JPH0828987A - Liquid refrigerant discharging device for compressor - Google Patents

Liquid refrigerant discharging device for compressor

Info

Publication number
JPH0828987A
JPH0828987A JP6168154A JP16815494A JPH0828987A JP H0828987 A JPH0828987 A JP H0828987A JP 6168154 A JP6168154 A JP 6168154A JP 16815494 A JP16815494 A JP 16815494A JP H0828987 A JPH0828987 A JP H0828987A
Authority
JP
Japan
Prior art keywords
liquid refrigerant
temperature
stagnation
electric motor
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6168154A
Other languages
Japanese (ja)
Other versions
JP3731214B2 (en
Inventor
Toshiaki Yoshii
利彰 吉井
Hitoshi Ozawa
仁 小沢
Shigeki Hagiwara
茂喜 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP16815494A priority Critical patent/JP3731214B2/en
Publication of JPH0828987A publication Critical patent/JPH0828987A/en
Application granted granted Critical
Publication of JP3731214B2 publication Critical patent/JP3731214B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/01Heaters

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Compressor (AREA)

Abstract

PURPOSE:To prevent liquid refrigerant from staying at an oil reservoir within a casing by a method wherein a phase lacked electrical energization time for a three-phase electrical motor for a compressor is reduced and a running cost is being reduced with a less charge of electricity. CONSTITUTION:This liquid refrigerant discharging device comprises a staying state sensing means 6 for sensing a stayed state of liquid refrigerant in an oil reservoir 10 of a easing 11; a liquid discharging sensing means 7 for use in sensing a discharging of liquid refrigerant from the liquid reservoir 10; and a heating control means 8 for electrically energizing a single phase of a three- phase electrical motor 13 when the staying state of the liquid refrigerant is detected by the staying state sensing means 6, controlling the heating operation every time of presetting operation and stopping the heating operation when the discharging of the liquid refrigerant is detected by the liquid discharging sensing means 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は圧縮機の液冷媒排出装
置、詳しくは、圧縮機の運転停止時に、その油溜りの油
中に液冷媒が溶け込んで寝込むのを防止する圧縮機の液
冷媒排出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid refrigerant discharge device for a compressor, and more particularly to a liquid refrigerant for a compressor which prevents the liquid refrigerant from melting and lying in the oil in the oil sump when the compressor is stopped. Regarding the discharging device.

【0002】[0002]

【従来の技術】一般に、圧縮機に室内及び室外側熱交換
器を冷媒配管で接続した冷凍装置においては、前記圧縮
機の運転停止時に、前記冷凍装置の最も冷却された部分
に冷媒が移動して凝縮する傾向があり、例えば夜間時な
どに暖房運転を停止したときには、前記室内側熱交換器
の方が前記圧縮機や室外側熱交換器に較べ温度が高いた
め、これら圧縮機や室外側熱交換器の方に前記室内側熱
交換器内の冷媒が移動し、また、朝方になって外気温度
が上昇すると、前記圧縮機の熱容量は前記室外側熱交換
器よりも大きく、この室外側熱交換器の方が早く温度上
昇することから、該室外側熱交換器内の冷媒が温度の低
い前記圧縮機側へと移動して凝縮し、この圧縮機のケー
シング内に設けた油溜りの油中に液冷媒が溶け込んで寝
込むのであり、この結果、前記液冷媒が前記油溜り内の
油を希釈したり、また、前記圧縮機の再起動を行うと
き、前記油溜り内の油中に溶け込んだ液冷媒が気泡状と
なって溶出することによりフォーミング現象が発生した
り、或いは、液冷媒を圧縮要素が直接吸いこむことによ
り液圧縮が発生し、圧縮機の故障の原因になったりして
いる。
2. Description of the Related Art Generally, in a refrigerating machine in which an indoor heat exchanger and an outdoor heat exchanger are connected to a compressor by a refrigerant pipe, the refrigerant moves to the most cooled part of the refrigerating machine when the operation of the compressor is stopped. When the heating operation is stopped, for example, at night, the temperature of the indoor heat exchanger is higher than that of the compressor or the outdoor heat exchanger. When the refrigerant inside the indoor heat exchanger moves toward the heat exchanger, and when the outside air temperature rises in the morning, the heat capacity of the compressor is larger than that of the outdoor heat exchanger, Since the temperature of the heat exchanger rises faster, the refrigerant in the outdoor heat exchanger moves to the compressor side having a lower temperature and condenses, and the oil sump provided in the casing of the compressor The liquid refrigerant melts in the oil and falls asleep. As a result, when the liquid refrigerant dilutes the oil in the oil sump, or when the compressor is restarted, the liquid refrigerant dissolved in the oil in the oil sump elutes as bubbles. As a result, a forming phenomenon occurs, or the compression element directly sucks the liquid refrigerant to cause liquid compression, which causes a failure of the compressor.

【0003】しかして、従来では、前記圧縮機への液溜
りを防止するため、前記圧縮機のケーシング内にクラン
クケースヒータを設け、このヒータで前記ケーシング内
の油溜りを加熱して、該油溜りの油中に液冷媒が溶け込
むのを防止し、また、油中に溶け込んだ液冷媒を速やか
に外部排出させることにより、前記油溜りに液冷媒が寝
込むのを防止するようにした液冷媒排出装置が知られて
いる。
Conventionally, however, in order to prevent the liquid from accumulating in the compressor, a crankcase heater is provided in the casing of the compressor, and the heater is used to heat the oil sump in the casing, thereby Liquid refrigerant discharge that prevents the liquid refrigerant from dissolving in the oil in the sump, and also promptly discharges the liquid refrigerant dissolved in the oil to the outside to prevent the liquid refrigerant from stagnation in the oil sump. The device is known.

【0004】ところが、以上のようにクランクケースヒ
ータを使用する場合、該ヒータの発熱量は小さく、前記
油溜りの油中に溶け込んだ液冷媒を排出するのに時間が
かかるため、前記ヒータには常時通電させる必要があ
り、従って、たとえ前記油中に液冷媒が溶け込んでいな
ときでも前記ヒータへの通電が行われてランニングコス
トが高くなる問題があった。
However, when the crankcase heater is used as described above, the heater generates a small amount of heat, and it takes time to discharge the liquid refrigerant dissolved in the oil in the oil sump. There is a problem that it is necessary to constantly energize, so that even if the liquid refrigerant is not dissolved in the oil, the heater is energized and the running cost becomes high.

【0005】そこで、以上のような問題を解決すること
を目的として、特開平5ー272824号公報に記載さ
れた液冷媒排出装置が提案された。この液冷媒排出装置
は、図3で示したように、圧縮要素と三相電動機とを備
えた圧縮機Aに、ファンB0が付設された室内側コイル
Bと、同じくファンC0が付設された室外側コイルCと
をそれぞれ切換弁Dを介して接続すると共に、前記圧縮
機Aの冷媒吐出ラインに冷媒吐出温度を検出する第1温
度センサーEを、また、前記室外側コイルCの近くに周
囲温度を検出する第2温度センサーFをそれぞれ配設す
る一方、これら第1及び第2温度センサーE,Fをユニ
ット制御装置Gに接続し、このユニット制御装置Gを前
記圧縮機Aの駆動制御装置Hに接続させたものである。
尚、同図中、Iは前記室内及び室外側コイルB,C間に
配設された膨張弁である。
Therefore, for the purpose of solving the above problems, a liquid refrigerant discharge device described in JP-A-5-272824 has been proposed. In this liquid refrigerant discharge device, as shown in FIG. 3, a compressor A provided with a compression element and a three-phase electric motor, an indoor coil B provided with a fan B0, and a room provided with a fan C0. A first temperature sensor E that detects the refrigerant discharge temperature in the refrigerant discharge line of the compressor A is connected to the outer coil C via a switching valve D, respectively, and an ambient temperature is provided near the outdoor coil C. While the second temperature sensor F for detecting the temperature is arranged, the first and second temperature sensors E and F are connected to the unit controller G, and the unit controller G is connected to the drive controller H of the compressor A. It is connected to.
In the figure, I is an expansion valve disposed between the indoor and outdoor coils B and C.

【0006】そして、前記第2温度センサーFで検出さ
れる検出温度と予め設定された第2設定温度(例えば2
0〜30℃)とを比較して、この第2設定温度に対し前
記第2温度センサーFによる検出温度が下回るとき、前
記第1温度センサーEで検出される検出温度を予め前記
第2設定温度よりも低めに設定された第1設定温度(例
えば10〜20℃)と比較して、この第1設定温度に対
し前記第1温度センサーEによる検出温度が下回ると
き、前記ユニット制御装置Gから前記圧縮機Aの駆動制
御装置Hに出力信号を出力して、この圧縮機Aに内装さ
れた三相電動機の各コイル巻線に、それぞれ電動機を回
転駆動させない程度の低い電圧で通電することにより前
記各巻線を発熱させ、これら各巻線の発熱で前記ケーシ
ングの内部を加熱することにより、その油溜り中の油に
液冷媒が溶け込んで寝込むのを防止するようにしてい
る。
Then, the detected temperature detected by the second temperature sensor F and a preset second preset temperature (for example, 2
0 to 30 ° C.), when the temperature detected by the second temperature sensor F is lower than the second set temperature, the detected temperature detected by the first temperature sensor E is set in advance to the second set temperature. When the temperature detected by the first temperature sensor E is lower than the first set temperature (for example, 10 to 20 ° C.) set to be lower than the first set temperature, By outputting an output signal to the drive control device H of the compressor A and energizing each coil winding of the three-phase electric motor installed in the compressor A with a voltage low enough not to rotationally drive the electric motor. By heating each winding and heating the inside of the casing by the heat generated by each winding, it is possible to prevent the liquid refrigerant from melting into the oil in the oil sump and falling asleep.

【0007】[0007]

【発明が解決しようとする課題】ところが、以上の液冷
媒排出装置は、前記第2温度センサーFによる検出温度
が前記第2設定温度に対し下回り、かつ、前記第1温度
センサーEで検出される検出温度が前記第2設定温度よ
りも低めに設定された第1設定温度に対して下回る条件
を満足したとき、前記ユニット制御装置Gから前記圧縮
機Aの駆動制御装置Hに出力信号を出力して、この圧縮
機Aに内装された三相電動機の各コイル巻線に低電圧通
電して発熱させることにより前記油溜り中の油中に液冷
媒が溶け込むのを防止するようにしたものであるため、
前述した特定条件下にある限りは前記電動機への低電圧
通電が継続されるのであり、従って、以上のようにする
場合でも通電時間が長くなって電気代が高くなったので
ある。
However, in the above liquid refrigerant discharge device, the temperature detected by the second temperature sensor F is lower than the second set temperature and the temperature is detected by the first temperature sensor E. When the detected temperature satisfies the condition of being lower than the first set temperature set lower than the second set temperature, the unit controller G outputs an output signal to the drive controller H of the compressor A. Then, a low voltage is applied to each coil winding of the three-phase electric motor installed in the compressor A to generate heat, thereby preventing the liquid refrigerant from being melted into the oil in the oil sump. For,
As long as it is under the specific conditions described above, the low-voltage energization to the electric motor is continued, and therefore, even in the above case, the energization time becomes long and the electricity bill becomes high.

【0008】本発明の目的は、三相電動機への欠相通電
時間を少なくして、少ない電気代でランニングコストを
低廉にできながら、ケーシング内の油溜りに液冷媒が寝
込むのを防止できる圧縮機の液冷媒排出装置を提供する
ことにある。
An object of the present invention is to reduce the time during which a three-phase electric motor is energized in an open phase, to reduce running costs with a small electricity bill, and to prevent liquid refrigerant from stagnation in an oil sump in a casing. PROBLEM TO BE SOLVED To provide a liquid refrigerant discharge device for a machine.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、圧縮要素12と三相電動機13とをケー
シング11に内装した圧縮機1の油溜り10に、液冷媒
が寝込むのを防ぐ液冷媒排出装置であって、前記油溜り
10への液冷媒の寝込みを検出する寝込み検出手段6
と、前記油溜り10からの液冷媒の排出を検出する液排
出検出手段7と、前記寝込み検出手段6による液冷媒の
寝込み検出時、前記三相電動機13を単相通電して加熱
させ、かつ、この加熱を予め設定する設定時間ごとに制
御し、前記液排出検出手段7による液冷媒の排出検出
時、前記加熱を停止する加熱制御手段8とを備えたので
ある。
To achieve the above object, the present invention prevents liquid refrigerant from stagnation in an oil sump 10 of a compressor 1 in which a compression element 12 and a three-phase electric motor 13 are installed in a casing 11. A liquid refrigerant discharge device for preventing, which is a stagnation detection means 6 for detecting stagnation of the liquid refrigerant in the oil sump 10.
A liquid discharge detecting means 7 for detecting the discharge of the liquid refrigerant from the oil sump 10; and when the stagnation of the liquid refrigerant is detected by the stagnation detecting means 6, the three-phase electric motor 13 is energized to heat it, and The heating control means 8 controls the heating at preset time intervals and stops the heating when the liquid discharge detecting means 7 detects the discharge of the liquid refrigerant.

【0010】また、前記寝込み検出手段6は、前記油溜
り10を含むケーシング11の胴体温度T1を検出する
第1温度検出センサー61と、前記圧縮機1の吸入側に
接続される熱交換器4を含む周囲温度T2を検出する第
2温度検出センサー62とを備え、前記胴体温度T1が
予め設定する設定温度T0より低いときと、前記周囲温
度T2と胴体温度T1との温度差ΔTが、予め設定する
設定温度差ΔT0以上のときとの何れか一方が満足する
とき、寝込み信号を出力するようにしたものである。
Further, the stagnation detecting means 6 includes a first temperature detecting sensor 61 for detecting a body temperature T1 of the casing 11 including the oil sump 10, and a heat exchanger 4 connected to a suction side of the compressor 1. And a second temperature detection sensor 62 for detecting an ambient temperature T2 including a temperature of the body temperature T1 lower than a preset temperature T0, and a temperature difference ΔT between the body temperature T1 and the ambient temperature T2 is set in advance. A stagnation signal is output when either one of the set temperature difference ΔT0 and the set temperature difference is satisfied.

