JPH082913A - Alpha-alumina for abrasive and its production - Google Patents

Alpha-alumina for abrasive and its production

Info

Publication number
JPH082913A
JPH082913A JP6133094A JP13309494A JPH082913A JP H082913 A JPH082913 A JP H082913A JP 6133094 A JP6133094 A JP 6133094A JP 13309494 A JP13309494 A JP 13309494A JP H082913 A JPH082913 A JP H082913A
Authority
JP
Japan
Prior art keywords
alumina
polishing
particle diameter
abrasives
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6133094A
Other languages
Japanese (ja)
Other versions
JP3296091B2 (en
Inventor
Isao Kameda
績 亀田
Toshihiro Ueno
利浩 植野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP13309494A priority Critical patent/JP3296091B2/en
Publication of JPH082913A publication Critical patent/JPH082913A/en
Application granted granted Critical
Publication of JP3296091B2 publication Critical patent/JP3296091B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To obtain an alpha-alumina for abrasives, excellent in the abrading speed and the persistence of the abrasive action, little in scratch, extremely good in the roughness of the surface, and capable of being utilized for the abrasion of mirror surfaces. CONSTITUTION:The alpha-alumina for the abrasives has an average particle size (D50) of 0.5-3mum, a 90% volume particle diameter (D90) of <=10mum, a BET specific surface area of 3-7m<2>/g, an linseed oil-absorption volume of 25-6cc/100g, and a pressmolded bulk density of 1.4-1.8g/cm<3> under a pressure of 300-kg/cm<2>.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は研磨剤用αアルミナ粉末
及びその製造方法に関するものである。更に詳細には、
研磨速度、研磨持続性に優れ、且つ優れた表面粗度の研
磨面が得られる鏡面研磨に適した研磨材用αアルミナ及
びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an α-alumina powder for abrasives and a method for producing the same. More specifically,
TECHNICAL FIELD The present invention relates to an α-alumina for abrasives suitable for mirror-like polishing, which is excellent in polishing rate and polishing durability, and can obtain a polished surface with excellent surface roughness, and a method for producing the same.

【0002】[0002]

【従来の技術】金属、特にステンレス等の研磨材として
従来よりアルミナ(Al2 3 )やクロミヤ(Cr2
3 )が研磨方法や仕上精度により使い分けられている。
一般に荒仕上げに於いてはアルミナが、鏡面仕上げと呼
ばれる最終仕上げにはクロミヤが使用されている。最終
仕上げにクロミヤが使用される理由は、研磨速度が速
く、且つ優れた表面状態が得られるためである。しか
し、最近クロミヤは環境上の問題から使用が制限される
傾向にあり、クロミヤに代わる優れた研磨性及び表面状
態の得られる研磨材の開発が望まれていた。
2. Description of the Related Art Alumina (Al 2 O 3 ) or chromia (Cr 2 O) has been used as a polishing agent for metals such as stainless steel.
3 ) is properly used depending on the polishing method and finishing accuracy.
Generally, alumina is used for rough finishing and chromia is used for final finishing called mirror finishing. The reason why chromia is used for the final finish is that the polishing rate is high and an excellent surface condition is obtained. However, recently, the use of chromia tends to be restricted due to environmental problems, and there has been a demand for the development of an abrasive material which is superior to chromia and has excellent abrasiveness and surface condition.

【0003】一方、従来研磨材用として使用されている
アルミナは、平均粒子径が2〜3μm以下のαアルミナ
粉末であり、研磨性に優れるため研磨速度は速いが、鏡
面仕上げ用として使用した場合、アルミナ中に含まれる
粗大粒子が被研磨物に大きな傷を残すためか表面粗度の
優れた加工面が得られずクロミヤに代わる最終仕上げ用
としては未だ若干の問題点を有していた。
On the other hand, alumina conventionally used for abrasives is α-alumina powder having an average particle diameter of 2 to 3 μm or less, and has a high polishing rate because of its excellent polishing property, but when used for mirror finishing. However, because coarse particles contained in alumina leave large scratches on the object to be polished, a processed surface having an excellent surface roughness cannot be obtained, and there are still some problems as a final finishing alternative to chromia.

【0004】研磨材用アルミナは、従来バイヤー法で得
られた水酸化アルミニウムをロータリーキルン或いはト
ンネルキルン等の連続焼成炉やバッチ式の焼成炉で焼成
して製造される。通常、バイヤー法で製造される水酸化
アルミニウムは約0.数μm〜約30μmの一次粒子が
凝集した約10μm〜約100μmの二次凝集粒であ
り、この凝集粒子は焼成によるα化への結晶転移時に強
固な粒子間結合を生じる。それ故、研磨材用としてはボ
ールミル等の粉砕機で所望粒度に粉砕し粒度調製されて
いる。しかしながら、該方法により得られた研磨材用α
アルミナ粉末は粗大粒子を含み、粒度分布も広く、さら
には粉砕に用いるボール等の欠片が混入することもあ
り、これらが研磨面に極めて大きな傷(スクラッチ)を
生じる原因となる。加えて研磨材用アルミナに適する粒
子径へのボールミル等での粉砕は長時間を必要とするた
め、多大のエネルギーを消費しコストを著しく上昇する
との欠点を有していた。
Alumina for abrasives is manufactured by firing aluminum hydroxide obtained by the Bayer method in a continuous firing furnace such as a rotary kiln or a tunnel kiln or a batch firing furnace. Generally, aluminum hydroxide produced by the Bayer process has a density of about 0. It is a secondary agglomerated particle of about 10 μm to about 100 μm in which primary particles of a few μm to about 30 μm are agglomerated, and this agglomerated particle forms a strong interparticle bond at the time of crystal transition to α-formation by firing. Therefore, for abrasives, the particle size is adjusted by crushing to a desired particle size with a crusher such as a ball mill. However, α for abrasives obtained by this method
Alumina powder contains coarse particles, has a wide particle size distribution, and may have fragments such as balls used for pulverization mixed therein, which cause extremely large scratches on the polished surface. In addition, pulverization with a ball mill or the like to a particle size suitable for alumina for abrasives requires a long time, which consumes a large amount of energy and causes a significant increase in cost.

【0005】このため、本発明者等は研磨材用に適した
易解砕性αアルミナの製造方法として、原料として特定
の平均粒子径を有する水酸化アルミニウムを用い、これ
に機械的衝撃を加えた後、焼成してαアルミナとなす場
合には所望とする平均粒子径に容易に粉砕または解砕し
得ることを見出し先に出願した(特開昭64−3008
号公報)。 この方法によれば、比較的良好な研磨性能
を有したαアルミナを製造できるものの、鏡面研磨に適
用し得る優れた表面粗度の提供と、更に研磨作用の持続
性に於いて必ずしも満足し得るものとは言い難かった。
Therefore, the present inventors have used aluminum hydroxide having a specific average particle diameter as a raw material as a method for producing easily disintegrating α-alumina suitable for abrasives, and subjecting it to mechanical shock. Then, in the case of firing to form α-alumina, it was possible to easily pulverize or crush into a desired average particle size, and filed a patent application (Japanese Patent Laid-Open No. 64-3008).
Issue). According to this method, α-alumina having relatively good polishing performance can be produced, but it is always satisfactory in providing excellent surface roughness applicable to mirror polishing and further in sustaining polishing action. It was hard to say.

【0006】[0006]

【発明が解決しようとする課題】かかる事情下に鑑み、
本発明者等は研磨性(速度)に優れ、研磨作用の持続性
に優れ、かつスクラッチの少ない表面粗度の極めて良好
な研磨面を提供し得る研磨材用アルミナを得ることを目
的とし鋭意検討した結果、特定の物性を有する水酸化ア
ルミニウムを原料として用い、これを特定の物性になる
よう焼成、粉砕する場合には上記特性を全て満足した研
磨材用αアルミナが得られることを見出し、本発明を完
成するに至った。
In view of such circumstances, in view of the above circumstances,
DISCLOSURE OF THE INVENTION The inventors of the present invention have earnestly studied for the purpose of obtaining an alumina for abrasives, which is excellent in polishing property (speed), excellent in durability of polishing action, and which can provide an extremely good polished surface with less scratches and surface roughness. As a result, it was found that when aluminum hydroxide having specific physical properties is used as a raw material, and if this is baked and pulverized to have specific physical properties, α-alumina for abrasives that satisfies all the above properties can be obtained. The invention was completed.

【0007】[0007]

【課題を解決するための手段】すなわち本発明は、平均
粒子径(D50)が0.5μm〜3μm、90%体積粒子
径(D90)が10μm以下、BET比表面積が3〜7m
2 /g、アマニ油吸油量が25〜60cc/100g
で、かつ300kg/cm2 での加圧成形嵩密度が1.
4〜1.8g/cm3 であることを特徴とする研磨材用
αアルミナを提供するにある。
Means for Solving the Problems That is, the present invention has an average particle diameter (D 50 ) of 0.5 μm to 3 μm, a 90% volume particle diameter (D 90 ) of 10 μm or less, and a BET specific surface area of 3 to 7 m.
2 / g, linseed oil absorption is 25-60cc / 100g
And the pressure-formed bulk density at 300 kg / cm 2 is 1.
Another object of the present invention is to provide α-alumina for abrasives, which is characterized by having an amount of 4 to 1.8 g / cm 3 .

【0008】さらに本発明は、平均粒子径(D50)が
0.5μm〜3μm、90%体積粒子径(D90)と平均
粒子径(D50)との比率D90/D50が3.0以下である
水酸化アルミニウムを焼成し、BET比表面積が3〜7
2 /g、α化率が80〜100%のαアルミナとな
し、次いで該アルミナを平均粒子径(D50)が0.5μ
m〜3μm、90%体積粒子径(D90)が10μm以
下、BET比表面積が3〜7m2 /g、アマニ油吸油量
が25〜60cc/100gで、かつ300kg/cm
2 での加圧成形嵩密度が1.4〜1.8g/cm3 に粉
砕することを特徴とする研磨材用αアルミナの製造方法
を提供するにある。
Further, in the present invention, the average particle diameter (D 50 ) is 0.5 μm to 3 μm, and the ratio D 90 / D 50 of the 90% volume particle diameter (D 90 ) and the average particle diameter (D 50 ) is 3. Aluminum hydroxide having a BET specific surface area of 3 to 7 is burned by burning aluminum hydroxide having a value of 0 or less
m 2 / g, α-alumina having an α-conversion rate of 80 to 100%, and the average particle diameter (D 50 ) of the alumina was 0.5 μm.
m to 3 μm, 90% volume particle diameter (D 90 ) is 10 μm or less, BET specific surface area is 3 to 7 m 2 / g, linseed oil absorption is 25 to 60 cc / 100 g, and 300 kg / cm.
Pressing a bulk density of at 2 to provide a method for producing α-alumina abrasive material characterized by pulverizing the 1.4~1.8g / cm 3.

【0009】以下、本発明をさらに詳細に説明する。本
発明の研磨材用αアルミナは、平均粒子径(D50)が
0.5μm〜3μm、90%体積粒子径(D90)が10
μm以下、BET比表面積が3〜7m2 /g、アマニ油
吸油量が25〜60cc/100gで、かつ300kg
/cm2 での加圧成形嵩密度が1.4〜1.8g/cm
3 を有することを特徴とするものである。
The present invention will be described in more detail below. The α-alumina for abrasives of the present invention has an average particle size (D 50 ) of 0.5 μm to 3 μm and a 90% volume particle size (D 90 ) of 10.
μm or less, BET specific surface area of 3 to 7 m 2 / g, linseed oil absorption of 25 to 60 cc / 100 g, and 300 kg
/ Pressing bulk density in cm 2 is 1.4~1.8G / cm
It is characterized by having 3 .

【0010】該研磨材用αアルミナに於いて、該アルミ
ナの平均粒子径(D50)が0.5μm未満では研磨性が
悪く、工業的に満足する研磨速度が得られない。他方、
平均粒子径が3μmを越える場合には表面粗度が悪く鏡
面加工が困難となる。
In the above-mentioned α-alumina for abrasives, when the average particle diameter (D 50 ) of the alumina is less than 0.5 μm, the polishing property is poor and an industrially satisfactory polishing rate cannot be obtained. On the other hand,
If the average particle size exceeds 3 μm, the surface roughness is poor and mirror surface processing becomes difficult.

【0011】また90%体積の粒子径(D90)が10μ
mを越える場合には研磨面にスクラッチを生じ表面粗度
の優れた加工面が得られない。
The particle size (D 90 ) of 90% volume is 10 μm.
When it exceeds m, scratches are generated on the polished surface and a processed surface having excellent surface roughness cannot be obtained.

【0012】さらにBET比表面積が3m2 /g未満の
場合はαアルミナの一次粒子が発達しすぎるためか、研
磨作用は大きいが鏡面研磨を行う場合は傷が生じやすく
良好な表面粗度のものは得られ難く、逆に7m2 /gよ
り大きい場合はαアルミナより硬度の低い中間アルミナ
が混在したり、αアルミナの粒子が小さくなり研磨性が
低下する。
Further, if the BET specific surface area is less than 3 m 2 / g, the primary particles of α-alumina may be overdeveloped, and the polishing action is great, but scratches are likely to occur in the case of mirror polishing, and the surface roughness is good. If it is larger than 7 m 2 / g, on the other hand, intermediate alumina having a hardness lower than that of α-alumina will be mixed, or the particles of α-alumina will be small, and the polishing property will be deteriorated.

【0013】また研磨材と油脂物質(ワックス)を混
練、成形し研磨棒として適用する用途に於いては、研磨
材用αアルミナの100g当たりのアマニ油吸油量が6
0cc越える場合には、研磨棒を作製する際、多量の油
脂物質が必要となり経済的でないとともにアルミナの分
散が難しくなり、また研磨面に油曇りが生じやすくな
る。吸油量が25cc未満の場合は、研磨棒に保持され
る油脂物質が不足し研磨の際潤滑剤としての作用が減少
するためか良好な研磨面を得ることが出来ない。
In addition, when the abrasive and the oil and fat substance (wax) are kneaded and molded and applied as a polishing rod, the amount of linseed oil absorption per 100 g of α-alumina for abrasive is 6%.
If it exceeds 0 cc, a large amount of oil and fat substance is required when producing a polishing rod, which is not economical, it is difficult to disperse alumina, and oil fogging is likely to occur on the polished surface. If the oil absorption is less than 25 cc, a good polishing surface cannot be obtained, probably because the oil and fat substance retained by the polishing rod is insufficient and the action as a lubricant during polishing is reduced.

【0014】さらに本発明の研磨材用αアルミナの30
0kg/cm2 での加圧成形嵩密度は、研磨速度及び研
磨作用の持続性と相関を有するもので、該加圧成形嵩密
度が1.8g/cm3 を越える場合は研磨速度は速いが
研磨作用の持続性に劣り、逆に1.4g/cm3 未満の
場合は粒子間結合強度が強すぎるためか研磨速度は遅
く、また研磨の際エッジの更新がされがたく良好な表面
状態は得られない。
Further, 30 of α-alumina for abrasives of the present invention is used.
The pressure-molded bulk density at 0 kg / cm 2 has a correlation with the polishing rate and the durability of the polishing action. When the pressure-molded bulk density exceeds 1.8 g / cm 3 , the polishing rate is high. Poor durability of polishing action, and conversely, when it is less than 1.4 g / cm 3, the polishing rate is slow, probably because the inter-particle bond strength is too strong, and the edge is not easily renewed during polishing, and a good surface condition is obtained. I can't get it.

【0015】このような物性を有する研磨材用αアルミ
ナは、平均粒子径(D50)が0.5〜3μm、90%体
積粒子径(D90)と平均粒子径(D50)との比率D90
50が3.0以下である水酸化アルミニウムを焼成し、
BET比表面積が3〜7m2/g、α化率が80〜10
0%のαアルミナとなし、次いで該アルミナを平均粒子
径(D50)が0.5〜3μm、90%体積粒子径
(D90)が10μm以下、BET比表面積が3〜7m2
/g、アマニ油吸油量が25〜60cc/100gで、
かつ300kg/cm2 での加圧嵩密度が1.4〜1.
8g/cm3 となるように粉砕することにより製造する
ことができる。
The α-alumina for abrasives having such physical properties has an average particle diameter (D 50 ) of 0.5 to 3 μm and a ratio of 90% volume particle diameter (D 90 ) to average particle diameter (D 50 ). D 90 /
Baking aluminum hydroxide having a D 50 of 3.0 or less,
BET specific surface area is 3 to 7 m 2 / g, and α conversion rate is 80 to 10
0% α-alumina was used, and then the alumina had an average particle diameter (D 50 ) of 0.5 to 3 μm, a 90% volume particle diameter (D 90 ) of 10 μm or less, and a BET specific surface area of 3 to 7 m 2.
/ G, the linseed oil absorption amount is 25 to 60 cc / 100 g,
Moreover, the pressurized bulk density at 300 kg / cm 2 is 1.4 to 1.
It can be produced by crushing so that the weight becomes 8 g / cm 3 .

【0016】本発明方法の実施に際し、原料として使用
する水酸化アルミニウムの製造方法及び純度は特に限定
されないが、コストの点より、通常バイヤー法より得ら
れた水酸化アルミニウム(ギブサイト)が適用される。
該原料水酸化アルミニウムは平均粒子径(D50)が0.
5〜3μm(沈降天秤法)で、かつ90%体積粒子径
(D90)と平均粒子径(D50)との比率D90/D 50
3.0以下のものを用いることを必須とする。原料水酸
化アルミニウムの平均粒径が3μmより大きい場合は、
焼成後のαアルミナの平均粒子径が局部的に原料水酸化
アルミニウムと同じ平均粒子径にまで成長する場合があ
り、表面粗度が低下する。D90/D50が3.0を越える
と優れた表面平滑性(表面粗度)を提供し難い。D90
50比は1に近づく程、良好な表面粗度を提供する研磨
材用αアルミナとなる。かかる物性を有する水酸化アル
ミニウムはバイヤー工程より晶析のみにより得ることも
可能であるが、得られた水酸化アルミニウムを粉砕及び
/又は篩別により調整したものであってもよい。
Used as a raw material in carrying out the method of the present invention
The manufacturing method and purity of aluminum hydroxide
Not usually obtained from the Buyer method because of the cost.
Applied aluminum hydroxide (gibbsite).
The raw material aluminum hydroxide has an average particle diameter (D50) Is 0.
5 to 3 μm (sedimentation balance method) and 90% volume particle size
(D90) And average particle size (D50) And the ratio D90/ D 50But
It is indispensable to use those of 3.0 or less. Raw material hydroxy
When the average particle size of aluminum fluoride is larger than 3 μm,
The average particle size of α-alumina after calcination is locally hydroxylated
May grow to the same average particle size as aluminum.
The surface roughness is reduced. D90/ D50Exceeds 3.0
And it is difficult to provide excellent surface smoothness (surface roughness). D90/
D50Polishing with a ratio closer to 1 provides better surface roughness
It becomes alpha alumina for wood. Al hydroxide having such physical properties
Minium can be obtained only by crystallization from the buyer process.
Although possible, the aluminum hydroxide obtained is ground and
It may be adjusted by sieving.

【0017】原料水酸化アルミニウムは次いでBET比
表面積が3〜7m2 /gになるように焼成する。焼成炉
として連続式のロータリーキルンやトンネル炉、或いは
バッチ式の焼成炉が使用できる。焼成条件は適用する焼
成炉、原料水酸化アルミニウムにより一義的ではなく、
予備実験により求めることを推奨するが、通常、温度1
200°〜1350°で2時間〜10時間焼成される。
焼成後のアルミナのBET比表面積が3m2 /g未満の
場合はαアルミナの粒子径が発達しすぎるため、研磨作
用は大きいが鏡面研磨を行う場合は傷が生じやすく良好
な表面粗度のものは得られがたい。他方7m2 /gより
大きい場合はαアルミナより硬度の低い中間アルミナが
混在したり、αアルミナ粒子が小さくなり研磨作用が低
下する。
The raw material aluminum hydroxide is then calcined so that the BET specific surface area becomes 3 to 7 m 2 / g. As the firing furnace, a continuous rotary kiln or tunnel furnace or a batch firing furnace can be used. The firing conditions are not unique depending on the firing furnace to be applied and the raw material aluminum hydroxide,
It is recommended to obtain it by preliminary experiment, but usually the temperature is 1
It is baked at 200 ° to 1350 ° for 2 hours to 10 hours.
If the BET specific surface area of the calcined alumina is less than 3 m 2 / g, the particle size of α-alumina will be excessively developed, so that the polishing action is large, but scratches are likely to occur when mirror polishing is performed, and the surface roughness is good. Is hard to come by. On the other hand, when it is larger than 7 m 2 / g, intermediate alumina having a hardness lower than that of α-alumina is mixed, or α-alumina particles become small, so that the polishing action is deteriorated.

【0018】焼成後のアルミナは次いでアマニ油吸油量
を25〜60cc/100gの範囲に、また300kg
/cm2 での加圧成形嵩密度が1.4〜1.8g/cm
3 の範囲となるように解砕或いは粉砕を行う。解砕或い
は粉砕の方法としては、所望の特性が得られる方法であ
れば、特に限定はされないが処理後の粒度分布が狭く、
かつ粉砕ボール等の摩砕を原因とする異物の混入のない
ジェットミルと呼ばれる気流衝突式の粉砕機が好適であ
る。解砕或いは粉砕条件は、粉砕に供するアルミナの特
性、粉砕機器等により一義的ではないので、処理後のア
マニ油吸油量や加圧成形嵩密度が上記範囲になるよう予
備実験により決定すればよい。
The calcined alumina then had a linseed oil absorption of 25 to 60 cc / 100 g and 300 kg.
/ Pressing bulk density in cm 2 is 1.4~1.8G / cm
Crush or pulverize so that the range is 3 . The method of crushing or crushing is not particularly limited as long as it has a desired property, but the particle size distribution after treatment is narrow,
Moreover, an airflow collision type crusher called a jet mill, which does not contain foreign matter caused by grinding of crushing balls and the like, is suitable. The crushing or crushing conditions are not unique depending on the characteristics of the alumina to be crushed, the crushing equipment, etc., so it may be determined by preliminary experiments so that the linseed oil absorption after processing and the pressure molding bulk density fall within the above range. .

【0019】[0019]

【発明の効果】以上、詳述した本発明の研磨材用αアル
ミナは、従来の研磨材用アルミナに比較し、研磨性を低
下することなく、かつ、研磨材としては研磨作用の持続
性に優れ、スクラッチの少ない表面粗度の極めて良好
な、鏡面研磨にも適用し得るものであり、その産業上の
価値は頗る大である。
As described above, the α-alumina for abrasives of the present invention, which has been described in detail above, does not lower the abrasivity as compared with the conventional alumina for abrasives, and has a long polishing effect as an abrasive. It is also excellent in surface roughness with few scratches and can be applied to mirror polishing, and its industrial value is enormous.

【0020】加えて原料として用いる水酸化アルミニウ
ムと焼成の程度を特定化することにより得られたアルミ
ナの所望とする粒子径までの粉砕或いは解砕が容易とな
るため、該粉砕或いは解砕に要するエネルギーコストを
著しく低減することが可能である。
In addition, since aluminum hydroxide used as a raw material and the degree of firing are specified, the alumina obtained can be easily crushed or crushed to a desired particle size. It is possible to significantly reduce energy costs.

【0021】また、本発明研磨材用αアルミナは、粒度
分布がシャープであり、かつ粉砕コストが低いとの利点
より他の用途、例えば耐火物用アルミナ、ファインセラ
ミック用アルミナ、樹脂充填用アルミナ原料として適用
することも可能である。加えて、本発明のαアルミナの
特性を失わない範囲に於いて、SiO2 等の他の研磨材
料を併用することは勿論可能である。
The α-alumina for abrasives of the present invention has other advantages such as sharp particle size distribution and low crushing cost, such as alumina for refractories, alumina for fine ceramics, and alumina raw material for resin filling. It is also possible to apply as. In addition, it is of course possible to use other polishing materials such as SiO 2 in combination as long as the characteristics of the α-alumina of the present invention are not lost.

【0022】[0022]

【実施例】以下実施例を用いて本発明を詳細に説明する
が、実施例は本発明の一実施態様であり、これにより本
発明は限定されるものではない。尚、本発明において、
水酸化アルミニウム/アルミナの粒度分布、BET比表
面積、平均粒子径、成形嵩密度、研磨特性は以下の方法
で求めた。
EXAMPLES The present invention is described in detail below with reference to examples, but the examples are one embodiment of the present invention, and the present invention is not limited thereby. In the present invention,
The particle size distribution of aluminum hydroxide / alumina, BET specific surface area, average particle diameter, molded bulk density, and polishing characteristics were determined by the following methods.

【0023】α化率:粉末X線回折法(理学電機株式会
社ローターフレックスRAD−B、CuKα線の(11
6)回折線から求めた)による。
Α-factor: powder X-ray diffraction method (Rigaku Denki Co., Ltd. Rotorflex RAD-B, CuK α-ray (11
6) Obtained from the diffraction line).

【0024】平均粒子径(D50)及び90%体積粒子径
(D90): 水酸化アルミニウム:沈降天秤(島津製作所製:RS−
1000)を用いて測定した。 アルミナ:レーザー散乱式粒度分布計〔リード アンド
ノースラップ(LEED&NORTHRUP)社製マ
イクロトラックSPA〕にて測定した。
Average particle diameter (D 50 ) and 90% volume particle diameter (D 90 ): Aluminum hydroxide: Sedimentation balance (Shimadzu Corporation: RS-
1000). Alumina: Measured with a laser scattering type particle size distribution meter [Microtrac SPA manufactured by LEED & NORTHRUP].

【0025】BET比表面積:湯浅アイオニクス社製マ
ルチソーブ12を用いて測定した
BET specific surface area: measured using Multisorb 12 manufactured by Yuasa Ionics

【0026】加圧成形嵩密度:焼成アルミナをプレス圧
300kg/cm2 で静水圧プレスし、水銀法にて嵩密
度を測定した。
Pressure-molded bulk density: Calcined alumina was hydrostatically pressed at a pressing pressure of 300 kg / cm 2 , and the bulk density was measured by the mercury method.

【0027】アマニ油吸油量:JIS K5101に準
拠して測定した。
Flaxseed oil absorption: Measured according to JIS K5101.

【0028】研磨特性(Ra及びRz);約120℃±
20℃に加熱溶融した油脂物質(パラフィン/ステアリ
ン酸)30重量%とアルミナ70重量%を混合し棒状に
鋳こんだ後、室温まで冷却し、研磨棒を作製する。得ら
れた研磨棒を回転バフ面に圧着し、摩擦熱によって必要
量をバフ面に溶融塗布した後、このバフを用いて未研磨
のステンレス板を回転バフ面に圧着し約1分間研磨し、
研磨後のステンレスの研磨面の表面粗さ(中心線平均粗
さRa、及びRz)を小坂技研(株)製サーフコーター
にて測定した。
Polishing characteristics (Ra and Rz); about 120 ° C. ±
30% by weight of an oily substance (paraffin / stearic acid) heated and melted at 20 ° C. and 70% by weight of alumina are mixed and cast into a rod shape, and then cooled to room temperature to prepare a polishing rod. The obtained polishing rod was pressure-bonded to the rotating buff surface, and a necessary amount was melt-coated on the buff surface by frictional heat. Then, an unpolished stainless steel plate was pressure-bonded to the rotating buff surface using this buff and polished for about 1 minute,
The surface roughness (center line average roughness Ra and Rz) of the polished surface of the stainless steel after polishing was measured with a surf coater manufactured by Kosaka Giken Co., Ltd.

【0029】研磨速度及び研磨持続性;平均粗さをR
a、スクラッチの大小をRzで判定し、これらRa及び
Rzから総合的に研磨特性を評価した。
Polishing rate and polishing durability; R is the average roughness
a, the magnitude of scratches was judged by Rz, and the polishing characteristics were evaluated comprehensively from these Ra and Rz.

【0030】実施例1 表1に示した物性を有する原料水酸化アルミニウム
(a)を高純度アルミナの鞘に充填し電気炉中で128
0℃で4Hr焼成した。得られた焼成後のアルミナのα
化率は89%、BET比表面積は3.5m2 /gであ
り、この状態でのアマニ油吸油量は87cc/100g
であった。このようにして得られた焼成後のアルミナを
気流衝突型のジェットミル(空気圧力5kg/cm2
粉砕速度20kg/Hr)で解砕処理した。得られた解
砕処理後のアルミナの特性を表2に示す。得られた解砕
処理後のアルミナの研磨特性を調べたところ、バフ研磨
後の表面粗さはRaが0.03μm、Rzが0.18μ
mと優れた表面特性を示した。
Example 1 A raw aluminum hydroxide (a) having the physical properties shown in Table 1 was filled in a sheath of high-purity alumina and charged in an electric furnace at 128.
It was calcined at 0 ° C. for 4 hours. The obtained α of alumina after firing
The conversion rate is 89%, the BET specific surface area is 3.5 m 2 / g, and the linseed oil absorption amount in this state is 87 cc / 100 g.
Met. The thus-calcined alumina thus obtained was subjected to an air flow collision type jet mill (air pressure: 5 kg / cm 2 ,
It was crushed at a crushing speed of 20 kg / Hr). The properties of the obtained alumina after the crushing treatment are shown in Table 2. When the polishing characteristics of the obtained crushed alumina were examined, the surface roughness after buffing was Ra 0.03 μm and Rz 0.18 μm.
m and excellent surface characteristics.

【0031】[0031]

【表1】 (a); 住友化学工業株式会社製 商品名 C-301 (b); 住友化学工業株式会社製 商品名 C-303 (c); 住友化学工業株式会社製 商品名 C-308 (d); 住友化学工業株式会社製 商品名 C-12 [Table 1] (A); Product name C-301 manufactured by Sumitomo Chemical Co., Ltd. (b); Product name C-303 (c) manufactured by Sumitomo Chemical Co., Ltd. Product name C-308 (d) manufactured by Sumitomo Chemical Co., Ltd. Product name C-12

【0032】実施例2 焼成後のアルミナ10kgをジェットミルに代え110
リットルボールミル(平均径25mmφアルミナボール
30kg使用)を使用して回転速度35r.p.mで3
0分間処理した以外は実施例1と同様にしてアルミナを
解砕した。得られた解砕処理後のアルミナの特性を表2
に示す。得られた解砕処理後のアルミナの研磨特性を調
べたところ、バフ研磨後の表面粗さはRaが0.04μ
m、Rzが0.20μmと優れた表面特性を示した。
Example 2 110 kg of calcined alumina was replaced with a jet mill and 110
Using a liter ball mill (using an average diameter of 25 mm and alumina balls of 30 kg), a rotation speed of 35 r. p. 3 in m
Alumina was crushed in the same manner as in Example 1 except that the treatment was performed for 0 minutes. Table 2 shows the characteristics of the obtained alumina after the crushing treatment.
Shown in When the polishing characteristics of the obtained alumina after the crushing treatment were examined, the surface roughness after buffing was Ra of 0.04 μm.
m and Rz were 0.20 μm, showing excellent surface characteristics.

【0033】実施例3 表1に示した物性を有する原料水酸化アルミニウム
(b)を使用して、1280℃で4Hr焼成した。焼成
後のα化率は90%、BET比表面積は4.6m2
g,アマニ油吸油量は71cc/100gであった。次
いでボールミル(実施例2と同一条件)で解砕後の特性
を表2に示した。また、このアルミナを用いてバフ研磨
を実施した。この表面粗さはRaが0.05μm、Rz
が0.22μmと良好であった。
Example 3 Using the raw material aluminum hydroxide (b) having the physical properties shown in Table 1, it was calcined at 1280 ° C. for 4 hours. The α conversion after baking is 90%, and the BET specific surface area is 4.6 m 2 /
g, linseed oil absorption was 71 cc / 100 g. Then, the properties after crushing with a ball mill (the same conditions as in Example 2) are shown in Table 2. Further, buffing was carried out using this alumina. This surface roughness Ra is 0.05 μm, Rz
Was as good as 0.22 μm.

【0034】比較例1 表1に示した物性を有する原料水酸化アルミニウム
(c)を使用して1260℃で4Hr焼成した。焼成後
のα化率は93%、BET比表面積は4.2m2 /g、
アマニ油吸油量は80cc/100gであった。ついで
ボールミルにより解砕(実施例2と同一条件)し粉体を
得た。表2にその特性を示した。またバフ研磨後の表面
粗さはRaが0.07μm、Rzが0.30μmとなっ
た。
Comparative Example 1 A raw material aluminum hydroxide (c) having the physical properties shown in Table 1 was used and fired at 1260 ° C. for 4 hours. The α conversion after firing is 93%, the BET specific surface area is 4.2 m 2 / g,
The linseed oil absorption was 80 cc / 100 g. Then, it was crushed by a ball mill (the same conditions as in Example 2) to obtain a powder. Table 2 shows the characteristics. The surface roughness after buffing was 0.07 μm for Ra and 0.30 μm for Rz.

【0035】比較例2 表1に示した物性を有する原料水酸化アルミニウム
(d)を使用し、1250℃で4Hr焼成した。焼成後
のα化率はα化率93%、BET比表面積4.5m 2
g,アマニ油吸油量が、30cc/100gであった。
次いで、ボールミルで24時間粉砕後の物性を表2に示
した。またバフ研磨後の表面粗さはRaが0.08μ
m、Rzが0.45μmであった。
Comparative Example 2 Raw material aluminum hydroxide having the physical properties shown in Table 1
Using (d), it was baked at 1250 ° C. for 4 hours. After firing
Alpha conversion rate is 93%, BET specific surface area is 4.5m 2/
g, the linseed oil absorption was 30 cc / 100 g.
Then, the physical properties after crushing for 24 hours with a ball mill are shown in Table 2.
did. The surface roughness after buffing is Ra 0.08μ.
m and Rz were 0.45 μm.

【0036】比較例3 原料水酸化アルミニウム(d)を使用し、1250℃で
4Hr焼成した。焼成後のα化率はα化率93%、BE
T比表面積4.5m2 /g,アマニ油吸油量が、30c
c/100gであった。次いで、ボールミルで12時間
粉砕後の物性を表2に示した。またバフ研磨後の表面粗
さはRaが0.07μm、Rzが0.49μmであっ
た。
Comparative Example 3 Using aluminum hydroxide (d) as a raw material, baking was carried out at 1250 ° C. for 4 hours. The alpha conversion rate after firing is 93%, BE
T specific surface area of 4.5 m 2 / g, linseed oil absorption of 30c
It was c / 100g. Next, Table 2 shows the physical properties after pulverizing with a ball mill for 12 hours. The surface roughness after buffing was Ra 0.07 μm and Rz 0.49 μm.

【0037】比較例4 原料水酸化アルミニウム(d)を使用し、1300℃で
4Hr焼成した。焼成後のα化率はα化率100%、B
ET比表面積0.6m2 /g,アマニ油吸油量が、30
cc/100gであった。次いで、ボールミルで6時間
粉砕後の物性を表2に示した。またバフ研磨後の表面粗
さはRaが0.10μm、Rzが0.66μmであっ
た。
Comparative Example 4 Using aluminum hydroxide (d) as a raw material, baking was carried out at 1300 ° C. for 4 hours. The alpha conversion rate after firing is 100% and B
ET specific surface area 0.6 m 2 / g, linseed oil absorption is 30
It was cc / 100g. Next, Table 2 shows the physical properties after crushing for 6 hours with a ball mill. The surface roughness after buffing was Ra 0.10 μm and Rz 0.66 μm.

【0038】比較例5 原料水酸化アルミニウム(a)を使用し、1300℃で
4Hr焼成した。焼成後のα化率はα化率100%、B
ET比表面積1.2m2 /g,アマニ油吸油量が、40
cc/100gであった。次いで、実施例1と同様にジ
ェットミル粉砕を行い、物性を表2に示した。 またバ
フ研磨後の表面粗さはRaが0.08μm、Rzが0.
50μmであった。
Comparative Example 5 Aluminum hydroxide (a) as a raw material was used and fired at 1300 ° C. for 4 hours. The alpha conversion rate after firing is 100% and B
ET specific surface area 1.2 m 2 / g, linseed oil absorption is 40
It was cc / 100g. Next, jet mill pulverization was performed in the same manner as in Example 1, and the physical properties are shown in Table 2. The surface roughness after buffing was Ra 0.08 μm and Rz 0.
It was 50 μm.

【0039】比較例6 原料水酸化アルミニウム(a)を使用し、実施例1と同
様に焼成した。焼成後のα化率は89%、BET比表面
積3.5m2 /g,アマニ油吸油量は87cc/100
gであった。 次いでボールミルを用い比較例2と同様
の条件で粉砕を行い、物性を表2に示した。またバフ研
磨後の表面粗さはRaが0.07μm、Rzが0.25
μmであった。
Comparative Example 6 Using the starting aluminum hydroxide (a), firing was carried out in the same manner as in Example 1. After calcination, the α conversion is 89%, the BET specific surface area is 3.5 m 2 / g, and the linseed oil absorption is 87 cc / 100.
g. Then, pulverization was performed using a ball mill under the same conditions as in Comparative Example 2, and the physical properties are shown in Table 2. The surface roughness after buffing was Ra 0.07 μm and Rz 0.25.
μm.

【0040】[0040]

【表2】 表中の記号は、〇:良、△:普通、×:劣る を示す。[Table 2] The symbols in the table indicate ◯: good, Δ: normal, ×: inferior.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 35/10 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location C04B 35/10

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 平均粒子径(D50)が0.5μm〜3μ
m、90%体積粒子径(D90)が10μm以下、BET
比表面積が3〜7m2 /g、アマニ油吸油量が25〜6
0cc/100gで、かつ300kg/cm2 での加圧
成形嵩密度が1.4〜1.8g/cm3 であることを特
徴とする研磨材用αアルミナ。
1. An average particle diameter (D 50 ) is 0.5 μm to 3 μm.
m, 90% volume particle diameter (D 90 ) is 10 μm or less, BET
Specific surface area 3 to 7 m 2 / g, linseed oil absorption 25 to 6
Α-alumina for abrasives, which has a pressure-molding bulk density of 1.4 to 1.8 g / cm 3 at 0 cc / 100 g and 300 kg / cm 2 .
【請求項2】 平均粒子径(D50)が0.5μm〜3μ
m、90%体積粒子径(D90)と平均粒子径(D50)と
の比率D90/D50が3.0以下である水酸化アルミニウ
ムを焼成し、BET比表面積が3〜7m2 /g、α化率
が80〜100%のαアルミナとなし、次いで該アルミ
ナを平均粒子径(D50)が0.5μm〜3μm、90%
体積粒子径(D90)が10μm以下、BET比表面積が
3〜7m2 /g、アマニ油吸油量が25〜60cc/1
00gで、かつ300kg/cm2 での加圧成形嵩密度
が1.4〜1.8g/cm3 に粉砕することを特徴とす
る研磨材用αアルミナの製造方法。
2. The average particle size (D 50 ) is 0.5 μm to 3 μm.
Aluminum hydroxide having a ratio D 90 / D 50 of m, 90% volume particle diameter (D 90 ) and average particle diameter (D 50 ) of 3.0 or less is fired to have a BET specific surface area of 3 to 7 m 2 / g, α-alumina having an α-conversion rate of 80 to 100%, and then the alumina having an average particle diameter (D 50 ) of 0.5 μm to 3 μm and 90%
Volume particle diameter (D 90 ) is 10 μm or less, BET specific surface area is 3 to 7 m 2 / g, and linseed oil absorption is 25 to 60 cc / 1.
A method for producing α-alumina for abrasives, which comprises crushing to 100 g and a press-molded bulk density at 300 kg / cm 2 to 1.4 to 1.8 g / cm 3 .
【請求項3】 粉砕に気流衝突式粉砕機を用いることを
特徴とする請求項2記載の研磨材用αアルミナの製造方
法。
3. The method for producing α-alumina for abrasives according to claim 2, wherein an airflow collision type crusher is used for crushing.
JP13309494A 1994-06-15 1994-06-15 Alpha-alumina for abrasive and method for producing the same Expired - Fee Related JP3296091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13309494A JP3296091B2 (en) 1994-06-15 1994-06-15 Alpha-alumina for abrasive and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13309494A JP3296091B2 (en) 1994-06-15 1994-06-15 Alpha-alumina for abrasive and method for producing the same

Publications (2)

Publication Number Publication Date
JPH082913A true JPH082913A (en) 1996-01-09
JP3296091B2 JP3296091B2 (en) 2002-06-24

Family

ID=15096706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13309494A Expired - Fee Related JP3296091B2 (en) 1994-06-15 1994-06-15 Alpha-alumina for abrasive and method for producing the same

Country Status (1)

Country Link
JP (1) JP3296091B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11268911A (en) * 1998-01-08 1999-10-05 Nissan Chem Ind Ltd Alumina powder, its production, and composition for polishing
JP2001051437A (en) * 1998-11-27 2001-02-23 Canon Inc Manufacture of electrophotographic photoreceptor
JP2001316111A (en) * 2000-04-28 2001-11-13 Showa Denko Kk Aluminum oxide powder with superior filling-up property and its manufacturing method
JP2003503299A (en) * 1999-06-29 2003-01-28 アルベマール・コーポレーシヨン Process for the production of aluminum hydroxide
JP2003176127A (en) * 2001-08-08 2003-06-24 Showa Denko Kk alpha-ALUMINA FOR CORDIERITE CERAMIC, METHOD OF PRODUCING THE SAME, AND STRUCTURE OF CORDIERITE CERAMIC USING THE alpha-ALUMINA
JP2004155630A (en) * 2002-11-08 2004-06-03 Showa Denko Kk Alumina particle and method of manufacturing the same
JP2005206460A (en) * 2003-12-25 2005-08-04 Showa Denko Kk Easily sinterable alumina particle
JP2007211205A (en) * 2006-02-13 2007-08-23 Ishihara Chem Co Ltd Aqueous abrasive detergent composition and its use
JP2008254175A (en) * 2002-04-11 2008-10-23 Saint-Gobain Abrasives Inc Abrasive tool and sintered aggregate
JP2009291884A (en) * 2008-06-05 2009-12-17 Sumitomo Electric Ind Ltd Polycrystalline diamond dresser
WO2011136387A1 (en) * 2010-04-28 2011-11-03 株式会社バイコウスキージャパン Sapphire polishing slurry and sapphire polishing method
JP2016521235A (en) * 2013-04-05 2016-07-21 スリーエム イノベイティブ プロパティズ カンパニー Sintered abrasive particles, method of making the same, and abrasive article comprising the same
JP6085708B1 (en) * 2016-04-01 2017-02-22 株式会社フジミインコーポレーテッド Polishing composition for alloy material and method for polishing alloy material
JP6096969B1 (en) * 2016-04-26 2017-03-15 株式会社フジミインコーポレーテッド Abrasive material, polishing composition, and polishing method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11268911A (en) * 1998-01-08 1999-10-05 Nissan Chem Ind Ltd Alumina powder, its production, and composition for polishing
JP2001051437A (en) * 1998-11-27 2001-02-23 Canon Inc Manufacture of electrophotographic photoreceptor
JP2003503299A (en) * 1999-06-29 2003-01-28 アルベマール・コーポレーシヨン Process for the production of aluminum hydroxide
JP2001316111A (en) * 2000-04-28 2001-11-13 Showa Denko Kk Aluminum oxide powder with superior filling-up property and its manufacturing method
JP4514894B2 (en) * 2000-04-28 2010-07-28 昭和電工株式会社 Aluminum oxide powder with excellent fillability and process for producing the same
JP2003176127A (en) * 2001-08-08 2003-06-24 Showa Denko Kk alpha-ALUMINA FOR CORDIERITE CERAMIC, METHOD OF PRODUCING THE SAME, AND STRUCTURE OF CORDIERITE CERAMIC USING THE alpha-ALUMINA
JP2008254175A (en) * 2002-04-11 2008-10-23 Saint-Gobain Abrasives Inc Abrasive tool and sintered aggregate
JP2004155630A (en) * 2002-11-08 2004-06-03 Showa Denko Kk Alumina particle and method of manufacturing the same
JP2005206460A (en) * 2003-12-25 2005-08-04 Showa Denko Kk Easily sinterable alumina particle
JP2007211205A (en) * 2006-02-13 2007-08-23 Ishihara Chem Co Ltd Aqueous abrasive detergent composition and its use
JP2009291884A (en) * 2008-06-05 2009-12-17 Sumitomo Electric Ind Ltd Polycrystalline diamond dresser
WO2011136387A1 (en) * 2010-04-28 2011-11-03 株式会社バイコウスキージャパン Sapphire polishing slurry and sapphire polishing method
US10400146B2 (en) 2013-04-05 2019-09-03 3M Innovative Properties Company Sintered abrasive particles, method of making the same, and abrasive articles including the same
JP2016521235A (en) * 2013-04-05 2016-07-21 スリーエム イノベイティブ プロパティズ カンパニー Sintered abrasive particles, method of making the same, and abrasive article comprising the same
JP6085708B1 (en) * 2016-04-01 2017-02-22 株式会社フジミインコーポレーテッド Polishing composition for alloy material and method for polishing alloy material
WO2017169995A1 (en) * 2016-04-01 2017-10-05 株式会社 フジミインコーポレーテッド Polishing composition for alloy material, and method for polishing alloy material
JP2017186409A (en) * 2016-04-01 2017-10-12 株式会社フジミインコーポレーテッド Polishing composition for alloy material and polishing method of alloy material
TWI717488B (en) * 2016-04-01 2021-02-01 日商福吉米股份有限公司 Grinding composition for alloy material and grinding method of alloy material
JP6096969B1 (en) * 2016-04-26 2017-03-15 株式会社フジミインコーポレーテッド Abrasive material, polishing composition, and polishing method
WO2017187689A1 (en) * 2016-04-26 2017-11-02 株式会社フジミインコーポレーテッド Abrasive material, polishing composition, and polishing method
JP2017197707A (en) * 2016-04-26 2017-11-02 株式会社フジミインコーポレーテッド Polishing material, polishing composition, and polishing method
US10920104B2 (en) 2016-04-26 2021-02-16 Fujimi Incorporated Abrasive, polishing composition, and polishing method

Also Published As

Publication number Publication date
JP3296091B2 (en) 2002-06-24

Similar Documents

Publication Publication Date Title
JP3353131B2 (en) Method for producing sintered microcrystalline body based on α-Al2O3 and method for producing sintered abrasive and cutting tool material made from α-Al2O3
JP3296091B2 (en) Alpha-alumina for abrasive and method for producing the same
US7789330B2 (en) Roundish fused alumina particles, production process thereof, and resin composition containing the particles
KR950002333B1 (en) Sintered aluminous abrasive and method of producting the same
CN1096917C (en) Improved vitrified abrasive bodies
JPH04336971A (en) Binder grinding body abrasive grain, and its manufacture
KR100869679B1 (en) Alpha-alumina fine powder and a method of production the same
US8834588B2 (en) Polycrystalline AL2O3 bodies based on melted aluminum oxide
NZ210805A (en) Aluminous abrasive grits or shaped bodies
JPH04500947A (en) Small α-alumina particles and plates
WO2001088056A1 (en) Cerium based abrasive material, raw material thereof and method for their preparation
US3121623A (en) Method of making crystalline alumina lapping powder
JP3280056B2 (en) Sintered microcrystalline ceramic material and method for producing the same
JP4284771B2 (en) Α-alumina abrasive for metal polishing and its production method
JP2021155328A (en) Ceramic spherical body
JP2008507604A (en) Abrasive grains with high alumina content especially for use in coated abrasives and agglomerated abrasives such as grinding grinders for alloy steel slabs
JP4310834B2 (en) Method for producing alumina powder for sintered body
JP2006124622A (en) POLISHING alpha-ALUMINA COMPOSITION, AND METHOD FOR PRODUCING THE SAME
JPH05294613A (en) Spherical corundum particle
JP4471072B2 (en) Method of grinding cerium oxide using a ball mill device
JP2006096648A (en) Method for producing alpha-alumina particulate
JP2953003B2 (en) Method for producing translucent alumina raw material powder
WO2023127561A1 (en) Oxide ceramic partially sintered body for dental use which has favorable polishing properties, and method for producing same
JP2007186379A (en) Method for manufacturing alpha alumina particle
JP2022119253A (en) Abrasive for shot-blasting

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080412

Year of fee payment: 6

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100412

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110412

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120412

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130412

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130412

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140412

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees