記放射のエネルギ
ー量を検出する放射検出器を提供する。
Further, in the present invention of claim 13, the first thermoelectric conversion element in the shape of a cone, a truncated cone, a pyramid, or a truncated pyramid having a radiation absorption layer attached to a part or all of the outer surface thereof, and the cone,
A cylindrical second thermoelectric conversion element in which a first thermoelectric conversion element in the shape of a truncated cone, a pyramid, or a truncated pyramid is housed inside and a radiation absorption layer is attached to part or all of the inner surface, and the second thermoelectric conversion thereof. An incident aperture provided in the opening of the element, the radiation incident from the incident aperture is incident on the radiation absorption layer, the reflected radiation component is incident again on the radiation absorption layer, by repeating the A radiation detector that absorbs the incident radiation as heat in the radiation absorption layer and converts the temperature rise into an electric signal by the thermoelectric conversion element to detect the amount of energy of the radiation.

【0020】[0020]

【作用】本願発明では、上記した構成により、円錐部底
面の開口部から入射した被測定光の放射が、前記円錐内
壁の前記放射吸収層で繰り返し反射吸収され、その温度
上昇が前記焦電素子で電気信号に変換されて前記被測定
光の放射のエネルギー量が効率よく検出される。
In the present invention, with the above-described structure, the radiation of the light to be measured that has entered through the opening on the bottom surface of the conical portion is repeatedly reflected and absorbed by the radiation absorbing layer on the inner wall of the cone, and the temperature rise thereof is caused by the pyroelectric element. Is converted into an electric signal and the amount of energy of radiation of the measured light is efficiently detected.

【0021】また、前記円錐部を複数の焦電素子で構成
し、それぞれの素子を分極方向を一致させるように直列
に電気的に接続を行なうことにより、検出器の静電容量
を低下させ、検出器の感度を向上させる。
Further, the conical portion is composed of a plurality of pyroelectric elements, and the respective elements are electrically connected in series so that the polarization directions coincide with each other, thereby reducing the capacitance of the detector, Improve the sensitivity of the detector.

【0022】また、半円錐鏡体と半円錐焦電素子および
その内壁に形成した放射吸収層とで検出器を構成するこ
とにより、半円錐鏡体側に入射した放射をすべて、半円
錐焦電素子の内壁の放射吸収層に反射させ、吸収するこ
とによって、受光面である放射吸収層へ単位面積当り入
射する放射が、ほぼ倍となり、第1の発明の放射検出器
の2倍のS/N比を持つ検出器が実現できる。
Further, the detector is constituted by the semi-conical mirror body, the semi-conical pyroelectric element and the radiation absorbing layer formed on the inner wall thereof, so that all the radiation incident on the half-conical mirror body side is converted into the semi-conical pyroelectric element. By reflecting and absorbing the radiation absorption layer on the inner wall of the device, the radiation incident on the radiation absorption layer, which is the light receiving surface, per unit area is almost doubled, and the S / N is twice as high as that of the radiation detector of the first invention. A detector with a ratio can be realized.

【0023】[0023]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0024】図1は、本発明の第1の実施例の構成を示
す図で、図1(A)は縦断面図、図1(B)は図1
(A)の後ろ側からみた背面図、図1(C)は斜視図で
ある。
1A and 1B are views showing the configuration of a first embodiment of the present invention. FIG. 1A is a longitudinal sectional view and FIG. 1B is FIG.
FIG. 1 (C) is a perspective view of the rear view seen from the rear side of (A).

【0025】図1において、開口部の直径φ1 を約10
mmとした入射アパーチャ1より入射した被測定光2
は、頂角θ1を30度とした円錐状のPVF2(ポリフッ
化ビニリデン)の焦電素子3の内面に蒸着した放射吸収
層4に入射し、一部は吸収され、残りは反射し、再度放
射吸収層4に入射する。
In FIG. 1, the diameter φ1 of the opening is approximately 10
Measured light 2 incident from the incident aperture 1 in mm
Enters the radiation absorption layer 4 deposited on the inner surface of the conical PVF 2 (polyvinylidene fluoride) pyroelectric element 3 having an apex angle θ 1 of 30 degrees, part of which is absorbed and the rest is reflected, and again. It is incident on the radiation absorption layer 4.

【0026】これを繰り返して、被測定光2は、放射吸
収層4に100%近く吸収される。放射吸収層の分光反
射率をγ(λ)、円錐の開口部に垂直に入射した放射の
円錐内部での繰り返し反射吸収回数をnとすれば、円錐
の実効吸収率α(λ)は、次式1で与えられる。
By repeating this, the light to be measured 2 is absorbed by the radiation absorption layer 4 in an amount close to 100%. Assuming that the spectral reflectance of the radiation absorption layer is γ (λ) and the number of repeated reflections and absorptions inside the cone of the radiation perpendicularly entering the opening of the cone is n, the effective absorption rate α (λ) of the cone is It is given by Equation 1.

【0027】[0027]

【数1】[Equation 1]

【0028】α(λ)=1−γ(λ)n 従って、頂角θ1を30度とした、円錐内部に分光反射
率がγ(λ)<0.1の金黒放射吸収層4を塗布した場
合、n=6であるから、α(λ)<0.999999
9、すなわち、99.99999%の実効吸収率とな
る。すなわち、応答度の波長依存性は無くなる。図1’
はそのような様子を示す、頂角30度の内部反射モデル
を示す図である。
Α (λ) = 1-γ (λ) n Therefore, the apex angle θ1 is 30 degrees, and the gold black radiation absorption layer 4 having a spectral reflectance of γ (λ) <0.1 is applied inside the cone. In this case, since n = 6, α (λ) <0.999999
9, that is, the effective absorption rate of 99.99999%. That is, the wavelength dependence of the responsivity disappears. Figure 1 '
FIG. 3 is a diagram showing an internal reflection model with an apex angle of 30 degrees showing such a state.

【0029】焦電素子3は、フィルム厚が9μm、両面
にアルミを蒸着して電極としたものでフレキシブルであ
る。これを支持板5で円錐状に固定し、その支持板5を
入射アパーチャ1に固定した。すなわち、フィルム状の
焦電素子3をまず扇形に切りだし、その要から外周への
両方の端部にそれぞれ絶縁、断熱に優れた絶縁断熱樹脂
または、セラミックでできた支持板5を接着した。な
お、放射吸収層4は、焦電素子3が平面の状態で、窒素
ガス圧1〜2torrの雰囲気で、金を蒸発させて製作
する。
The pyroelectric element 3 has a film thickness of 9 μm and is flexible because aluminum is vapor-deposited on both sides to form electrodes. This was fixed in a conical shape with a support plate 5, and the support plate 5 was fixed to the entrance aperture 1. That is, the film-shaped pyroelectric element 3 was first cut into a fan shape, and a support plate 5 made of an insulating and heat-insulating resin excellent in insulation and heat insulation or a ceramic was adhered to both ends from the center to the outer circumference. The radiation absorption layer 4 is manufactured by evaporating gold in an atmosphere having a nitrogen gas pressure of 1 to 2 torr with the pyroelectric element 3 in a flat state.

【0030】金黒の膜厚は10μm前後で、熱伝効率の
良い放射吸収層4が得られる。なお、焦電素子3の表面
に金黒を放射吸収層4として付着させたが、他の金属を
蒸発させて形成した金属黒を付着させてもよく、また黒
色塗料を付着させてもよい。
The thickness of gold black is around 10 μm, and the radiation absorption layer 4 having good heat transfer efficiency can be obtained. Although gold black was deposited as the radiation absorption layer 4 on the surface of the pyroelectric element 3, metal black formed by evaporating another metal may be deposited, or black paint may be deposited.

【0031】このように、金黒蒸着ののち、焦電素子3
の両端の支持板5をはりあわせ、放射吸収層4が内部に
位置するように円錐を形成する。
As described above, the pyroelectric element 3 is formed after the gold black deposition.
The support plates 5 at both ends of are joined together to form a cone so that the radiation absorption layer 4 is located inside.

【0032】この円錐状となった焦電素子の支持板5の
端部を入射アパーチャ1に固定することにより、図1に
示した放射検出器が構成される。また、15は支持板5
とともに焦電素子3と入射アパーチャ1とを補助的に固
定するための補助支持板である。なお、焦電素子3の電
極は図示していない。
The radiation detector shown in FIG. 1 is constructed by fixing the end portion of the support plate 5 of the conical pyroelectric element to the entrance aperture 1. Further, 15 is a support plate 5.
At the same time, it is an auxiliary support plate for auxiliary fixing the pyroelectric element 3 and the entrance aperture 1. The electrodes of the pyroelectric element 3 are not shown.

【0033】放射の測定は、光チョッパ等で変調した被
測定光2を入射アパーチャ1より放射検出器内に入射さ
せ、それによる焦電素子3の電気出力を高入力インピー
ダンスのロックイン増幅器(図示せず)で、変調周波数
に同期して検出する。
To measure the radiation, the light to be measured 2 modulated by an optical chopper or the like is made incident on the radiation detector through the entrance aperture 1, and the electric output of the pyroelectric element 3 thereby is locked in an amplifier with a high input impedance (see FIG. (Not shown), detection is performed in synchronization with the modulation frequency.

【0034】ロックイン増幅器の入力インピーダンス1
0MΩ、変調周波数18.5Hzで、1μV/(μW/c
m2)以上の感度が得られる。
Input impedance 1 of lock-in amplifier
0 MΩ, modulation frequency 18.5 Hz, 1 μV / (μW / c
A sensitivity of m 2 ) or higher is obtained.

【0035】焦電素子の感度は、変調周波数に反比例す
るため、変調周波数を2Hz程度まで落とすと、入射ア
パーチャ1の開口面積と同一の受光面積を持つ、従来の
熱形放射検出器(サーモパイル)の20倍近い高感度な
放射検出器が得られる。
Since the sensitivity of the pyroelectric element is inversely proportional to the modulation frequency, when the modulation frequency is lowered to about 2 Hz, the conventional thermal radiation detector (thermopile) has the same light receiving area as the opening area of the entrance aperture 1. It is possible to obtain a radiation detector with high sensitivity close to 20 times.

【0036】また、放射吸収層4は、被測定光2の反射
成分を繰り返し捕らえるため、感度の波長依存性は解消
される。
Further, since the radiation absorption layer 4 repeatedly captures the reflection component of the measured light 2, the wavelength dependence of sensitivity is eliminated.

【0037】以上のように本実施例によれば、使用する
焦電素子がフイルム状で放射検出器の形成が容易である
とともに、常温での測定が可能で、分光応答度が波長に
依存せず、かつ安定な出力が得られる熱形の放射検出器
を実現できる。
As described above, according to this embodiment, the pyroelectric element to be used is in the form of a film, the radiation detector can be easily formed, the measurement can be performed at room temperature, and the spectral responsivity depends on the wavelength. It is possible to realize a thermal-type radiation detector that can obtain a stable output without causing any damage.

【0038】また、図2に示す放射検出器は、本発明の
一実施例であって、熱電素子3の形状が3角柱状のもの
である。(A)は縦断面図、(B)は後ろ側からみた背
面図、(C)は斜視図である。このような多面体でも当
然に、放射吸収層4は、被測定光2の反射成分を繰り返
し捕らえるため、感度の波長依存性は解消される。
The radiation detector shown in FIG. 2 is an embodiment of the present invention, and the thermoelectric element 3 has a triangular prism shape. (A) is a longitudinal sectional view, (B) is a rear view seen from the rear side, and (C) is a perspective view. Of course, even with such a polyhedron, the radiation absorption layer 4 repeatedly captures the reflection component of the measured light 2, so that the wavelength dependence of the sensitivity is eliminated.

【0039】また、図3に示す放射検出器は、本発明の
一実施例であって、熱電素子3の形状が4角錐状のもの
である。(A)は縦断面図、(B)は後ろ側からみた背
面図、(C)は斜視図である。このような角錐でも当然
に、放射吸収層4は、被測定光2の反射成分を繰り返し
捕らえるため、感度の波長依存性は解消される。
The radiation detector shown in FIG. 3 is an embodiment of the present invention, and the thermoelectric element 3 has a quadrangular pyramid shape. (A) is a longitudinal sectional view, (B) is a rear view seen from the rear side, and (C) is a perspective view. Of course, even with such a pyramid, the radiation absorption layer 4 repeatedly captures the reflection component of the measured light 2, so that the wavelength dependence of the sensitivity is eliminated.

【0040】また、図4に示す放射検出器は、本発明の
一実施例であって、図1に示すものからアパーチャーが
除去された状態のものである。(A)は縦断面図、
(B)は後ろ側からみた背面図、(C)は斜視図であ
る。このようなアパーチャーが無いものでも当然に、放
射吸収層4は、被測定光2の反射成分を繰り返し捕らえ
るため、感度の波長依存性は解消される。
Further, the radiation detector shown in FIG. 4 is an embodiment of the present invention, and is a state in which the aperture is removed from that shown in FIG. (A) is a vertical sectional view,
(B) is a rear view seen from the rear side, and (C) is a perspective view. Of course, even if there is no such aperture, the radiation absorption layer 4 repeatedly captures the reflected component of the measured light 2, so that the wavelength dependence of the sensitivity is eliminated.

【0041】次に、本発明の別の実施例について説明す
る。
Next, another embodiment of the present invention will be described.

【0042】本実施例は、図1の実施例における円錐構
造を2つの半円錐形状の焦電素子で構成するものであ
る。
In this embodiment, the conical structure in the embodiment of FIG. 1 is composed of two semi-conical pyroelectric elements.

【0043】その2つの焦電素子を電気的にそれぞれの
焦電分極の極性が同一方向と成るよう直列に接続するこ
とにより、電気的時定数が小さくなる。
By electrically connecting the two pyroelectric elements in series so that the polarities of the respective pyroelectric polarizations are in the same direction, the electrical time constant is reduced.

【0044】図5は、本実施例の構成を示す図で、図5
(A)は縦断面図、図5(B)は後ろからみた背面図で
ある。
FIG. 5 is a diagram showing the configuration of this embodiment.
FIG. 5A is a vertical sectional view, and FIG. 5B is a rear view seen from the back.

【0045】図6は、本実施例の2つの焦電素子3、3
の電気的接続の模式的概略図である。
FIG. 6 shows the two pyroelectric elements 3 and 3 of this embodiment.
It is a schematic diagram of an electrical connection of.

【0046】図5において、21は、扇形の要から外周
への両方の端部にそれぞれ板状の絶縁断熱樹脂でできた
支持板23を接着した、フィルム状の第一焦電素子であ
る。また22は、同様な扇の両端部に指示板24を接着
したフィルム状の第2の焦電素子である。第一および第
二の焦電素子21,22の片面には第1の実施例と同様
に黒色塗料または金属黒が放射吸収層4として付着され
ている。
In FIG. 5, reference numeral 21 denotes a film-shaped first pyroelectric element in which a support plate 23 made of a plate-shaped insulating and heat-insulating resin is adhered to both ends of the fan-shaped main part to the outer periphery. Reference numeral 22 is a film-like second pyroelectric element in which indicator plates 24 are adhered to both ends of a similar fan. Black paint or metallic black is attached as a radiation absorption layer 4 to one surface of each of the first and second pyroelectric elements 21 and 22 as in the first embodiment.

【0047】第一及び第二の焦電素子21、22のそれ
ぞれの端部に固定された支持板23,24は、放射吸収
層4が内側となり、かつ焦電素子21,22が半円錐状
となるように第一および第二の焦電素子21,22を曲
げ、さらに両者を合わせて円錐状となるように、互いに
接着されている。
The support plates 23 and 24 fixed to the respective ends of the first and second pyroelectric elements 21 and 22 have the radiation absorption layer 4 inside and the pyroelectric elements 21 and 22 have a semi-conical shape. The first and second pyroelectric elements 21 and 22 are bent so as to have the following shape, and the both are bonded to each other so as to form a conical shape.

【0048】第一の焦電素子21と第二の焦電素子22
とは図6に示すように導線によって、それぞれの焦電分
極の極性が同一方向と成るよう直列に接続し、第一の焦
電素子21および第二の焦電素子22からなる円錐の底
部開口より入射した被測定光2の放射を電気信号に変換
し、そのエネルギー量を検出する構成となっている。
First pyroelectric element 21 and second pyroelectric element 22
Is a conical bottom opening consisting of a first pyroelectric element 21 and a second pyroelectric element 22, which are connected in series by conductors so that the polarities of their pyroelectric polarizations are in the same direction, as shown in FIG. The incident radiation of the measured light 2 is converted into an electric signal and the amount of energy is detected.

【0049】次に本実施例の動作を説明する。まず焦電
素子は、素子の温度変化、すなわち、微分量に対して応
答するものであるから、受光面に入射する光をチョッパ
などで変調した上で、その変調された光を焦電素子で検
出する。
Next, the operation of this embodiment will be described. First, since the pyroelectric element responds to the temperature change of the element, that is, the differential amount, the light incident on the light receiving surface is modulated by a chopper or the like, and then the modulated light is converted by the pyroelectric element. To detect.

【0050】変調周波数をω、Rを焦電素子の内部抵抗
と素子を接続する前置増幅器6の入力抵抗から得られる
合成抵抗、Cを焦電素子の内部容量と素子を接続する前
置増幅器の入力容量から得られる合成容量、Sを円錐の
開口部の面積、S’を受光素子面積、すなわち、円錐の
内面積とし、Pを焦電素子の焦電係数、Gを素子の周囲
に対する熱コンダクタンス、Hを焦電素子の熱容量、素
子の熱時定数τT(=H/G)、電気的時定数をτE(=
CR)とすれば、焦電素子の応答度は次式2で表され
る。
The modulation frequency is ω, R is a combined resistance obtained from the input resistance of the preamplifier 6 connecting the internal resistance of the pyroelectric element and the element, and C is the preamplifier connecting the internal capacitance of the pyroelectric element and the element. , S is the area of the opening of the cone, S'is the area of the light receiving element, that is, the inner area of the cone, P is the pyroelectric coefficient of the pyroelectric element, and G is the heat of the surroundings of the element. Conductance, H is the heat capacity of the pyroelectric element, the thermal time constant τ T (= H / G) of the element, and the electrical time constant τ E (=
CR), the responsivity of the pyroelectric element is expressed by the following equation 2.

【0051】[0051]

【数2】Rv=ηωRSS’P/G・(1+ω2τT 2
-1/2(1+ω2τE 2-1/2 従ってω>1/τEのとき、焦電素子の感度Rvは周波数
が高いほど大きくなる。また1/τE>ω>1/τTのと
き、焦電素子の感度は周波数に関係なく一定となる。さ
らに1/τT>ωのとき、焦電素子の感度は周波数の低
下に比例して増大する。したがって、本実施例の放射検
出器は、図1の実施例の放射検出器に比べて、入射光の
変調周波数に感度が依存しない周波数領域が広く、変調
周波数の変動に対して影響をうけない、安定した検出器
を構成できる。
[Formula 2] R v = ηω RSS′P / G · (1 + ω 2 τ T 2 )
-1/2 (1 + ω 2 τ E 2 ) -1/2 Therefore, when ω> 1 / τ E , the sensitivity R v of the pyroelectric element increases as the frequency increases. When 1 / τ E >ω> 1 / τ T , the sensitivity of the pyroelectric element becomes constant regardless of frequency. Furthermore, when 1 / τ T > ω, the sensitivity of the pyroelectric element increases in proportion to the decrease in frequency. Therefore, the radiation detector of the present embodiment has a wider frequency region in which the sensitivity does not depend on the modulation frequency of the incident light, compared to the radiation detector of the embodiment of FIG. 1, and is not affected by fluctuations in the modulation frequency. A stable detector can be constructed.

【0052】入射放射を18.5Hzで変調して、R=
108Ωの入力インピーダンスのアンプで放射検出を行
なうとき、素子の熱時定数τTは1秒以上、電気的時定
数τEも15m秒以上であり、このときω>1/τT、1
/τEゆえ、
Modulating the incident radiation at 18.5 Hz, R =
When detecting radiation with an amplifier having an input impedance of 10 8 Ω, the thermal time constant τ T of the element is 1 second or more, and the electrical time constant τ E is 15 ms or more. At this time, ω> 1 / τ T , 1
/ Τ E, therefore

【0053】[0053]

【数3】Rv=ηSP/ωCVdC となる。ここにCVは、素子の体積比熱、dは素子の厚
さであり、
## EQU3 ## R v = ηSP / ωC VdC. Where CV is the volume specific heat of the element, d is the element thickness,

【0054】[0054]

【数4】τT=CV・S’・d・G である。(4) τ T = CV · S ′ · d · G.

【0055】以上のことから、開口部の直径φ1を10
mmと一定、すなわち、開口面積S’が一定である場合、
検出器の感度は素子の容量Cに反比例する。
From the above, the diameter φ1 of the opening is 10
mm, that is, when the opening area S ′ is constant,
The sensitivity of the detector is inversely proportional to the capacitance C of the device.

【0056】実際のデータを(表1)に示す。開口面積
を一定とし、頂角(開口角)を変えて、素子面積すなわ
ち素子容量を変えた検出器の感度を測定した。
Actual data are shown in (Table 1). The aperture area was kept constant and the apex angle (aperture angle) was changed to measure the sensitivity of the detector with the element area, that is, the element capacitance changed.

【0057】[0057]

【表1】 [Table 1]

【0058】なお、頂角90度の検出器の繰り返し反射
吸収回数が2回となり、この繰り返し反射吸収効果が得
られる限界である。また、開口面積を一定とした場合、
頂角90度の検出器が、素子の容量がもっとも小さくな
り、高い感度が得られる。
It should be noted that the number of times of repeated reflection and absorption of the detector having the apex angle of 90 degrees is twice, which is the limit at which this repeated reflection and absorption effect can be obtained. When the opening area is constant,
A detector with an apex angle of 90 degrees has the smallest element capacitance and high sensitivity.

【0059】図7は各種頂角の円錐の内部反射モデルを
示す。
FIG. 7 shows an internal reflection model of a cone with various apex angles.

【0060】円錐内部での繰り返し反射吸収効果をみる
ために、1.5torrの窒素雰囲気中で厚さ4μの金黒を
付着させた検出器をその頂角を変えて製作し、実効反射
率を測定したところ、図8に示すように、繰り返し反射
吸収回数が2回の頂角90度の検出器でも、平面の金黒
では反射率8%以下であったのが、0.7%以下に改善
される。すなわち、放射を99.4%以上吸収出来る。
In order to see the effect of repeated reflection and absorption inside the cone, a detector with a thickness of 4μ of gold black adhered in a nitrogen atmosphere of 1.5 torr was manufactured by changing the apex angle, and the effective reflectance was measured. As a result of measurement, as shown in FIG. 8, even with a detector having an apex angle of 90 degrees in which the number of times of repeated reflection and absorption was two, the reflectance was 8% or less for flat gold black, but was 0.7% or less. Be improved. That is, it can absorb more than 99.4% of radiation.

【0061】図9は開口面積を一定とし、頂角(開口
角)を変えて、素子面積すなわち、素子容量を変えた場
合の感度の測定値を示すグラフである。
FIG. 9 is a graph showing measured values of sensitivity when the area of the element, that is, the element capacitance is changed by changing the apex angle (opening angle) while keeping the opening area constant.

【0062】以上の事から、本実施例によれば、図1の
放射検出器に比べ、容量が1/2であるから、感度は倍
に向上することがわかる。
From the above, according to the present embodiment, it is understood that the sensitivity is doubled because the capacitance is 1/2 as compared with the radiation detector of FIG.

【0063】図10は、本発明の別の実施例を示す図で
あって、熱電変換素子3が、円錐状を軸に直角方向に2
つに分割した形状を有している放射検出器である。
(A)は縦断面図、(B)は後ろからみた背面図であ
る。この形状は、もちろん他の円錐台形状等任意の形状
を任意の数に分割してもかまわない。
FIG. 10 is a view showing another embodiment of the present invention, in which the thermoelectric conversion element 3 has a conical shape in a direction perpendicular to the axis.
It is a radiation detector having a shape divided into two.
(A) is a longitudinal sectional view and (B) is a rear view seen from the rear. This shape may of course be divided into an arbitrary number such as another truncated cone shape.

【0064】次に、本発明の別の実施例について説明す
る。図11に示す本実施例では、図1の実施例の円錐構
造を放射吸収層を塗布した半円錐状の焦電素子と、それ
と同形状の半円錐鏡体で構成し、半円錐鏡体に入射した
光をを記半円錐状の焦電素子に反射し、被測定光を検出
する構成である。(A)は縦断面図、(B)はその後ろ
からみた背面図である。
Next, another embodiment of the present invention will be described. In the present embodiment shown in FIG. 11, the conical structure of the embodiment of FIG. 1 is constituted by a semi-conical pyroelectric element coated with a radiation absorbing layer and a semi-conical mirror body having the same shape as the semi-conical mirror body. The configuration is such that the incident light is reflected by the semi-conical pyroelectric element to detect the light to be measured. (A) is a longitudinal sectional view and (B) is a rear view seen from the rear.

【0065】図11に示すように、41は図5の実施例
と同様に内面に放射吸収層を付着させた半円錐状の焦電
素子、42は内面が鏡面の半円錐鏡体で、半円錐鏡体4
2は内面が光を反射する構造であればよい。
As shown in FIG. 11, 41 is a semi-conical pyroelectric element having a radiation absorbing layer adhered to the inner surface as in the embodiment of FIG. 5, and 42 is a semi-conical mirror body having a mirror surface on the inner surface. Conical mirror 4
2 may have a structure in which the inner surface reflects light.

【0066】43,44は半円錐状の焦電素子41と半
円錐鏡体42のそれぞれの端部に固定された支持板であ
る。支持板43、44は放射吸収層が内側となり、かつ
半円錐状の焦電素子41と半円錐鏡体42とで円錐状と
なるように、互いに接着され、その端部を入射アパーチ
ャ1に固定することにより、放射検出器を構成してい
る。
Reference numerals 43 and 44 denote support plates fixed to the respective ends of the semi-conical pyroelectric element 41 and the semi-conical mirror body 42. The support plates 43 and 44 are adhered to each other so that the radiation absorption layer is on the inner side and the semi-conical pyroelectric element 41 and the semi-conical mirror body 42 are conical, and the ends thereof are fixed to the entrance aperture 1. By doing so, a radiation detector is constructed.

【0067】次に本実施例の動作を説明すると、まず、
半円錐状の焦電素子41と半円錐鏡体42とで形成され
た円錐の底面の開口部から入射した被測定光のうち、直
接放射吸収層に入射した光はそのまま放射吸収層で熱と
して吸収され、半円錐鏡体42に入射した光は反射され
て間接に前記放射吸収層に入射し、前記放射吸収層は直
接光と間接光を吸収しその温度上昇を前記焦電素子で電
気信号に変換して前記放射のエネルギー量を検出するも
のである。
The operation of this embodiment will be described below.
Of the light to be measured that has entered through the opening in the bottom surface of the cone formed by the semi-conical pyroelectric element 41 and the semi-conical mirror body 42, the light that has directly entered the radiation absorption layer is directly converted into heat by the radiation absorption layer. The light absorbed and incident on the semi-conical mirror 42 is reflected and indirectly enters the radiation absorption layer, and the radiation absorption layer absorbs the direct light and the indirect light, and the temperature rise thereof is an electric signal by the pyroelectric element. The energy amount of the radiation is detected by converting into

【0068】以上のように本実施例によれば、受光面で
ある放射吸収層へ単位面積あたり入射する放射が倍とな
るため、図1の実施例の放射検出器の二倍のS/Nを持
つ放射検出器を実現できる。
As described above, according to this embodiment, the radiation incident on the radiation absorption layer, which is the light receiving surface, per unit area is doubled, so that the S / N is twice as high as that of the radiation detector of the embodiment of FIG. A radiation detector with can be realized.

【0069】尚、本実施例の半円錐状の焦電素子41と
半円錐鏡体42は、軸方向に沿って円錐を上下に分割し
た半円錐状としたが、図12に示すように、軸方向に直
角な方向に、円錐を前後に分割し、入射アパーチャ1に
近い部分を鏡体部分とし、残りの円錐部分を放射吸収層
を内面に付着させた焦電素子としてもよい。
Although the semi-conical pyroelectric element 41 and the semi-conical mirror body 42 of this embodiment have a semi-conical shape in which the cone is divided into upper and lower parts along the axial direction, as shown in FIG. It is also possible to divide the cone into front and rear in a direction perpendicular to the axial direction, to make the portion near the entrance aperture 1 a mirror body portion, and the remaining cone portion a pyroelectric element having a radiation absorption layer attached to the inner surface.

【0070】以下、本発明の別の実施例について説明す
る。本実施例の構成を図13に示す。
Another embodiment of the present invention will be described below. The configuration of this embodiment is shown in FIG.

【0071】図13において、51は入射アパーチャ、
52は被測定光、53は片面に黒色塗料又は金属黒を放
射吸収層54として付着させた円錐状の焦電素子であ
る。55は扇形のィルム状の焦電素子の要から外周への
両方の端部にそれぞれ接着した二つの絶縁断熱樹脂でで
きた支持板で、支持板55は放射吸収層54が外側とな
り、かつ焦電素子53が円錐状となるように互いに接着
されている。(A)はその縦断面図、(B)はその斜視
図である。
In FIG. 13, reference numeral 51 denotes an entrance aperture,
Reference numeral 52 is a light to be measured, and reference numeral 53 is a conical pyroelectric element having a black paint or metallic black adhered as a radiation absorbing layer 54 on one surface. Reference numeral 55 is a support plate made of two insulating and heat-insulating resins, which are adhered to both ends of the fan-shaped film-shaped pyroelectric element from the center to the outer periphery. The electric elements 53 are adhered to each other so as to have a conical shape. (A) is a longitudinal sectional view thereof, and (B) is a perspective view thereof.

【0072】56は、その焦電素子の円錐構造にかぶせ
るように配置した鏡筒、57は鏡筒56について焦電素
子53と反対側に配置した入射アパーチャ51の鏡筒側
の面に形成された鏡面である。入射アパーチャ51より
入射した放射を、放射吸収層54に入射させ、その反射
した放射成分を、鏡筒56および入射アパーチャ51の
鏡面57により反射させて再び放射吸収層54に入射さ
せ、その繰り返しにより、前記入射した被測定光52の
放射をすべて、放射吸収層54で熱として吸収し、その
温度上昇を焦電素子53で電気信号に変換して前記放射
のエネルギー量を検出する構成となっている。
Reference numeral 56 designates a lens barrel arranged so as to cover the conical structure of the pyroelectric element, and 57 designates a lens barrel side surface of the entrance aperture 51 arranged on the opposite side of the lens barrel 56 from the pyroelectric element 53. It is a mirror surface. Radiation incident from the incident aperture 51 is incident on the radiation absorbing layer 54, and the reflected radiation component is reflected by the lens barrel 56 and the mirror surface 57 of the incident aperture 51 to be incident on the radiation absorbing layer 54 again. The radiation absorption layer 54 absorbs all the radiation of the incident measured light 52 as heat, and the pyroelectric element 53 converts the temperature rise into an electric signal to detect the energy amount of the radiation. There is.

【0073】即ち本実施例の構成の特徴は、図1の実施
例の構成において、放射吸収層4が、焦電素子3によっ
て形成された円錐の外側に位置するように構成され、そ
の放射吸収層4を覆うように鏡筒56と、入射アパーチ
ャ51とが配置されており、かつ入射アパーチャ51の
焦電素子53側に対する面が鏡面57となっていること
である。
That is, the structure of this embodiment is characterized in that the radiation absorption layer 4 is located outside the cone formed by the pyroelectric element 3 in the structure of the embodiment of FIG. The lens barrel 56 and the entrance aperture 51 are arranged so as to cover the layer 4, and the surface of the entrance aperture 51 facing the pyroelectric element 53 side is the mirror surface 57.

【0074】従って、本実施例では、入射アパーチャ5
1より入射した放射を、放射吸収層54に入射させ、そ
の反射した放射成分を、鏡筒56および入射アパーチャ
51の鏡面57により反射させ、再び放射吸収層54に
入射させ、その繰り返しにより、前記入射した被測定光
2の放射をすべて、放射吸収層54で熱として吸収し、
その温度上昇を焦電素子53で電気信号に変換して前記
放射のエネルギー量を検出するので、第1の実施例と同
様に、感度の波長依存性が解消された高感度な放射検出
器が得られる。
Therefore, in this embodiment, the entrance aperture 5 is
Radiation that is incident from No. 1 is incident on the radiation absorption layer 54, and the reflected radiation component is reflected by the lens barrel 56 and the mirror surface 57 of the entrance aperture 51, and is incident on the radiation absorption layer 54 again. All the radiation of the incident measured light 2 is absorbed by the radiation absorption layer 54 as heat,
Since the temperature rise is converted into an electric signal by the pyroelectric element 53 to detect the amount of energy of the radiation, a highly sensitive radiation detector in which the wavelength dependence of the sensitivity is eliminated is provided as in the first embodiment. can get.

【0075】図14は、本発明の別の実施例を示すもの
である。本実施例では、図13の実施例における、鏡筒
56の代わりに、第2の焦電素子53’を設けたもので
ある。(A)はその縦断面図、(B)はその斜視図であ
る。本実施例によっても、感度の波長依存性が解消され
た高感度な放射検出器が得られる。
FIG. 14 shows another embodiment of the present invention. In this embodiment, a second pyroelectric element 53 'is provided instead of the lens barrel 56 in the embodiment of FIG. (A) is a longitudinal sectional view thereof, and (B) is a perspective view thereof. Also in this embodiment, a highly sensitive radiation detector in which the wavelength dependence of sensitivity is eliminated can be obtained.

【0076】図15は、図13の実施例における入射ア
パーチャーを除去した実施例である。(A)は縦断面
図、(B)はその正面図、(C)は斜視図である。本実
施例によっても、感度の波長依存性が解消された高感度
な放射検出器が得られる。
FIG. 15 shows an embodiment in which the incident aperture in the embodiment of FIG. 13 is removed. (A) is a longitudinal sectional view, (B) is a front view thereof, and (C) is a perspective view. Also in this embodiment, a highly sensitive radiation detector in which the wavelength dependence of sensitivity is eliminated can be obtained.

【0077】図16は、図15の実施例における焦電素
子53を軸方向に直角な方向に分割された例である。
(A)は縦断面図、(B)はその正面図、(C)は斜視
図である。本実施例によっても、感度の波長依存性が解
消された高感度な放射検出器が得られる。
FIG. 16 is an example in which the pyroelectric element 53 in the embodiment of FIG. 15 is divided in a direction perpendicular to the axial direction.
(A) is a longitudinal sectional view, (B) is a front view thereof, and (C) is a perspective view. Also in this embodiment, a highly sensitive radiation detector in which the wavelength dependence of sensitivity is eliminated can be obtained.

【0078】図17は、図15の実施例における鏡筒5
6の形状を、円錐台形状としたものを示す。(A)は縦
断面図、(B)は斜視図である。本実施例によっても、
感度の波長依存性が解消された高感度な放射検出器が得
られる。
FIG. 17 shows the lens barrel 5 in the embodiment of FIG.
The shape of 6 is a truncated cone shape. (A) is a longitudinal sectional view and (B) is a perspective view. According to this embodiment,
A highly sensitive radiation detector in which the wavelength dependency of sensitivity is eliminated can be obtained.

【0079】図18は、図17の実施例における焦電素
子53の形状も、円錐台形状としたものを示す。(A)
は縦断面図、(B)は斜視図である。本実施例によって
も、感度の波長依存性が解消された高感度な放射検出器
が得られる。
FIG. 18 shows that the shape of the pyroelectric element 53 in the embodiment of FIG. 17 is also a truncated cone shape. (A)
Is a longitudinal sectional view, and (B) is a perspective view. Also in this embodiment, a highly sensitive radiation detector in which the wavelength dependence of sensitivity is eliminated can be obtained.

【0080】なお、本発明においては、金黒の代わり
に、NiPニッケル隣合金等他の放射吸収材料でも使用
可能である。
In the present invention, instead of gold black, another radiation absorbing material such as NiP nickel alloy next alloy can be used.

【0081】[0081]

【発明の効果】以上のように本発明によれば、従来の熱
電対による熱形検出器と比較して10〜100倍高感度
であること、装置が大型化せずに放射検出器の形成が容
易なこと、焦電素子が変調された入射光を測定するもの
であるため、感度の温度ドリフトが無いことから、常温
でコンパクトかつ、高感度で感度の波長依存性のない放
射検出器を実現することができる。
As described above, according to the present invention, the sensitivity is 10 to 100 times higher than that of the conventional thermocouple detector, and the radiation detector can be formed without increasing the size of the apparatus. Since it measures incident light that is modulated by the pyroelectric element, there is no temperature drift of sensitivity, so a radiation detector that is compact at room temperature, has high sensitivity, and has no wavelength dependence of sensitivity is used. Can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)本発明の一実施例における放射検出器の
構成を示す断面図 (B)同放射検出器の構成を示す背面図 (C)同放射検出器の構成を示す斜視図
1A is a cross-sectional view showing the configuration of a radiation detector according to an embodiment of the present invention, FIG. 1B is a rear view showing the configuration of the radiation detector, and FIG. 1C is a perspective view showing the configuration of the radiation detector.

【図2】(A)本発明の一実施例における放射検出器の
構成を示す断面図 (B)同放射検出器の構成を示す背面図 (C)同放射検出器の構成を示す斜視図
FIG. 2A is a cross-sectional view showing the configuration of a radiation detector according to an embodiment of the present invention. FIG. 2B is a rear view showing the configuration of the radiation detector. FIG. 2C is a perspective view showing the configuration of the radiation detector.

【図3】(A)本発明の一実施例における放射検出器の
構成を示す断面図 (B)同放射検出器の構成を示す背面図 (C)同放射検出器の構成を示す斜視図
3A is a cross-sectional view showing the configuration of a radiation detector according to an embodiment of the present invention, FIG. 3B is a rear view showing the configuration of the radiation detector, and FIG. 3C is a perspective view showing the configuration of the radiation detector.

【図4】(A)本発明の一実施例における放射検出器の
構成を示す断面図 (B)同放射検出器の構成を示す背面図 (C)同放射検出器の構成を示す斜視図
FIG. 4A is a cross-sectional view showing the configuration of a radiation detector according to an embodiment of the present invention. FIG. 4B is a rear view showing the configuration of the radiation detector. FIG. 4C is a perspective view showing the configuration of the radiation detector.

【図5】(A)本発明の一実施例における放射検出器の
構成を示す断面図 (B)同放射検出器の構成を示す背面図
5A is a cross-sectional view showing the configuration of a radiation detector according to an embodiment of the present invention. FIG. 5B is a rear view showing the configuration of the radiation detector.

【図6】図5の実施例における放射検出器の電気的接続
の概要図
6 is a schematic diagram of electrical connection of the radiation detector in the embodiment of FIG.

【図7】本発明の実施例における各種頂角を有する内部
反射モデル
FIG. 7 is an internal reflection model having various apex angles according to an embodiment of the present invention.

【図8】本発明の実施例における波長と反射率の関係を
示すグラフ
FIG. 8 is a graph showing the relationship between wavelength and reflectance in the example of the present invention.

【図9】本発明の実施例における波長と反射率の関係を
示すグラフ
FIG. 9 is a graph showing the relationship between wavelength and reflectance in the example of the present invention.

【図10】(A)本発明の一実施例における放射検出器
の構成を示す断面図 (B)同放射検出器の構成を示す背面図
FIG. 10 (A) is a cross-sectional view showing the structure of a radiation detector according to an embodiment of the present invention. (B) is a rear view showing the structure of the radiation detector.

【図11】(A)本発明の一実施例における放射検出器
の構成を示す断面図 (B)同放射検出器の構成を示す背面図
FIG. 11 (A) is a cross-sectional view showing the configuration of a radiation detector according to an embodiment of the present invention. FIG. 11 (B) is a rear view showing the configuration of the radiation detector.

【図12】(A)本発明の一実施例における放射検出器
の構成を示す断面図 (B)同放射検出器の構成を示す背面図
FIG. 12 (A) is a cross-sectional view showing the structure of a radiation detector according to an embodiment of the present invention. (B) is a rear view showing the structure of the radiation detector.

【図13】(A)本発明の一実施例における放射検出器
の構成を示す断面図 (B)同放射検出器の構成を示す背面図
FIG. 13 (A) is a cross-sectional view showing the configuration of a radiation detector according to an embodiment of the present invention. (B) is a rear view showing the configuration of the radiation detector.

【図14】(A)本発明の一実施例における放射検出器
の構成を示す断面図 (B)同放射検出器の構成を示す斜視図
FIG. 14 (A) is a cross-sectional view showing the structure of a radiation detector according to an embodiment of the present invention. (B) is a perspective view showing the structure of the radiation detector.

【図15】(A)本発明の一実施例における放射検出器
の構成を示す断面図 (B)同放射検出器の構成を示す正面図 (C)同放射検出器の構成を示す斜視図
FIG. 15 (A) is a cross-sectional view showing the configuration of a radiation detector according to an embodiment of the present invention. (B) is a front view showing the configuration of the radiation detector. FIG. 15 (C) is a perspective view showing the configuration of the radiation detector.

【図16】(A)本発明の一実施例における放射検出器
の構成を示す断面図 (B)同放射検出器の構成を示す正面図 (C)同放射検出器の構成を示す斜視図
FIG. 16 (A) is a cross-sectional view showing the configuration of a radiation detector according to an embodiment of the present invention (B) is a front view showing the configuration of the radiation detector, and (C) is a perspective view showing the configuration of the radiation detector.

【図17】(A)本発明の一実施例における放射検出器
の構成を示す断面図 (B)同放射検出器の構成を示す斜視図
FIG. 17 (A) is a cross-sectional view showing the structure of a radiation detector according to an embodiment of the present invention. (B) is a perspective view showing the structure of the radiation detector.

【図18】(A)本発明の一実施例における放射検出器
の構成を示す断面図 (B)同放射検出器の構成を示す斜視図
FIG. 18 (A) is a cross-sectional view showing the structure of a radiation detector according to an embodiment of the present invention. (B) is a perspective view showing the structure of the radiation detector.

【符号の説明】[Explanation of symbols]

1、51 入射アパーチャー 2、52 被測定光 3、53 焦電素子 4、54 放射吸収層 5、43、44、55 支持板 6 前置増幅器 21 第1の焦電素子 22 第2の焦電素子 41 半円錐状の焦電素子 42 半円錐鏡体 56 鏡筒 1, 51 Incident aperture 2, 52 Light under measurement 3, 53 Pyroelectric element 4, 54 Radiation absorption layer 5, 43, 44, 55 Support plate 6 Preamplifier 21 First pyroelectric element 22 Second pyroelectric element 41 semi-conical pyroelectric element 42 semi-conical mirror body 56 lens barrel

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】開口部を有し、内面の一部もしくは全部に
放射吸収層を付着させた所定形状の熱電変換素子を備
え、前記熱電変換素子の開口部から入射した被測定光の
放射を、前記放射吸収層で熱として吸収し、その温度上
昇を前記熱電変換素子で電気信号に変換して前記放射の
エネルギー量を検出する放射検出器。
1. A thermoelectric conversion element having an opening and having a radiation absorbing layer adhered to a part or all of the inner surface of the thermoelectric conversion element, the radiation of the light to be measured incident from the opening of the thermoelectric conversion element being provided. A radiation detector that absorbs heat as heat in the radiation absorption layer and converts the temperature rise into an electric signal by the thermoelectric conversion element to detect the energy amount of the radiation.
【請求項2】所定形状とは、多面体形状である請求項1
の放射検出器。
2. The predetermined shape is a polyhedron shape.
Radiation detector.
【請求項3】多面体形状とは角錐形状である請求項2の
放射検出器。
3. The radiation detector according to claim 2, wherein the polyhedron shape is a pyramid shape.
【請求項4】所定形状とは、円錐形状である請求項1記
載の放射検出器。
4. The radiation detector according to claim 1, wherein the predetermined shape is a conical shape.
【請求項5】内面の一部もしくは全部に放射吸収層を付
着させた円錐状、円錐台状、角錐状、又は角錐台状の熱
電変換素子を有し、前記熱電変換素子の錐部底面の開口
部から入射した被測定光の放射を、前記放射吸収層で熱
として吸収し、その温度上昇を前記熱電変換素子で電気
信号に変換して前記放射のエネルギー量を検出する放射
検出器。
5. A thermoelectric conversion element having a conical shape, a truncated cone shape, a pyramidal shape, or a truncated pyramid shape in which a radiation absorption layer is attached to a part or all of the inner surface, and the thermoelectric conversion element has a bottom surface of a conical portion. A radiation detector that absorbs the radiation of the light to be measured that has entered through the opening as heat in the radiation absorption layer and converts the temperature rise into an electric signal by the thermoelectric conversion element to detect the amount of energy of the radiation.
【請求項6】内面に放射吸収層を付着させた所定数の熱
電変換素子で形成された円錐状、円錐台状、角錐状、又
は角錐台状の熱電変換器を有し、前記各熱電変換素子
を、それぞれの電気発生の極性が同一方向と成るよう直
列に電気接続し、前記各熱電変換素子で形成された錐部
の底面の開口部より入射した被測定光の放射を電気信号
に変換し、そのエネルギー量を検出する放射検出器。
6. A thermoelectric converter having a conical shape, a truncated cone shape, a pyramidal shape, or a truncated pyramidal shape, which is formed of a predetermined number of thermoelectric conversion elements having a radiation absorption layer attached to the inner surface thereof, and each of the thermoelectric conversion elements. The elements are electrically connected in series so that the respective polarities of electricity generation are in the same direction, and the radiation of the light to be measured incident through the opening at the bottom surface of the cone formed by each thermoelectric conversion element is converted into an electric signal. And a radiation detector that detects the amount of energy.
【請求項7】前記熱電変換素子は、円錐状、円錐台状、
角錐状、又は角錐台状を軸方向に所定数に分割した形状
を有しているものである請求項6記載の放射検出器。
7. The thermoelectric conversion element has a conical shape, a truncated cone shape,
The radiation detector according to claim 6, wherein the radiation detector has a pyramid shape or a truncated pyramid shape divided into a predetermined number in the axial direction.
【請求項8】前記所定数の熱電変換素子は、円錐状、円
錐台状、角錐状、又は角錐台状を軸に直角方向に所定数
に分割した形状を有しているものである請求項6記載の
放射検出器。
8. The predetermined number of thermoelectric conversion elements have a conical shape, a truncated cone shape, a pyramid shape, or a truncated pyramidal shape divided into a predetermined number in the direction perpendicular to the axis. 6. The radiation detector according to 6.
【請求項9】内面に放射吸収層を付着させた熱電変換素
子と、内面が鏡面の鏡体とを有し、前記熱電変換素子と
鏡体とで形成された円錐状、円錐台状、角錐状、又は角
錐台状の底面の開口部から入射した被測定光の放射を、
前記放射吸収層で熱として吸収し、その温度上昇を前記
熱電変換素子で電気信号に変換して前記放射のエネルギ
ー量を検出する放射検出器。
9. A thermoelectric conversion element having an inner surface having a radiation absorption layer attached thereto, and a mirror body having an inner surface having a mirror surface, wherein the thermoelectric conversion element and the mirror body form a conical shape, a truncated cone shape, or a pyramid shape. The radiation of the measured light that has entered from the opening on the bottom of
A radiation detector that absorbs heat as heat in the radiation absorption layer and converts the temperature rise into an electric signal by the thermoelectric conversion element to detect the amount of energy of the radiation.
【請求項10】前記熱電変換素子又は鏡体は、円錐状、
円錐台状、角錐状、又は角錐台状を軸方向に所定数に分
割した形状を有しているものである請求項9記載の放射
検出器。
10. The thermoelectric conversion element or mirror body is conical,
The radiation detector according to claim 9, wherein the radiation detector has a truncated cone shape, a pyramid shape, or a truncated pyramidal shape divided into a predetermined number in the axial direction.
【請求項11】前記熱電変換素子と鏡体とは、円錐状、
円錐台状、角錐状、又は角錐台状を軸に直角方向に所定
数に分割した形状を有しているものである請求項9記載
の放射検出器。
11. The thermoelectric conversion element and the mirror body are conical,
The radiation detector according to claim 9, wherein the radiation detector has a truncated cone shape, a truncated pyramid shape, or a truncated pyramid shape divided into a predetermined number in a direction perpendicular to the axis.
【請求項12】外面の一部又は全部に放射吸収層を付着
させた円錐状、円錐台状、角錐状、又は角錐台状の熱電
変換素子と、その熱電変換素子を内側に収納し、内面の
一部又は全部が鏡面の鏡筒と、その鏡筒の開口部に設け
られた入射アパーチャーとを備え、前記入射アパーチャ
より入射した放射を、前記放射吸収層に入射させ、その
反射した放射成分を、前記鏡筒および前記入射アパーチ
ャにより反射させて再び前記放射吸収層に入射させ、そ
の繰り返しにより、前記入射した放射を前記放射吸収層
で熱として吸収し、その温度上昇を前記熱電変換素子で
電気信号に変換して前記放射のエネルギー量を検出する
放射検出器。
12. A conical, frustoconical, pyramidal, or truncated pyramidal thermoelectric conversion element having a radiation absorption layer attached to a part or all of the outer surface thereof, and the thermoelectric conversion element housed inside the thermoelectric conversion element. A part or all of a mirror barrel having a mirror surface, and an incident aperture provided in the opening of the barrel, the radiation incident from the incident aperture is incident on the radiation absorption layer, the reflected radiation component Is reflected by the lens barrel and the incident aperture and made incident on the radiation absorption layer again, and by repeating the above, the incident radiation is absorbed as heat by the radiation absorption layer, and the temperature rise is absorbed by the thermoelectric conversion element. A radiation detector for converting into an electric signal to detect the amount of energy of the radiation.
【請求項13】外面の一部又は全部に放射吸収層を付着
させた円錐、円錐台、角錐、又は角錐台状の第1の熱電
変換素子と、その第1熱電変換素子を内側に収納し、内
面の一部又は全部に放射吸収層を付着させた筒状の第2
熱電変換素子と、その第2熱電変換素子の開口部に設け
られた入射アパーチャーとを備え、前記入射アパーチャ
より入射した放射を、前記放射吸収層に入射させ、その
反射した放射成分を、前記鏡筒および前記入射アパーチ
ャにより反射させて、再び前記放射吸収層に入射させ、
再び前記放射吸収層に入射させ、その繰り返しにより、
前記入射した放射を前記放射吸収層で熱として吸収し、
その温度上昇を前記熱電変換素子で電気信号に変換して
前記放射のエネルギー量を検出する放射検出器。
13. A first thermoelectric conversion element in the shape of a cone, a truncated cone, a pyramid, or a truncated pyramid having a radiation absorption layer attached to a part or all of the outer surface, and the first thermoelectric conversion element is housed inside. , A second cylindrical shape having a radiation absorbing layer attached to a part or all of the inner surface
The thermoelectric conversion element and an incident aperture provided in the opening of the second thermoelectric conversion element are provided, the radiation incident from the incident aperture is incident on the radiation absorption layer, and the reflected radiation component is reflected by the mirror. Reflected by the cylinder and the incident aperture, and made incident on the radiation absorption layer again,
It is incident on the radiation absorption layer again, and by repeating the above,
Absorbing the incident radiation as heat in the radiation absorbing layer,
A radiation detector that detects the energy amount of the radiation by converting the temperature rise into an electric signal by the thermoelectric conversion element.
【請求項14】前記入射アパーチャーが除去されている
請求項12又は13の放射検出器。
14. A radiation detector according to claim 12 or 13, wherein the incident aperture is eliminated.
【請求項15】前記鏡筒は、円錐台、又は角錐台形状を
しており、前記開口部の側が小さく絞られた形状をして
いる請求項12の放射検出器。
15. The radiation detector according to claim 12, wherein the barrel has a truncated cone shape or a truncated pyramid shape, and has a shape in which the side of the opening is narrowed down.
【請求項16】前記筒状の第2熱電変換素子は、円錐
台、又は角錐台形状をしており、前記開口部の側が小さ
く絞られた形状をしている請求項13の放射検出器。
16. The radiation detector according to claim 13, wherein the cylindrical second thermoelectric conversion element has a truncated cone shape or a truncated pyramidal shape, and the opening side is narrowed down.
JP10856395A 1994-05-13 1995-05-02 Radiation detector Expired - Lifetime JP3287729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10856395A JP3287729B2 (en) 1994-05-13 1995-05-02 Radiation detector

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-99621 1994-05-13
JP9962194 1994-05-13
JP10856395A JP3287729B2 (en) 1994-05-13 1995-05-02 Radiation detector

Publications (2)

Publication Number Publication Date
JPH0829262A true JPH0829262A (en) 1996-02-02
JP3287729B2 JP3287729B2 (en) 2002-06-04

Family

ID=26440733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10856395A Expired - Lifetime JP3287729B2 (en) 1994-05-13 1995-05-02 Radiation detector

Country Status (1)

Country Link
JP (1) JP3287729B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000022391A1 (en) * 1998-10-15 2000-04-20 Kazuhito Sakano Infrared sensor and radiation pyrometer
WO2010073287A1 (en) * 2008-12-22 2010-07-01 パイオニア株式会社 Infrared sensor and method for manufacturing infrared sensor
WO2010073286A1 (en) * 2008-12-22 2010-07-01 パイオニア株式会社 Infrared sensor
WO2010073288A1 (en) * 2008-12-22 2010-07-01 パイオニア株式会社 Infrared sensor and infrared sensor manufacturing method
JP2013068611A (en) * 2011-09-02 2013-04-18 European Organisation For Astronomical Research In The Southern Hemisphere Calibration blackbody standard for submillimeter frequency band
CN106370312A (en) * 2016-08-16 2017-02-01 中国科学院长春光学精密机械与物理研究所 Absolute radiometer and absolute radiometer background space radiation and heat transfer measuring method
CN113686428A (en) * 2021-08-27 2021-11-23 西安应用光学研究所 Low-temperature radiometer absorption cavity
CN114279562A (en) * 2021-12-24 2022-04-05 西安应用光学研究所 Calibration method for blackbody cavity absorption coefficient under variable temperature condition
CN114279597A (en) * 2021-12-28 2022-04-05 中国科学院长春光学精密机械与物理研究所 High-precision low-power radiant heat flow meter capable of being used for radiant heat flow tracing calibration

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000022391A1 (en) * 1998-10-15 2000-04-20 Kazuhito Sakano Infrared sensor and radiation pyrometer
JP3346583B2 (en) * 1998-10-15 2002-11-18 數仁 坂野 Infrared sensor and radiation thermometer
WO2010073287A1 (en) * 2008-12-22 2010-07-01 パイオニア株式会社 Infrared sensor and method for manufacturing infrared sensor
WO2010073286A1 (en) * 2008-12-22 2010-07-01 パイオニア株式会社 Infrared sensor
WO2010073288A1 (en) * 2008-12-22 2010-07-01 パイオニア株式会社 Infrared sensor and infrared sensor manufacturing method
JPWO2010073288A1 (en) * 2008-12-22 2012-05-31 パイオニア株式会社 Infrared sensor and method of manufacturing infrared sensor
JP2013068611A (en) * 2011-09-02 2013-04-18 European Organisation For Astronomical Research In The Southern Hemisphere Calibration blackbody standard for submillimeter frequency band
US9182298B2 (en) 2011-09-02 2015-11-10 European Organisation For Astronomical Research In The Southern Hemisphere Blackbody calibration standard for submillimeter frequency range
CN106370312A (en) * 2016-08-16 2017-02-01 中国科学院长春光学精密机械与物理研究所 Absolute radiometer and absolute radiometer background space radiation and heat transfer measuring method
CN113686428A (en) * 2021-08-27 2021-11-23 西安应用光学研究所 Low-temperature radiometer absorption cavity
CN114279562A (en) * 2021-12-24 2022-04-05 西安应用光学研究所 Calibration method for blackbody cavity absorption coefficient under variable temperature condition
CN114279562B (en) * 2021-12-24 2024-04-19 西安应用光学研究所 Calibration method for blackbody cavity absorption coefficient under variable temperature condition
CN114279597A (en) * 2021-12-28 2022-04-05 中国科学院长春光学精密机械与物理研究所 High-precision low-power radiant heat flow meter capable of being used for radiant heat flow tracing calibration

Also Published As

Publication number Publication date
JP3287729B2 (en) 2002-06-04

Similar Documents

Publication Publication Date Title
Borroni‐Bird et al. An ultrahigh vacuum single crystal adsorption microcalorimeter
Wang et al. Vanadium oxide microbolometer with gold black absorbing layer
US5739533A (en) Thermal radiation detector having a spectral responsivity not dependent on wavelength
US3604933A (en) Electromagnetic radiation-detection device comprising ferroelectric sensing, reference and temperature-stabilizing components
US5811807A (en) Uncooled background limited detector and method
JPH0829262A (en) Radiation detector
Wang et al. Characterization of a submillimeter high-angular-resolution camera with a monolithic silicon bolometer array for the Caltech Submillimeter Observatory
US8981296B2 (en) Terahertz dispersive spectrometer system
JPH1164111A (en) Infrared detecting element
EP2040051A2 (en) Detector arrangement for electromagnetic radiation and method for measuring electromagnetic radiation
JPH0249124A (en) Thermopile
US3660659A (en) Black submillimeter radiation detector
CN106672891A (en) Double-layer uncooled infrared detector structure and preparation method thereof
Luukanen et al. Terahertz imaging system based on antenna-coupled microbolometers
US5084621A (en) Radiometric standard infrared detector
US3405272A (en) Film supported detector with low heat transfer impedance path from cold junctions tothermal sink
JPH075047A (en) Radiation heat sensor
Malyarov Uncooled thermal IR arrays
JPH11160146A (en) Infrared ray detecting element and manufacture of the same
JP3176798B2 (en) Radiant heat sensor
CN213148115U (en) Infrared detection chip, module and electronic device
JP4400156B2 (en) Laser output monitor
JP3103338B2 (en) Radiation thermometer
TW490554B (en) Miniaturized infrared gas analyzing apparatus
JPH09196766A (en) Heat-type intensity detector of radiation

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080315

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100315

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110315

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110315

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120315

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130315

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130315

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140315

Year of fee payment: 12

EXPY Cancellation because of completion of term