【0011】[0011]

【作用】請求項1記載の発明によれば、前記ケーシング
11の油溜り10に液冷媒の寝込みが発生したとき、そ
の寝込みが前記寝込み手段6で検出され、この検出結果
に基づく前記加熱制御手段8からの出力信号により前記
三相電動機13に欠相通電させ、この欠相通電による発
熱で前記ケーシング1の油溜り10を加熱し、また、該
油溜り10の加熱を前記加熱制御手段8で設定された所
定の設定時間ごとに断続的に加熱制御し、そして、斯か
る加熱制御により前記油溜り10から液冷媒が排出さ
れ、その排出が前記液排出検出手段7で検出されたとき
前記加熱制御手段8による加熱を停止するようにしたか
ら、前記電動機13に欠相通電して前記油溜り10を加
熱する際、従来のように、各温度検出センサーで検出さ
れる検出温度と予め設定された設定温度とが特定の条件
下にある限り連続して行うのではなく、前記電動機13
への欠相通電は前記加熱制御手段8で設定された所定設
定時間ごとに断続的に行われ、しかも、前記液排出検出
手段7が作動したときには前記電動機13の加熱を停止
させられるのである。
According to the first aspect of the present invention, when liquid refrigerant stagnation occurs in the oil sump 10 of the casing 11, the stagnation means 6 detects the stagnation, and the heating control means based on the detection result. The three-phase electric motor 13 is energized in the open phase by the output signal from 8, and the oil sump 10 of the casing 1 is heated by the heat generated by the open phase energization, and the heating control means 8 heats the oil sump 10. The heating is intermittently controlled for each set predetermined time, and the heating control is performed when the liquid refrigerant is discharged from the oil sump 10 and the discharge is detected by the liquid discharge detecting means 7. Since the heating by the control means 8 is stopped, when the electric motor 13 is energized in the open phase to heat the oil sump 10, the detected temperature detected by each temperature detection sensor and the temperature detected in advance in the same manner as in the conventional case. Not performed continuously as long as the a constant set point temperature in a specific condition, the electric motor 13
The open-phase energization is intermittently performed at predetermined time intervals set by the heating control means 8, and the heating of the electric motor 13 can be stopped when the liquid discharge detection means 7 is activated.

【0012】従って、以上のような加熱を行うにも拘ら
ず不必要なとき、つまり液冷媒が寝込んでいない時には
通電しないから、前記三相電動機13に悪影響を及ぼし
たりすることなく、この電動機13への通電時間を少な
くして、少ない電気代でランニングコストを低廉にでき
ながら、前記ケーシング11内の油溜り10に液冷媒が
寝込むのを防止することができるのである。
Therefore, when the heating is not necessary despite the above-mentioned heating, that is, when the liquid refrigerant is not lying down, the current is not supplied, so that the three-phase electric motor 13 is not adversely affected and the electric motor 13 is not adversely affected. It is possible to prevent the liquid refrigerant from stagnation in the oil sump 10 in the casing 11 while reducing the energization time to and reducing the running cost with a small electricity bill.

【0013】しかも、前記油溜り10を加熱するに際し
て、従来のように三相電動機の各巻線にそれぞれ低電圧
通電する場合には、前記各巻線に高電圧をかけることは
できず、この結果、該各巻線による発熱量が不足気味と
なって、前記油溜り内の液冷媒を確実に排出するために
は、前記各巻線への低電圧通電時間を長くする必要があ
ったのに対し、本発明では、前記三相電動機13に欠相
通電させて発熱させるのであるから、前記各巻線の一部
に高電圧をかけられ、従って、欠相通電による発熱量を
低電圧通電に比較して増大させることができ、このた
め、これら各巻線の発熱により前記油溜り10内の液冷
媒を短時間で確実に排出できるのであって、このことに
よっても電気代を少なくできるのである。
Further, when heating the oil sump 10, when a low voltage is applied to each winding of the three-phase electric motor as in the conventional case, a high voltage cannot be applied to each winding, and as a result, In order to reliably discharge the liquid refrigerant in the oil sump due to a shortage of heat generated by the windings, it was necessary to lengthen the low voltage energization time to the windings. In the invention, since the three-phase electric motor 13 is energized in the open phase to generate heat, a high voltage can be applied to a part of each of the windings. Therefore, the amount of heat generated by the open phase energization is increased as compared with the low voltage energization. Therefore, the liquid refrigerant in the oil sump 10 can be surely discharged in a short time by the heat generation of each of the windings, which also reduces the electricity bill.

【0014】また、請求項2記載によれば、前記寝込み
検出手段6が、前記液溜り10を含むケーシング11の
胴体温度T1を検出する第1温度検出センサー61と、
前記圧縮機1の吸入側に接続される熱交換器4を含む周
囲温度T2を検出する第2温度検出センサー62とを備
え、前記胴体温度T1が予め設定する設定温度T0より
低いときと、前記周囲温度T2と胴体温度T1との温度
差ΔTが、予め設定する設定温度差ΔT0以上のときと
の何れか一方を満足するとき、寝込み信号を出力するよ
うにしているため、前記圧縮機1の油溜り10に液冷媒
の寝込みが発生しているのを直接的に、また、正確に検
出でき、この寝込み信号に基づき前記三相電動機13へ
の単相通電が行われて前記油溜り10を加熱するのであ
るから、前記三相電動機13への欠相通電時間をより少
なくでき、電気代の節約を一層効果的に行うことができ
てランニングコストを低廉にできながら、前記油溜り1
0への液冷媒の寝込みを一層良好かつ正確に防止できる
のである。
According to a second aspect of the present invention, the stagnation detection means 6 includes a first temperature detection sensor 61 for detecting a body temperature T1 of the casing 11 including the liquid pool 10,
A second temperature detection sensor 62 for detecting an ambient temperature T2 including a heat exchanger 4 connected to the suction side of the compressor 1, when the body temperature T1 is lower than a preset temperature T0, and Since the stagnation signal is output when the temperature difference ΔT between the ambient temperature T2 and the body temperature T1 satisfies either one of the preset temperature difference ΔT0 or more, the stagnation signal is output. The stagnation of the liquid refrigerant in the oil sump 10 can be detected directly and accurately, and the three-phase electric motor 13 is energized in a single phase on the basis of the stagnation signal, so that the oil sump 10 is stored. Since the heating is performed, the open phase energization time to the three-phase electric motor 13 can be further shortened, the electricity bill can be more effectively saved, and the running cost can be reduced, while the oil sump 1
It is possible to prevent stagnation of the liquid refrigerant in 0 more favorably and accurately.

【0015】[0015]

【実施例】図1の実施例はヒートポンプ式冷凍装置を示
しており、この冷凍装置は、圧縮機1、四路切換弁2、
ファン31が付設された室内外側熱交換器3、同じくフ
ァン41が付設された室外側熱交換器4をそれぞれ冷媒
配管で接続して構成されており、また、前記圧縮機1
は、底部に油溜り10をもつ密閉ケーシング11に、圧
縮要素12と、該圧縮要素12を駆動する三相電動機1
3とを内装している。尚、図1中、5は前記各熱交換器
3,4間の冷媒配管に介装された膨張弁である。
1 shows a heat pump type refrigerating apparatus, which comprises a compressor 1, a four-way switching valve 2,
The indoor / outdoor heat exchanger 3 provided with a fan 31 and the outdoor heat exchanger 4 provided with a fan 41 are each connected by a refrigerant pipe, and the compressor 1
Is a closed casing 11 having an oil sump 10 at the bottom, a compression element 12, and a three-phase electric motor 1 for driving the compression element 12.
3 and interior. In FIG. 1, 5 is an expansion valve interposed in the refrigerant pipe between the heat exchangers 3 and 4.

【0016】そして、以上の冷凍装置により冷房運転を
行う場合には、前記四路切換弁2を同図点線で示すよう
に切換えて、前記圧縮機1からの吐出冷媒を前記室外側
熱交換器4から室内側熱交換器3に送って室内冷房を行
い、また、暖房運転を行うときには、前記四路切換弁2
を同図実線のように切換えて、前記圧縮機1からの吐出
冷媒を前記室内側熱交換器3から室外側熱交換器4に送
って室内暖房を行うのである。
When performing the cooling operation by the above refrigerating device, the four-way switching valve 2 is switched as shown by the dotted line in the figure, and the refrigerant discharged from the compressor 1 is transferred to the outdoor heat exchanger. 4 to the indoor heat exchanger 3 for indoor cooling, and for heating operation, the four-way switching valve 2
Is switched as indicated by the solid line in the figure, and the refrigerant discharged from the compressor 1 is sent from the indoor heat exchanger 3 to the outdoor heat exchanger 4 to perform indoor heating.

【0017】しかして、以上のような暖房運転を行った
後に運転停止したようなとき、前記ケーシング11に設
けた油溜り10の油中に液冷媒が寝込むのを防止する液
冷媒排出防止装置を、次の構造したのである。
A liquid refrigerant discharge prevention device for preventing liquid refrigerant from stagnation in the oil in the oil sump 10 provided in the casing 11 when the operation is stopped after the above heating operation is performed. , Has the following structure:

【0018】即ち、この液冷媒排出装置は、前記ケーシ
ング1の油溜り10への液冷媒の寝込みを検出する寝込
み検出手段6と、前記油溜り10からの液排出を検出す
る液排出検出手段7と、前記寝込み検出手段6による液
冷媒の寝込み検出時、前記三相電動機13に設ける各コ
イル巻線のうち二相の巻線に単相通電して加熱させ、か
つ、この加熱を予め設定する設定時間ごとに制御し、前
記液排出検出手段7による液冷媒の排出検出時に加熱を
停止する加熱制御手段8とを設けたのである。
That is, this liquid refrigerant discharge device includes a stagnation detecting means 6 for detecting the stagnation of the liquid refrigerant in the oil sump 10 of the casing 1, and a liquid discharge detecting means 7 for detecting the liquid discharge from the oil sump 10. When the stagnation detection means 6 detects the stagnation of the liquid refrigerant, two-phase windings among the coil windings provided in the three-phase electric motor 13 are single-phase energized to be heated, and the heating is preset. The heating control means 8 is provided for controlling at every set time and for stopping the heating when the liquid discharge detection means 7 detects the discharge of the liquid refrigerant.

【0019】更に詳記すると、図1に示した実施例にお
ける前記寝込み検出手段6は、前記ケーシング11の胴
体一部で前記油溜り10の近くに配設され、前記ケーシ
ング11の胴体温度T1を検出する第1温度検出センサ
ー61と、前記室外側熱交換器4の近くに配設され、該
熱交換器4近くの周囲温度を検出する第2温度検出セン
サー62とを備え、これら各温度検出センサー61,62
を前記加熱制御手段8に接続しており、そして、前記第
1温度検出センサー61で検出される胴体温度T1が予
め設定する設定温度T0より低い第1条件(T1<T
0)のときと、前記第2温度検出センサー62で検出さ
れる周囲温度T2と前記胴体温度T1との温度差ΔT
が、予め設定する設定温度差ΔT0以上の第2条件(Δ
T≧ΔT0)との少なくとも何れか一方の条件を満足す
るとき、前記油溜り10に液冷媒の寝込みが発生してい
ると判断して、前記加熱制御手段8から寝込み信号を出
力し、前記三相電動機13の欠相通電で前記油溜り10
を加熱することにより、この油溜り10の油中に混入す
る液冷媒を排出して、該液冷媒の前記油溜り10への寝
込みを防止するようになすのである。
More specifically, the stagnation detecting means 6 in the embodiment shown in FIG. 1 is disposed near the oil sump 10 at a part of the body of the casing 11 to detect the body temperature T1 of the casing 11. A first temperature detecting sensor 61 for detecting and a second temperature detecting sensor 62 arranged near the outdoor heat exchanger 4 for detecting an ambient temperature near the heat exchanger 4 are provided. Sensor 61,62
Is connected to the heating control means 8, and the body temperature T1 detected by the first temperature detection sensor 61 is lower than a preset temperature T0 (T1 <T1).
0) and the temperature difference ΔT between the ambient temperature T2 detected by the second temperature detection sensor 62 and the body temperature T1.
Is the second condition (Δ
T ≧ ΔT0) and at least one of the conditions is satisfied, it is determined that the liquid refrigerant has accumulated in the oil sump 10, and the heating control means 8 outputs a sleep signal, The oil sump 10 is generated by the open phase energization of the phase motor 13
By heating, the liquid refrigerant mixed in the oil in the oil sump 10 is discharged to prevent the liquid refrigerant from stagnation in the oil sump 10.

【0020】また、前記加熱制御手段8と前記圧縮機1
の三相電動機13との間には、該電動機13における各
相のコイル巻線から引出された3本の第1〜第3リード
線U,V,Wの中間にそれぞれ第1〜第3スイッチS
1,S2,S3を介装して、これら各スイッチS1,S
2,S3を前記加熱制御手段8からの指令に基づきオン
動作させることにより、前記電動機13の各コイル巻線
に通電させ、該電動機13を回転駆動させて前記圧縮要
素12の圧縮運転を行い、また、前記コントローラ6か
らの指令に基づき前記各スイッチS1,S2,S3をオ
フ動作させることにより、前記電動機13の各巻線への
通電を遮断して前記圧縮要素12の回転駆動を停止させ
るようにしている。
Further, the heating control means 8 and the compressor 1
To the three-phase electric motor 13, the first to third switches are respectively provided in the middle of the three first to third lead wires U, V and W drawn from the coil windings of the respective phases in the electric motor 13. S
1, S2, S3 are interposed, and these switches S1, S
2, S3 is turned on based on a command from the heating control means 8 to energize each coil winding of the electric motor 13 to rotate the electric motor 13 to perform the compression operation of the compression element 12, Further, by turning off each of the switches S1, S2, S3 based on a command from the controller 6, the energization of each winding of the electric motor 13 is cut off to stop the rotational drive of the compression element 12. ing.

【0021】そして、前記各リード線U,V,Wのう
ち、例えば第2及び第3リード線V,Wに、前記第2,
第スイッチS2,S3を短絡する短絡線C1,C2を、
前記スイッチS1,S2に対し並列状に接続して、これ
ら各短絡線C1,C2に第4及び第5スイッチS4,S
5をそれぞれ介装して、前記第1〜第3スイッチS1,
S2,S3がオフ動作され、前記電動機13への通電が
遮断されて前記圧縮機1の運転が停止されている場合
で、前記各温度検出センサー61,62の検出結果に基
づき前記加熱制御手段8が、前記第1条件(T1<T
0)と第2条件(ΔT≧ΔT0)との何れか一方を満足
していることを確認したとき、前記加熱制御手段8から
液冷媒の寝込み信号が出力され、前記第4,第5スイッ
チS4,S5がオン動作させられ、このオン動作によ
り、前記電動機13の2つのコイル巻線に通電させて欠
相通電が行われるのである。従って、この欠相運転によ
る前記各コイル巻線の発熱で前記油溜り10を加熱して
油中から液冷媒を排出できるのである。
Of the lead wires U, V, W, for example, the second and third lead wires V, W are connected to the second and third lead wires, respectively.
Short-circuit lines C1 and C2 that short-circuit the second switches S2 and S3,
The switches S1 and S2 are connected in parallel and the fourth and fifth switches S4 and S2 are connected to the short-circuit lines C1 and C2, respectively.
5 respectively, and the first to third switches S1,
In the case where S2 and S3 are turned off, the electric current to the electric motor 13 is cut off and the operation of the compressor 1 is stopped, the heating control means 8 is based on the detection results of the temperature detection sensors 61 and 62. Is the first condition (T1 <T
0) and the second condition (ΔT ≧ ΔT0) are satisfied, the heating control means 8 outputs a liquid refrigerant stagnation signal and the fourth and fifth switches S4. , S5 are turned on, and by this on operation, the two coil windings of the electric motor 13 are energized to perform the open-phase energization. Therefore, the oil pool 10 can be heated by the heat generated by the coil windings due to the open phase operation, and the liquid refrigerant can be discharged from the oil.

【0022】また、以上のような電動機13の加熱によ
り液冷媒が排出されて前記第1及び第2条件を逸脱した
とき、前記加熱制御手段8に備えた前記液排出検出手段
7で前記油中からの液冷媒排出が検出され、この検出で
前記第4,第5スイッチS4,S5がオフ動作させら
れ、前記電動機13の欠相通電による加熱が停止させら
れるのである。
Further, when the liquid refrigerant is discharged by the heating of the electric motor 13 as described above and the first and second conditions are deviated, the liquid discharge detecting means 7 provided in the heating control means 8 causes the oil in the oil The discharge of the liquid refrigerant from is detected, the fourth and fifth switches S4 and S5 are turned off by this detection, and the heating of the electric motor 13 due to the open phase energization is stopped.

【0023】さらに、前記加熱制御手段8により前記三
相電動機13の加熱を制御するにあたっては、図2の
(イ)で示すように、前記第4,第5スイッチS4,S
5を前記加熱制御手段8で設定された所定の設定時間t
1,t2,t3・・ごとにオン.オフ動作させて、前記
電動機13の断続的な加熱を行うのである。前記設定時
間t1,t2,t3,・・・・のうち、最初の設定オン
時間t1は、前記設定温度(T0)で前記第4,第5スイ
ッチS4,S5がオン動作されて欠相通電による加熱を
行うとき、前記電動機13の温度上限値fに達するまで
の時間を基に設定するのであり、また、次の設定オフ時
間t2は、前記電動機13の温度が前記設定温度(T0)
より高い所定温度に低下するまでの時間を基に設定する
のであり、更に次の設定オン時間t3は、設定オフ時間
t2により低下する温度から前記電動機13の温度上限
値fに達するまでの時間を基に設定するのであって、以
後前記設定オフ時間t2及び設定オン時間t3と同様に
設定するのである。
Further, when controlling the heating of the three-phase electric motor 13 by the heating control means 8, as shown in FIG. 2A, the fourth and fifth switches S4, S are used.
5 is a predetermined set time t set by the heating control means 8
Turns on every 1, t2, t3 .... It is turned off to intermittently heat the electric motor 13. Of the set times t1, t2, t3, ..., The first set ON time t1 is due to the open phase energization when the fourth and fifth switches S4, S5 are turned on at the set temperature (T0). When heating is performed, it is set based on the time until the temperature upper limit value f of the electric motor 13 is reached, and the next set off time t2 is when the temperature of the electric motor 13 is the set temperature (T0).
It is set based on the time until the temperature drops to a higher predetermined temperature, and the next set ON time t3 is the time from the temperature lowered by the set OFF time t2 until the temperature upper limit value f of the electric motor 13 is reached. The setting is based on the setting, and thereafter, the setting is made in the same manner as the setting off time t2 and the setting on time t3.

【0024】従って、以上の設定時間t1,t2,t3
・・・・で繰り返す断続通電により、前記電動機13の
温度は図1(ハ)のように変化し、前記電動機13の上
限温度値fを超えるのを回避できるのであって、欠相通
電による加熱で電動機13に悪影響を及ぼすことはな
い。
Therefore, the above set times t1, t2, t3
The temperature of the electric motor 13 changes as shown in FIG. 1C by the intermittent energization repeated by ..., It is possible to avoid exceeding the upper limit temperature value f of the electric motor 13, and the heating due to the open phase energization is performed. Therefore, the electric motor 13 is not adversely affected.

【0025】また、以上の加熱によって前記油溜り10
の温度は、上昇するのであるが、液冷媒が存在している
間は、図2(ロ)の曲線aのようにその温度上昇は小さ
い。そして、液冷媒が排出されるに従って、温度上昇勾
配は大きくなり、液冷媒が排出されると、その温度勾配
は変曲点bを介して、曲線cのようにその温度勾配は急
勾配となる。
Further, the oil sump 10 is heated by the above heating.
Although the temperature rises, the temperature rise is small as shown by the curve a in FIG. 2B while the liquid refrigerant is present. Then, as the liquid refrigerant is discharged, the temperature rise gradient increases, and when the liquid refrigerant is discharged, the temperature gradient becomes steep as shown by the curve c via the inflection point b. .

【0026】従って、前記胴体温度T1を検出する第1
温度検出センサー61からの温度情報により、その温度
勾配つまり、温度の変化率を演算できるし、この温度勾
配から液冷媒の排出を検出できるのであって、前記液排
出検出手段7は、前記加熱制御手段8のCPVを用いる
ことにより構成できる。そして、以上のように前記液排
出検出手段7により検出する液冷媒排出の検出結果に基
づいて前記電動機13の欠相通電による加熱を停止させ
るのである。
Therefore, the first for detecting the body temperature T1
From the temperature information from the temperature detection sensor 61, the temperature gradient, that is, the rate of change of temperature can be calculated, and the discharge of the liquid refrigerant can be detected from this temperature gradient. It can be constructed by using the CPV of the means 8. Then, based on the detection result of the liquid refrigerant discharge detected by the liquid discharge detecting means 7 as described above, the heating of the electric motor 13 due to the open-phase energization is stopped.

【0027】尚、前記液排出検出手段7は、前記第1温
度センサー61で検出する胴体温度T1からその温度勾
配をみて液冷媒排出を検出するようにしたが、前記胴体
温度T1の絶対値から液冷媒の排出を検出するようにし
てもよいし、また、温度勾配と絶対値とにより検出する
ようにしてもよい。
The liquid discharge detecting means 7 detects the liquid refrigerant discharge by looking at the temperature gradient from the body temperature T1 detected by the first temperature sensor 61, but from the absolute value of the body temperature T1. The discharge of the liquid refrigerant may be detected, or may be detected by the temperature gradient and the absolute value.

【0028】次に、以上の構成による作用について説明
する。前記冷凍装置の暖房運転を行った後に運転を停止
したようなとき、先ず、前記各温度検出センサー61,
62により前記胴体温度T1と周囲温度T2とが検出さ
れ、これら胴体温度T1及び周囲温度T2が前記加熱制
御手段8に入力されて、該加熱制御手段8が前記第1条
件(T1<T0)と第2条件(ΔT≧ΔT0)との何れ
か一方を満足していることを確認したとき、前記油溜り
10に液冷媒の寝込みが発生していると判断されて、前
記加熱制御手段8から液冷媒の寝込み信号が出力され、
これに伴い前記第4,第5スイッチS4,S5がオン動
作されて前記電動機13に欠相通電され、この欠相通電
による発熱で前記油溜り10が加熱されて油中から液冷
媒が排出されるのである。
Next, the operation of the above configuration will be described. When the operation of the refrigerating apparatus is stopped after the heating operation, first, the temperature detection sensors 61,
The body temperature T1 and the ambient temperature T2 are detected by 62, the body temperature T1 and the ambient temperature T2 are input to the heating control means 8, and the heating control means 8 determines that the first condition (T1 <T0). When it is confirmed that either one of the second condition (ΔT ≧ ΔT0) is satisfied, it is determined that the liquid refrigerant is stagnation in the oil sump 10, and the heating control means 8 causes the liquid to flow. A refrigerant stagnation signal is output,
Along with this, the fourth and fifth switches S4, S5 are turned on to energize the electric motor 13 in the open phase, and the heat generated by the open phase energizes the oil sump 10 to discharge the liquid refrigerant from the oil. It is.

【0029】また、以上のような電動機13の加熱によ
り液冷媒が排出されて前記第1及び第2条件を逸脱した
とき、前記液排出検出手段7による出力で前記第4,第
5スイッチS4,S5がオフ動作されて、前記電動機1
3による加熱が停止されるのである。
Further, when the liquid refrigerant is discharged by the heating of the electric motor 13 as described above and the first and second conditions are deviated, the fourth and fifth switches S4, S4 are output by the liquid discharge detecting means 7. When S5 is turned off, the electric motor 1
The heating by 3 is stopped.

【0030】また、以上のような電動機13の欠相通電
による加熱は、図2の(イ)で示したように、予め設定
された所定の設定時間t1,t2,t3・・・・ごとに
前記電動機13に断続的に通電されるのであって、この
電動機13に欠相通電が行われても、電動機13の温度
は、図1(ハ)で示すように、該電動機13に悪影響を
与えない温度上限値fの範囲内に抑えられるのである。
また、液排出検出手段7により液冷媒排出が検出される
と、前記電動機13への通電が停止されるのである。従
って、前記三相電動機13を欠相通電して加熱するにも
拘らず、該電動機13に悪影響を及ぼしたりすることな
く、しかもこの電動機13への通電時間を短くして、少
ない電気代でランニングコストを低廉にできながら、前
記ケーシング11内の油溜り10に液冷媒が寝込むのを
防止できるのである。
Further, the heating by the open-phase energization of the electric motor 13 as described above is performed at predetermined preset times t1, t2, t3, ... As shown in FIG. Since the electric motor 13 is energized intermittently, the temperature of the electric motor 13 adversely affects the electric motor 13 as shown in FIG. That is, the temperature can be suppressed within the range of the temperature upper limit value f.
Further, when the liquid discharge detecting means 7 detects the discharge of the liquid refrigerant, the power supply to the electric motor 13 is stopped. Therefore, even though the three-phase electric motor 13 is energized in the open phase to heat it, the electric motor 13 is not adversely affected, and the energization time to the electric motor 13 is shortened, so that the running cost is low. It is possible to prevent the liquid refrigerant from stagnation in the oil sump 10 in the casing 11 while reducing the cost.

【0031】さらに、欠相通電により加熱するようにし
ているから、その発熱量を従来例の低電圧通電による場
合に比較して増大させることができ、前記油溜り10内
の液冷媒を短時間で確実に排出できるのであって、この
ことによっても電気代を少なくできるのである。
Further, since the heating is performed by the open phase energization, the amount of heat generated can be increased as compared with the case of the low voltage energization of the conventional example, and the liquid refrigerant in the oil sump 10 can be heated for a short time. It is possible to surely discharge with, and this also can reduce the electricity bill.

【0032】[0032]

【発明の効果】以上説明したように、請求項1記載の発
明によれば、圧縮要素12と三相電動機13とをケーシ
ング11に内装した圧縮機1の油溜り10に、液冷媒が
寝込むのを防ぐ液冷媒排出装置であって、前記油溜り1
0への液冷媒の寝込みを検出する寝込み検出手段6と、
前記油溜り10からの液冷媒の排出を検出する液排出検
出手段7と、前記寝込み検出手段6による液冷媒の寝込
み検出時、前記三相電動機13を単相通電して加熱さ
せ、かつ、この加熱を予め設定する設定時間ごとに制御
し、前記液排出検出手段7による液冷媒の排出検出時、
前記加熱を停止する加熱制御手段8とを備えたから、記
ケーシング11の油溜り10に液冷媒の寝込みが発生し
たとき、その寝込みを前記寝込み手段6で検出し、この
検出結果に基づく前記加熱制御手段8からの出力信号に
より前記三相電動機13に欠相通電して、前記ケーシン
グ1の油溜り10を効率よく加熱できるし、また、この
加熱は所定の設定時間ごとに断続的に加熱制御するので
あるから、電動機13への悪影響少なく加熱できて、前
記油溜り10への液冷媒の寝込みを防止できる。
As described above, according to the first aspect of the present invention, the liquid refrigerant is sunk in the oil sump 10 of the compressor 1 in which the compression element 12 and the three-phase electric motor 13 are installed in the casing 11. A liquid refrigerant discharge device for preventing the above-mentioned oil sump 1
A stagnation detecting means 6 for detecting stagnation of the liquid refrigerant into 0;
When the liquid refrigerant is detected by the liquid discharge detecting means 7 for detecting the discharge of the liquid refrigerant from the oil sump 10, and the stagnation detecting means 6 detects the stagnation of the liquid refrigerant, the three-phase electric motor 13 is energized by one phase to be heated, and The heating is controlled every preset time, and when the liquid discharge detecting means 7 detects the discharge of the liquid refrigerant,
Since the heating control means 8 for stopping the heating is provided, when stagnation of the liquid refrigerant occurs in the oil sump 10 of the casing 11, the stagnation means 6 detects the stagnation, and the heating control based on the detection result. The three-phase electric motor 13 is energized in the open phase by the output signal from the means 8 to efficiently heat the oil sump 10 of the casing 1, and the heating is intermittently controlled at predetermined intervals. Therefore, the electric motor 13 can be heated with little adverse effect, and the stagnation of the liquid refrigerant in the oil sump 10 can be prevented.

【0033】その上、以上の加熱制御により前記油溜り
10から液冷媒が排出されたときには、加熱を停止する
ようにしているから、つまり、従来のように、各温度検
出センサーで検出される検出温度と予め設定された設定
温度とが特定の条件下にある限り連続して行うのではな
く、前記電動機13への欠相通電を所定設定時間ごとに
断続的に行うようにした上で前記液排出検出手段7が作
動したときには寝込み検出手段6が作動していても、前
記電動機13の加熱運転を停止するようにしたから、前
記三相電動機13に悪影響を及ぼしたりすることなく、
この電動機13への通電時間を短縮でき、少ない電気代
でランニングコストを低廉にできながら、前記ケーシン
グ11内の油溜り10に液冷媒が寝込むのを防止するこ
とができるのである。
Further, when the liquid refrigerant is discharged from the oil sump 10 by the above heating control, the heating is stopped, that is, the detection detected by each temperature detecting sensor as in the conventional case. The temperature and the preset temperature are not continuously applied as long as they are under a specific condition, but the open phase energization of the electric motor 13 is intermittently performed at predetermined intervals, and then the liquid is applied. Since the heating operation of the electric motor 13 is stopped even when the stagnation detecting means 6 is operating when the discharge detecting means 7 operates, the three-phase electric motor 13 is not adversely affected.
The energization time to the electric motor 13 can be shortened, the running cost can be reduced with a small electricity bill, and the liquid refrigerant can be prevented from stagnation in the oil sump 10 in the casing 11.

【0034】しかも、前記油溜り10を加熱するに際し
て、従来のように低電圧通電により行うものでなく、欠
相通電により行うものであるから、その発熱量を増大さ
せることができ、このため、前記油溜り10内の液冷媒
を短時間で確実に排出でき、このことによっても電気代
を少なくできるのである。
Moreover, since the oil sump 10 is heated by the open-phase energization instead of the low-voltage energization as in the conventional case, the amount of heat generation can be increased. The liquid refrigerant in the oil sump 10 can be reliably discharged in a short time, which also reduces the electricity bill.

【0035】また、請求項2記載によれば、前記寝込み
検出手段6が、前記液溜り10を含むケーシング11の
胴体温度T1を検出する第1温度検出センサー61と、
前記圧縮機1の吸入側に接続される熱交換器4を含む周
囲温度T2を検出する第2温度検出センサー62とを備
え、前記胴体温度T1が予め設定する設定温度T0より
低いときと、前記周囲温度T2と胴体温度T1との温度
差ΔTが、予め設定する設定温度差ΔT0以上のときと
の何れか一方を満足するとき、寝込み信号を出力するよ
うにしているため、前記寝込み検出手段6の検出結果に
基づき前記加熱制御手段8で前記電動機13の加熱制御
を行う場合、前記圧縮機1の油溜り10に液冷媒の寝込
みが発生しているのを直接的に、また、正確に検出でき
るのである。従って、前記三相電動機13への欠相通電
時間をより少なくし、電気代の節約を一層効果的に行う
ことができてランニングコストを低廉にできながら、前
記油溜り10への液冷媒の寝込みを一層良好かつ正確に
防止できるのである。
Further, according to the second aspect, the stagnation detecting means 6 includes a first temperature detecting sensor 61 for detecting a body temperature T1 of the casing 11 including the liquid pool 10,
A second temperature detection sensor 62 for detecting an ambient temperature T2 including a heat exchanger 4 connected to the suction side of the compressor 1, when the body temperature T1 is lower than a preset temperature T0, and When the temperature difference ΔT between the ambient temperature T2 and the body temperature T1 is equal to or more than the preset temperature difference ΔT0, the stagnation detection means 6 outputs the stagnation signal. When heating control of the electric motor 13 is performed by the heating control means 8 based on the detection result of 1., the occurrence of liquid refrigerant stagnation in the oil sump 10 of the compressor 1 is directly and accurately detected. You can do it. Therefore, the open phase energization time to the three-phase electric motor 13 can be further shortened, the electricity bill can be saved more effectively, and the running cost can be reduced, while the liquid refrigerant is sunk in the oil sump 10. Can be prevented even better and accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる圧縮機の液冷媒排出装置を備え
た冷凍装置の配管系統図である。
FIG. 1 is a piping system diagram of a refrigeration system including a liquid refrigerant discharge device for a compressor according to the present invention.

【図2】同液冷媒排出装置の制御態様を説明する説明図
である。
FIG. 2 is an explanatory diagram illustrating a control mode of the liquid refrigerant discharge device.

【図3】従来の液冷媒排出装置を備えた冷凍装置の配管
系統図である。
FIG. 3 is a piping system diagram of a refrigeration apparatus including a conventional liquid refrigerant discharge device.

【符号の説明】[Explanation of symbols]

1……圧縮機 10…油溜り 11…ケーシング 12…圧縮要素 13…三相電動機 4……熱交換器 6……寝込み検出手段 61…第1温度検出センサー 62…第2温度検出センサー 7……液排出検出手段 8……加熱制御手段 DESCRIPTION OF SYMBOLS 1 ... Compressor 10 ... Oil sump 11 ... Casing 12 ... Compression element 13 ... Three-phase electric motor 4 ... Heat exchanger 6 ... Sleep detection means 61 ... First temperature detection sensor 62 ... Second temperature detection sensor 7 ... Liquid discharge detection means 8 ... Heating control means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F25B 31/02 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location F25B 31/02 Z

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】圧縮要素(12)と三相電動機(13)と
をケーシング(11)に内装した圧縮機(1)の油溜り
(10)に、液冷媒が寝込むのを防ぐ液溜り防止装置で
あって、前記油溜り(10)への液冷媒の寝込みを検出
する寝込み検出手段(6)と、前記油溜り(10)から
の液冷媒の排出を検出する液排出検出手段(7)と、前
記寝込み検出手段(6)による液冷媒の寝込み検出時、
前記三相電動機(13)を欠相通電して加熱させ、か
つ、この加熱を予め設定する設定時間ごとにオン・オフ
制御し、前記液排出検出手段(7)による液冷媒の排出
検出時、前記加熱を停止する加熱制御手段(8)とを備
えていることを特徴とする圧縮機の液冷媒排出装置。
1. A liquid pool prevention device for preventing liquid refrigerant from stagnation in an oil pool (10) of a compressor (1) in which a compression element (12) and a three-phase electric motor (13) are installed in a casing (11). A stagnation detecting means (6) for detecting stagnation of the liquid refrigerant in the oil sump (10), and a liquid discharge detecting means (7) for detecting discharge of the liquid refrigerant from the oil sump (10). When the liquid refrigerant stagnation is detected by the stagnation detection means (6),
When the three-phase electric motor (13) is energized in an open phase to be heated, and the heating is controlled to be turned on and off at preset time intervals, when the liquid refrigerant discharge detection means (7) detects the discharge of the liquid refrigerant, A liquid refrigerant discharge device for a compressor, comprising: a heating control means (8) for stopping the heating.
【請求項2】寝込み検出手段(6)は、油溜り(10)
を含むケーシング(11)の胴体温度(T1)を検出す
る第1温度検出センサー(61)と、圧縮機(1)の吸
入側に接続される熱交換器(4)を含む周囲温度(T
2)を検出する第2温度検出センサー(62)とを備
え、前記胴体温度(T1)が予め設定する設定温度(T
0)より低いときと、前記周囲温度(T2)と胴体温度
(T1)との温度差(ΔT)が、予め設定する設定温度
差(ΔT0)以上のときとの何れか一方が満足すると
き、寝込み信号を出力するようにしている請求項1記載
の圧縮機の液冷媒排出装置。
2. A stagnation detecting means (6) comprises an oil sump (10).
Temperature (T1) for detecting the body temperature (T1) of the casing (11) including the ambient temperature (T) including the heat exchanger (4) connected to the suction side of the compressor (1).
2) and a second temperature detection sensor (62) for detecting the temperature, and the body temperature (T1) is set to a preset temperature (T).
0) or the temperature difference (ΔT) between the ambient temperature (T2) and the body temperature (T1) is equal to or more than a preset temperature difference (ΔT0), whichever is satisfied, The liquid refrigerant discharge device for a compressor according to claim 1, wherein a stagnation signal is output.
JP16815494A 1994-07-20 1994-07-20 Liquid refrigerant discharge device for compressor Expired - Fee Related JP3731214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16815494A JP3731214B2 (en) 1994-07-20 1994-07-20 Liquid refrigerant discharge device for compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16815494A JP3731214B2 (en) 1994-07-20 1994-07-20 Liquid refrigerant discharge device for compressor

Publications (2)

Publication Number Publication Date
JPH0828987A true JPH0828987A (en) 1996-02-02
JP3731214B2 JP3731214B2 (en) 2006-01-05

Family

ID=15862820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16815494A Expired - Fee Related JP3731214B2 (en) 1994-07-20 1994-07-20 Liquid refrigerant discharge device for compressor

Country Status (1)

Country Link
JP (1) JP3731214B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003083388A1 (en) * 2002-03-29 2003-10-09 Kabushiki Kaisha Toshiba Refrigerator
JP2005308363A (en) * 2004-04-26 2005-11-04 Daikin Ind Ltd Stagnation detecting method of inverter driven compressor, starting method and inverter-driven compressor
JP2008008594A (en) * 2006-06-30 2008-01-17 Kansai Electric Power Co Inc:The Heat pump type heat recovering device
JP2010065958A (en) * 2008-09-12 2010-03-25 Hitachi Appliances Inc Air-conditioning system
WO2010103734A1 (en) * 2009-03-12 2010-09-16 三菱電機株式会社 Air conditioning device
JP2010223493A (en) * 2009-03-23 2010-10-07 Toshiba Carrier Corp Air conditioner
WO2011058726A1 (en) * 2009-11-11 2011-05-19 三菱電機株式会社 Air conditioner
JP2012026725A (en) * 2011-11-11 2012-02-09 Mitsubishi Electric Corp Air conditioner
JP2013100991A (en) * 2013-03-08 2013-05-23 Mitsubishi Electric Corp Air conditioner
WO2013088585A1 (en) * 2011-12-13 2013-06-20 パナソニック株式会社 Clothes dryer
US20140000295A1 (en) * 2011-03-17 2014-01-02 Carrier Corporation Crank case heater control
JP2014239174A (en) * 2013-06-10 2014-12-18 千代田空調機器株式会社 Air conditioner

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7448226B2 (en) 2002-03-29 2008-11-11 Kabushiki Kaisha Toshiba Refrigerator
CN100441984C (en) * 2002-03-29 2008-12-10 株式会社东芝 Refrigerator
WO2003083388A1 (en) * 2002-03-29 2003-10-09 Kabushiki Kaisha Toshiba Refrigerator
JP4622295B2 (en) * 2004-04-26 2011-02-02 ダイキン工業株式会社 Inverter-driven compressor sleep detection method, start-up method, and inverter-driven compressor
JP2005308363A (en) * 2004-04-26 2005-11-04 Daikin Ind Ltd Stagnation detecting method of inverter driven compressor, starting method and inverter-driven compressor
JP2008008594A (en) * 2006-06-30 2008-01-17 Kansai Electric Power Co Inc:The Heat pump type heat recovering device
JP2010065958A (en) * 2008-09-12 2010-03-25 Hitachi Appliances Inc Air-conditioning system
US20120023984A1 (en) * 2009-03-12 2012-02-02 Mitsubishi Electric Corporation Air conditioner
AU2010222517B2 (en) * 2009-03-12 2012-11-29 Mitsubishi Electric Corporation Air conditioning device
JP2010210208A (en) * 2009-03-12 2010-09-24 Mitsubishi Electric Corp Air conditioning device
US9291379B2 (en) 2009-03-12 2016-03-22 Mitsubishi Electric Corporation Air conditioner
CN102348939A (en) * 2009-03-12 2012-02-08 三菱电机株式会社 Air conditioning device
WO2010103734A1 (en) * 2009-03-12 2010-09-16 三菱電機株式会社 Air conditioning device
JP2010223493A (en) * 2009-03-23 2010-10-07 Toshiba Carrier Corp Air conditioner
CN102597659B (en) * 2009-11-11 2015-01-07 三菱电机株式会社 Air conditioner
CN102597659A (en) * 2009-11-11 2012-07-18 三菱电机株式会社 Air conditioner
AU2010317326B2 (en) * 2009-11-11 2013-02-14 Mitsubishi Electric Corporation Air conditioner
US9528733B2 (en) 2009-11-11 2016-12-27 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2011102674A (en) * 2009-11-11 2011-05-26 Mitsubishi Electric Corp Air conditioning machine
WO2011058726A1 (en) * 2009-11-11 2011-05-19 三菱電機株式会社 Air conditioner
US20140000295A1 (en) * 2011-03-17 2014-01-02 Carrier Corporation Crank case heater control
JP2012026725A (en) * 2011-11-11 2012-02-09 Mitsubishi Electric Corp Air conditioner
WO2013088585A1 (en) * 2011-12-13 2013-06-20 パナソニック株式会社 Clothes dryer
EP2792785A4 (en) * 2011-12-13 2015-04-29 Panasonic Corp Clothes dryer
CN103958765A (en) * 2011-12-13 2014-07-30 松下电器产业株式会社 Clothes dryer
JP2013100991A (en) * 2013-03-08 2013-05-23 Mitsubishi Electric Corp Air conditioner
JP2014239174A (en) * 2013-06-10 2014-12-18 千代田空調機器株式会社 Air conditioner

Also Published As

Publication number Publication date
JP3731214B2 (en) 2006-01-05

Similar Documents

Publication Publication Date Title
US4105064A (en) Two stage compressor heating
JP3162827B2 (en) Temperature control device
US5959428A (en) Starting control unit for a refrigeration machine
KR970006056B1 (en) Control device for air conditioner
JPH08126363A (en) Single phase induction motor and refrigerator employing it
JPH0828987A (en) Liquid refrigerant discharging device for compressor
JPH08226714A (en) Air conditioning equipment
JP4327936B2 (en) Heat pump refrigeration system
US4840220A (en) Heat pump with electrically heated heat accumulator
JPS5926860B2 (en) I can&#39;t wait to see what&#39;s going on.
EP0066862A1 (en) Demand defrost system
JPS6222947A (en) Air conditioner
JPH0650596A (en) Air conditioner
JPH11211253A (en) Controller for separation type air conditioning equipment
JP2000097479A (en) Air conditioner
JPS6233242A (en) Control system for air conditioner
JPH0618103A (en) Air conditioner
JPS63294461A (en) Air conditioner
JPS62186157A (en) Defrosting control unit of air conditioner
JPH0875275A (en) Method for controlling operation of refrigerator provided with a plurality of compressors
JPH01174842A (en) Safety device for prevention of overheating of heater in air conditioner
JPH0678839B2 (en) Air conditioner
JP4120038B2 (en) Control device for refrigerator and control method for refrigerator
JP2823336B2 (en) Drain pump control device and control method for air conditioner
JPH01121645A (en) Defrosting control device for air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081021

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees