JPH08287949A - Lithium-polymer battery and its manufacture - Google Patents

Lithium-polymer battery and its manufacture

Info

Publication number
JPH08287949A
JPH08287949A JP7082233A JP8223395A JPH08287949A JP H08287949 A JPH08287949 A JP H08287949A JP 7082233 A JP7082233 A JP 7082233A JP 8223395 A JP8223395 A JP 8223395A JP H08287949 A JPH08287949 A JP H08287949A
Authority
JP
Japan
Prior art keywords
positive electrode
cyclic ether
polymer battery
lithium polymer
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7082233A
Other languages
Japanese (ja)
Inventor
Masaru Nishimura
賢 西村
Masahiko Ogawa
昌彦 小川
Akiko Ishida
明子 石田
Nobuo Eda
信夫 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7082233A priority Critical patent/JPH08287949A/en
Publication of JPH08287949A publication Critical patent/JPH08287949A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To attain impedance reduction and a large capacity of a composite positive electrode in a lithium battery using polymer electrolyte. CONSTITUTION: Electrolyte containing cyclic ether is injected into a positive electrode 1 obtained by compression molding of mixed powder of an active material, a conductive agent and a binding agent, and this liquid is polymerized and hardened by a chemical or electrochemical technique, and polymer electrolyte 2 and a composite positive electrode 3 are obtained. Next, this composite positive electrode 3 is combined with a polymer electrolyte layer 4 and metallic lithium foil 5 being a negative electrode, and a battery is constituted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はポリマー電解質を用いる
リチウム・ポリマー電池に関するものである。
FIELD OF THE INVENTION The present invention relates to a lithium polymer battery using a polymer electrolyte.

【0002】[0002]

【従来の技術】電池用電解質へのポリマー材料の導入
は、ポリマーの軽量、形状柔軟性、薄膜形成可能という
特徴に加え、固体としての機能が活かせるため、高信頼
性電池の製造を可能にする。特に、金属リチウムを負極
に用いるリチウム・ポリマー二次電池の場合、液体電解
質使用時に問題となるリチウムデンドライト析出が抑制
されるため、内部短絡による発熱・発火が起こらず十分
な安全性の確保が可能となる。
2. Description of the Related Art Introducing a polymer material into a battery electrolyte makes it possible to manufacture a highly reliable battery because the polymer functions as a solid in addition to the features such as light weight, shape flexibility and thin film formation. To do. In particular, in the case of a lithium polymer secondary battery that uses metallic lithium for the negative electrode, lithium dendrite deposition, which is a problem when using a liquid electrolyte, is suppressed, so heat generation and ignition due to internal short circuit do not occur and sufficient safety can be secured. Becomes

【0003】上記リチウム・ポリマー二次電池に使用さ
れるポリマー電解質は、通常の電池系におけるセパレー
タの役割も果たす。さらに、液体電解質と同様にイオン
を輸送し、電極内の活物質と接触して電気化学界面を形
成する。しかし、ポリマー電解質は通常流動性のない固
体であり、これを外部から正極内部へ浸透させることは
不可能である。従って、あらかじめその内部にポリマー
電解質を含有させた複合正極を作製し、良好な界面形成
を図る必要がある。
The polymer electrolyte used in the above lithium polymer secondary battery also functions as a separator in an ordinary battery system. Further, like the liquid electrolyte, it transports ions and makes contact with the active material in the electrode to form an electrochemical interface. However, the polymer electrolyte is usually a non-flowable solid, and it is impossible to penetrate this into the positive electrode from the outside. Therefore, it is necessary to prepare a composite positive electrode having a polymer electrolyte contained therein in advance to achieve good interface formation.

【0004】複合正極は、例えば特公昭63−3422
号公報記載の以下の方法で作製される。まず、活物質で
ある硫化チタン75重量%、導電剤であるグラファイト
粉末10重量%、ポリマー電解質であるポリエチレンオ
キシドとヨウ化ナトリウムの錯体15重量%を、メタノ
ールもしくはアセトニトリルに懸濁した液を調整する。
次いで、この懸濁液を、ポリテトラフルオロエチレンシ
ートの上に流し、有機溶媒を蒸発させることによりシー
ト状の複合正極が得られる。本正極中にはポリマー電解
質が均一に分散しており、活物質と良好な電気化学界面
を形成している。
The composite positive electrode is, for example, Japanese Patent Publication No. 63-3422.
It is produced by the following method described in the publication. First, a solution is prepared by suspending 75% by weight of titanium sulfide as an active material, 10% by weight of graphite powder as a conductive agent, and 15% by weight of a complex of polyethylene oxide and sodium iodide as a polymer electrolyte in methanol or acetonitrile. .
Next, this suspension is poured onto a polytetrafluoroethylene sheet, and the organic solvent is evaporated to obtain a sheet-shaped composite positive electrode. The polymer electrolyte is uniformly dispersed in the positive electrode and forms a good electrochemical interface with the active material.

【0005】[0005]

【発明が解決しようとする課題】通常の有機電解液系電
池の場合、活物質、導電剤および結着剤からなる混合粉
体を加圧成型した正極を使用し、その内部に微細に形成
された隙間に電解液が浸透して活物質との電気化学界面
を形成する。このとき各粒子は密接に接触して電子伝導
のパスを保持するため、正極内部での電子伝導に基づく
インピーダンスは小さい。
In the case of an ordinary organic electrolyte type battery, a positive electrode obtained by pressure molding a mixed powder consisting of an active material, a conductive agent and a binder is used, and finely formed inside the positive electrode. The electrolytic solution penetrates into the gap to form an electrochemical interface with the active material. At this time, the particles are in intimate contact with each other and hold an electron conduction path, so that the impedance due to electron conduction inside the positive electrode is small.

【0006】しかし、ポリマー電解質複合正極の場合、
粒子間に電解質が存在しやすく、そのため粒子間の伝導
性が劣りインピーダンスは前記の正極に比べて大きく、
電池作動時のIR損増大の要因となる。インピーダンス
を低減させるためには導電剤の増加が必要であるが、そ
の増加分、正極中の活物質量が減少し、結果として正極
容量の低下を招く。
However, in the case of the polymer electrolyte composite positive electrode,
Electrolyte is likely to exist between particles, so conductivity between particles is poor and impedance is larger than that of the positive electrode,
This causes an increase in IR loss when the battery is operating. In order to reduce the impedance, it is necessary to increase the conductive agent, but the amount of the active material in the positive electrode decreases by the increase, and as a result, the positive electrode capacity decreases.

【0007】以上のように、電池特性の向上という観点
から判断すると、従来の複合正極は必ずしも適切な構造
を有しているとはいえず、低インピーダンスで高容量の
複合正極の出現が待たれていた。本発明は、このような
課題を解決するものであり、新規のリチウム・ポリマー
電池を提案することを目的とする。
As described above, from the viewpoint of improving the battery characteristics, it cannot be said that the conventional composite positive electrode has an appropriate structure, and the appearance of a composite positive electrode with low impedance and high capacity is awaited. Was there. The present invention solves such a problem, and an object thereof is to propose a novel lithium polymer battery.

【0008】[0008]

【課題を解決するための手段】前記の問題を解決するた
めに、本発明では環状エーテルの重合体からなるポリマ
ー電解質を利用する。
In order to solve the above problems, the present invention utilizes a polymer electrolyte composed of a polymer of cyclic ether.

【0009】本電解質は環状エーテルの開環重合によっ
て得られたポリマーを基本骨格とする固体電解質であ
り、重合前の電解質は少なくとも環状エーテルに支持塩
が溶解した通常の有機電解液である。この液体を正極に
注液し、次いでこれを化学的手法あるいは電気化学的手
法で重合硬化することでポリマー電解質複合正極が得ら
れる。
The present electrolyte is a solid electrolyte having a polymer as a basic skeleton obtained by ring-opening polymerization of cyclic ether, and the electrolyte before polymerization is a normal organic electrolyte solution in which at least a supporting salt is dissolved in cyclic ether. A polymer electrolyte composite positive electrode is obtained by injecting this liquid into the positive electrode and then polymerizing and curing the liquid by a chemical method or an electrochemical method.

【0010】前記の手段により、低インピーダンスかつ
高容量の複合正極が製造可能となり、より高性能のリチ
ウム・ポリマー電池の開発が促進される。
By the means described above, a composite positive electrode having a low impedance and a high capacity can be manufactured, and the development of a higher performance lithium polymer battery is promoted.

【0011】[0011]

【作用】重合前の電解質は粘性の低い液体であり、減圧
含浸処理によって正極内部に注入することができる。注
入された液体は、以下に記す2つのいずれかの方法で重
合硬化して、正極と複合化させる。
The electrolyte before polymerization is a liquid having a low viscosity and can be injected into the positive electrode by the impregnation treatment under reduced pressure. The injected liquid is polymerized and cured by one of the two methods described below to form a composite with the positive electrode.

【0012】(1)化学的手法による電解質の重合硬化 ジオキソランのような環状エーテルに、3フッ化ホウ素
ジエチルエーテル錯体BF3・O(C252のような酸
触媒を添加すると、環状エーテルが開環重合してポリエ
ーテルが得られる。
(1) Polymerization and curing of electrolyte by chemical method When a cyclic ether such as dioxolane is added with an acid catalyst such as boron trifluoride diethyl ether complex BF 3 .O (C 2 H 5 ) 2 , Ring-opening polymerization of ether gives polyether.

【0013】重合機構は以下の通りである。まず、ジオ
キソラン分子中で電子リッチな酸素OにカチオンC25
+が攻撃し、対アニオン-BF3OC25と錯体を形成す
る(化1)。
The polymerization mechanism is as follows. First, cation C 2 H 5 is added to oxygen-rich oxygen O in the dioxolane molecule.
+ Attacks and forms a complex with the counter anion - BF 3 OC 2 H 5 (chemical formula 1).

【0014】[0014]

【化1】 Embedded image

【0015】錯体中のO+は近傍のC−O結合から電子
を奪うため、結合が切断されて開環反応が起こる。そし
て、末端に生起したカチオンが新たなジオキソランと結
合して、再び錯体を形成する(化2)。
Since O + in the complex robs an electron from a nearby C—O bond, the bond is broken and a ring-opening reaction occurs. Then, the cation generated at the terminal is combined with a new dioxolane to form a complex again (Chemical Formula 2).

【0016】[0016]

【化2】 Embedded image

【0017】以上の反応が連鎖的に進行して、ポリエー
テルが成長する(化3)。
The above reaction proceeds in a chain to grow polyether (Chemical Formula 3).

【0018】[0018]

【化3】 Embedded image

【0019】ここで、酸触媒の添加前にあらかじめリチ
ウム塩を溶解しておけば、ポリマーエーテルにリチウム
塩が分散・解離したポリマー電解質が得られる。
If the lithium salt is dissolved in advance before the addition of the acid catalyst, a polymer electrolyte in which the lithium salt is dispersed / dissociated in the polymer ether can be obtained.

【0020】重合反応は瞬時には完了しないので、酸触
媒を添加した直後であれば、前記液体を正極内部に注液
することができ、複合正極が作製可能となる。
Since the polymerization reaction is not completed instantaneously, the liquid can be poured into the positive electrode immediately after the acid catalyst is added, and the composite positive electrode can be manufactured.

【0021】(2)電気化学的手法による電解質の重合
硬化 ジオキソランのような環状エーテルにホウフッ化リチウ
ムLiBF4のようなリチウム塩を溶解した液体を電気
化学的に分解すると、アノード上にポリマー電解質が得
られる。
(2) Polymerization and curing of electrolyte by electrochemical method When a liquid obtained by dissolving a lithium salt such as lithium borofluoride LiBF 4 in a cyclic ether such as dioxolane is electrochemically decomposed, a polymer electrolyte is formed on the anode. can get.

【0022】重合前の前記液体は、Li+とBF4 -の2
つのイオンが解離した非水電解液であるが、この液体に
リチウム対極基準で5V程度の高電圧を印加すると、正
極上でBF4 -が酸化分解してBF3を生成する。ルイス
酸であるBF3は前記(1)化学的手法による電解質の
重合硬化の場合と同様に環状エーテルの開環重合を促進
するので、ポリエーテルが得られ正極と複合化する。
[0022] The liquid prior polymerization, Li + and BF 4 - 2
Although this is a non-aqueous electrolytic solution in which two ions are dissociated, when a high voltage of about 5 V based on the lithium counter electrode is applied to this liquid, BF 4 is oxidized and decomposed on the positive electrode to generate BF 3 . BF 3, which is a Lewis acid, promotes ring-opening polymerization of a cyclic ether in the same manner as in the case of (1) polymerization and curing of an electrolyte by the chemical method described above, and thus a polyether is obtained to form a composite with a positive electrode.

【0023】前記の方法は、(1)の方法と比べて、重
合開始の時期を電圧印加で制御できるという利点を有す
る。
The above method has an advantage over the method (1) in that the timing of initiation of polymerization can be controlled by applying a voltage.

【0024】[0024]

【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0025】(実施例1)図1に本発明により製造され
るポリマー電解質複合正極の縦断面図を示す。図におい
て、1は活物質であるV613+y(0≦y≦0.16)
100重量%と導電剤であるアセチレンブラック3重量
%と結着剤であるポリテトラフルオロエチレン7重量%
からなる混合粉体を加圧成形した正極である。
Example 1 FIG. 1 shows a vertical cross-sectional view of a polymer electrolyte composite positive electrode manufactured by the present invention. In the figure, 1 is an active material V 6 O 13 + y (0 ≦ y ≦ 0.16)
100% by weight, acetylene black 3% by weight as a conductive agent, and polytetrafluoroethylene 7% by weight as a binder
Is a positive electrode obtained by pressure molding a mixed powder of.

【0026】2は、正極中の微細な空孔に充填されたポ
リマー電解質である。本電解質は、環状エーテルである
ジオキソランを溶媒とし、リチウム塩であるLiBF4
を溶質とする液体を、化学的あるいは電気化学的手法に
より重合硬化して得られた固体電解質である。ここで、
LiBF4濃度は1モル/リットルである。電解質の重
合は、重合前の前記液体を正極の細孔内に減圧含浸した
後に行い、以下2つのいずれかの方法に従った。
Reference numeral 2 is a polymer electrolyte filled in fine pores in the positive electrode. This electrolyte uses dioxolane which is a cyclic ether as a solvent and LiBF 4 which is a lithium salt.
It is a solid electrolyte obtained by polymerizing and curing a liquid containing solute as a solute by a chemical or electrochemical method. here,
The LiBF 4 concentration is 1 mol / liter. Polymerization of the electrolyte was performed after impregnating the pores of the positive electrode with the liquid before polymerization under reduced pressure, and either of the following two methods was performed.

【0027】(1)重合前の前記液体に、酸触媒である
BF3・O(C252を0.1〜1重量%溶解して、直
後にこの溶液を正極に減圧注入する。次いで、この正極
を−10℃で24時間乾燥空気中に放置すると、電解質
が重合硬化して図1記載の複合正極が得られる。
(1) 0.1 to 1% by weight of BF 3 .O (C 2 H 5 ) 2 which is an acid catalyst is dissolved in the liquid before polymerization, and immediately after that, this solution is injected under reduced pressure into the positive electrode. . Next, when this positive electrode is left in dry air at -10 ° C for 24 hours, the electrolyte is polymerized and cured to obtain the composite positive electrode shown in Fig. 1.

【0028】(2)前記液体が注液された正極を作用極
とし、対極にリチウム金属、参照極にLi/Li+を用
いた電気化学セルをセットする。次いで、この正極を5
Vvs.Li/Li+の一定電位で1時間保持すると、
注液された液体が重合硬化して図1記載の正極が得られ
る。
(2) An electrochemical cell using the positive electrode into which the liquid is injected as a working electrode, lithium metal as a counter electrode, and Li / Li + as a reference electrode is set. Then, this positive electrode
Vvs. Holding at a constant potential of Li / Li + for 1 hour,
The injected liquid is polymerized and cured to obtain the positive electrode shown in FIG.

【0029】本実施例では(2)の方法を採用し、複合
正極を作製した。得られた正極を、ポリマー電解質とリ
チウム負極と組み合わせ、図2記載のリチウム・ポリマ
ー二次電池を構成した。図において3は図1で示したポ
リマー電解質複合正極である。
In this example, the method (2) was adopted to produce a composite positive electrode. The obtained positive electrode was combined with a polymer electrolyte and a lithium negative electrode to form a lithium polymer secondary battery shown in FIG. In the figure, 3 is the polymer electrolyte composite positive electrode shown in FIG.

【0030】4はポリマー電解質層である。本電解質
は、紫外線硬化性モノマーと光重合開始剤と非水電解液
を含む液体に紫外線を照射して得たゲル電解質である。
まず、前記液体を3の複合正極上に25〜50μmの厚
さで塗布する。次いで、これに最大出力波長365nm
の紫外線を不活性雰囲気下で3分間照射する。このとき
前記モノマーが重合硬化して、非水電解液を含んだ薄膜
のゲル電解質が得られる。この電解質はポリマー電解質
複合正極3と密着して固体状の半電池となる。ここで非
水電解液にはジオキソランにLiBF4を1モル/リッ
トル溶解したものを用いた。また、紫外線硬化性モノマ
ーにはポリエチレンオキシドジアクリレートを用い、光
重合開始剤にはベンジルジメチルケタールを用いた。こ
こで用いる液体中のポリエチレンオキシドジアクリレー
トの含量は5〜50重量%であり、ベンジルジメチルケ
タールの含量は0.1〜5重量%である。
Reference numeral 4 is a polymer electrolyte layer. The present electrolyte is a gel electrolyte obtained by irradiating a liquid containing an ultraviolet curable monomer, a photopolymerization initiator and a non-aqueous electrolytic solution with ultraviolet rays.
First, the liquid is applied on the composite positive electrode 3 in a thickness of 25 to 50 μm. Then, the maximum output wavelength is 365nm
Irradiate the ultraviolet ray of 3 for 3 minutes in an inert atmosphere. At this time, the monomer is polymerized and hardened to obtain a thin film gel electrolyte containing a non-aqueous electrolyte. This electrolyte comes into close contact with the polymer electrolyte composite positive electrode 3 to form a solid half-cell. The non-aqueous electrolyte used here was a solution of LiBF 4 dissolved in dioxolane at 1 mol / liter. Polyethylene oxide diacrylate was used as the ultraviolet curable monomer, and benzyl dimethyl ketal was used as the photopolymerization initiator. The content of polyethylene oxide diacrylate in the liquid used here is 5 to 50% by weight, and the content of benzyl dimethyl ketal is 0.1 to 5% by weight.

【0031】最後に、この半電池に5の金属リチウム箔
を積層し、リチウム・ポリマー二次電池を構成した。
Finally, a metal lithium foil of 5 was laminated on this half battery to form a lithium polymer secondary battery.

【0032】(実施例2)図1において2のポリマー電
解質には、ジオキソランとエチレンカーボネートとの混
合溶媒に、リチウム塩であるLiBF4を1モル/リッ
トル溶解した液体を化学的あるいは電気化学的手法によ
り重合硬化して得た固体電解質を用いる。
Example 2 In FIG. 1, as the polymer electrolyte 2 shown in FIG. 1, a liquid prepared by dissolving 1 mol / liter of lithium salt LiBF 4 in a mixed solvent of dioxolane and ethylene carbonate was chemically or electrochemically used. A solid electrolyte obtained by polymerization and curing according to is used.

【0033】また図2において4のポリマー電解質層に
含有される非水電解液には、ジオキソランとエチレンカ
ーボネートとの混合溶媒に、LiBF4を1モル/リッ
トル溶解した液体を用いる。
As the non-aqueous electrolyte contained in the polymer electrolyte layer 4 in FIG. 2, a liquid obtained by dissolving LiBF 4 at 1 mol / liter in a mixed solvent of dioxolane and ethylene carbonate is used.

【0034】上記以外の条件は、実施例1と同じであ
る。 (比較例1)正極の製造法において、実施例1、2とは
異なり以下の方法を用いる。まず、活物質であるV6
13+y(0≦y≦0.16)100重量%、導電剤である
アセチレンブラック3重量%、ポリマー電解質であるポ
リエチレンオキシドとLiBF4の錯体7重量%を、ア
セトニトリルに懸濁した液を調整する。次いで、この懸
濁液をアルミニウム箔上に流し、アセトニトリルを蒸発
させ、シート状の複合正極を得る。
The conditions other than the above are the same as those in the first embodiment. (Comparative Example 1) In the method for producing a positive electrode, the following method is used, unlike Examples 1 and 2. First, the active material V 6 O
13 + y (0 ≦ y ≦ 0.16) 100% by weight, conductive agent acetylene black 3% by weight, polymer electrolyte polyethylene oxide and LiBF 4 complex 7% by weight were suspended in acetonitrile to prepare a solution. To do. Next, this suspension is flown on an aluminum foil to evaporate acetonitrile to obtain a sheet-shaped composite positive electrode.

【0035】上記以外の条件は実施例1と同じである。
比較例1および実施例1、2で得られた正極についてそ
の比抵抗と放電容量を(表1)に示す。
The conditions other than the above are the same as those in the first embodiment.
The specific resistance and discharge capacity of the positive electrodes obtained in Comparative Example 1 and Examples 1 and 2 are shown in (Table 1).

【0036】[0036]

【表1】 [Table 1]

【0037】なお、本実施例1、2では、環状エーテル
にジオキソランを用いたが、これはテトラヒドロフラン
であってもよい。
Although dioxolane was used as the cyclic ether in Examples 1 and 2, it may be tetrahydrofuran.

【0038】また、活物質にはV613+y(0≦y≦
0.16)を用いたが、これはLiCoO2、LiNi
2、V25、LiMnO2、LixMn24(0.1<
x<0.5)等の他の活物質であってもよい。
The active material is V 6 O 13 + y (0 ≦ y ≦
0.16) was used, which was LiCoO 2 , LiNi
O 2 , V 2 O 5 , LiMnO 2 , Li x Mn 2 O 4 (0.1 <
Other active materials such as x <0.5) may be used.

【0039】また、導電剤にはアセチレンブラックを用
いたが、これはグラファイト等の他のカーボンあるいは
それらの混合物であってもよい。
Although acetylene black was used as the conductive agent, other carbon such as graphite or a mixture thereof may be used.

【0040】また、紫外線硬化性モノマーにはポリエチ
レンオキシドジアクリレートを用いたが、これはポリエ
チレンオキシドジメタクリレート等の他のモノマーであ
ってもよい。
Although polyethylene oxide diacrylate was used as the ultraviolet curable monomer, it may be another monomer such as polyethylene oxide dimethacrylate.

【0041】また、非水電解液の溶質にはLiBF4
用いたが、これはLiCF3SO3、LiClO4、Li
N(CF3SO22、LiAsF6、LiPF6等の他の
リチウム塩であってもよい。
LiBF 4 was used as the solute of the non-aqueous electrolyte, which was LiCF 3 SO 3 , LiClO 4 , Li.
Other lithium salts such as N (CF 3 SO 2 ) 2 , LiAsF 6 and LiPF 6 may be used.

【0042】また、光重合開始剤にはベンジルジメチル
ケタールを用いたが、これはベンゾインイソプロピルエ
ーテル、ベンゾフェノン、ジメチルアミノアセトフェノ
ン、4,4′−ビス(ジメチルアミノ)ベンゾフェノ
ン、2−クロロチオキサントン、(C652IPF6
(CH32N(C65)N2PF6、(C653SPF6
等の他の開始剤であってもよい。
Benzyl dimethyl ketal was used as the photopolymerization initiator, which was benzoin isopropyl ether, benzophenone, dimethylaminoacetophenone, 4,4'-bis (dimethylamino) benzophenone, 2-chlorothioxanthone, (C 6 H 5 ) 2 IPF 6 ,
(CH 3) 2 N (C 6 H 5) N 2 PF 6, (C 6 H 5) 3 SPF 6
Other initiators such as

【0043】また、負極には金属リチウムを用いたが、
これはリチウムを含む化合物、例えばLi−Alのよう
な合金、あるいはCxLi(リチウム化した炭素あるい
は黒鉛)であってもよい。
Although metallic lithium was used for the negative electrode,
This may be a compound containing lithium, for example, alloys such as Li-Al or C x Li, (lithiated carbon or graphite).

【0044】なお、本実施例ではリチウム・ポリマー二
次電池で説明したが、リチウム・ポリマー一次電池にお
いても同様の効果が得られる。
Although the lithium polymer secondary battery has been described in this embodiment, the same effect can be obtained also in the lithium polymer primary battery.

【0045】[0045]

【発明の効果】以上のように本発明は、ポリマー電解質
を用いるリチウム電池において、環状エーテルをその構
成材料に利用することで、複合正極のインピーダンスの
低減および高容量化を達成し、電池の性能向上に寄与す
るものである。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, in a lithium battery using a polymer electrolyte, by using cyclic ether as a constituent material thereof, the impedance of the composite positive electrode can be reduced and the capacity can be increased, thereby improving the battery performance. It contributes to the improvement.

【図面の簡単な説明】[Brief description of drawings]

【図1】ポリマー電解質複合正極の縦断面図FIG. 1 is a vertical sectional view of a polymer electrolyte composite positive electrode.

【図2】リチウム・ポリマー二次電池の縦断面図FIG. 2 is a vertical cross-sectional view of a lithium polymer secondary battery

【符号の説明】 1 正極 2 ポリマー電解質 3 ポリマー電解質複合正極 4 ポリマー電解質層 5 金属リチウム箔[Explanation of symbols] 1 positive electrode 2 polymer electrolyte 3 polymer electrolyte composite positive electrode 4 polymer electrolyte layer 5 metallic lithium foil

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江田 信夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nobuo Eda 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】正極と負極との間にポリマー電解質層を有
した電池であって、正極は活物質を主成分として成型さ
れていて、その空隙に環状エーテルを含む電解液が含浸
され、重合硬化されてなるリチウム・ポリマー電池。
1. A battery having a polymer electrolyte layer between a positive electrode and a negative electrode, wherein the positive electrode is formed by molding an active material as a main component, and the voids are impregnated with an electrolytic solution containing a cyclic ether to polymerize. A cured lithium polymer battery.
【請求項2】環状エーテルは、ジオキソラン,テトラヒ
ドロフランのうち少なくとも1つを含む請求項1記載の
リチウム・ポリマー電池。
2. The lithium polymer battery according to claim 1, wherein the cyclic ether contains at least one of dioxolane and tetrahydrofuran.
【請求項3】環状エーテルを含む電解液は、電解質塩と
環状エーテル、電解質塩と環状エーテルおよび非プロト
ン性有機溶媒からなる群より選ばれた請求項1記載のリ
チウム・ポリマー電池。
3. The lithium polymer battery according to claim 1, wherein the electrolytic solution containing a cyclic ether is selected from the group consisting of an electrolyte salt and a cyclic ether, an electrolyte salt and a cyclic ether, and an aprotic organic solvent.
【請求項4】正極活物質がV613+y(0≦y≦0.1
6)である請求項1記載のリチウム・ポリマー電池。
4. The positive electrode active material is V 6 O 13 + y (0 ≦ y ≦ 0.1
The lithium polymer battery according to claim 1, which is 6).
【請求項5】正極と負極との間にポリマー電解質層を有
した電池の製造法であって、活物質を主成分として成型
された正極に環状エーテルを含む電解液を含浸させ、そ
の後これを重合硬化せしめてなるリチウム・ポリマー電
池の製造法。
5. A method for producing a battery having a polymer electrolyte layer between a positive electrode and a negative electrode, wherein a positive electrode molded with an active material as a main component is impregnated with an electrolytic solution containing a cyclic ether, and then this is applied. A method for producing a lithium polymer battery that is polymerized and cured.
【請求項6】環状エーテルの重合に化学的手法を用いる
請求項5記載のリチウム・ポリマー電池の製造法。
6. The method for producing a lithium polymer battery according to claim 5, wherein a chemical method is used for polymerizing the cyclic ether.
【請求項7】環状エーテルの重合に酸触媒を使用してカ
チオン重合法を用いる請求項5記載のリチウム・ポリマ
ー電池の製造法。
7. The method for producing a lithium polymer battery according to claim 5, wherein an acid catalyst is used for the polymerization of the cyclic ether, and a cationic polymerization method is used.
【請求項8】環状エーテルの重合に電気化学的手法を用
いる請求項5記載のリチウム・ポリマー電池の製造法。
8. The method for producing a lithium polymer battery according to claim 5, wherein an electrochemical method is used for polymerizing the cyclic ether.
【請求項9】環状エーテルの重合に電解酸化法を用いる
請求項5記載のリチウム・ポリマー電池の製造法。
9. The method for producing a lithium polymer battery according to claim 5, wherein an electrolytic oxidation method is used for polymerizing the cyclic ether.
【請求項10】環状エーテルは、ジオキソラン,テトラ
ヒドロフランのうち少なくとも1つを含む請求項5記載
のリチウム・ポリマー電池の製造法。
10. The method for producing a lithium polymer battery according to claim 5, wherein the cyclic ether contains at least one of dioxolane and tetrahydrofuran.
【請求項11】環状エーテルを含む電解液は、電解質塩
と環状エーテル、電解質塩と環状エーテルおよび非プロ
トン性有機溶媒からなる群から選ばれた請求項5記載の
リチウム・ポリマー電池の製造法。
11. The method for producing a lithium polymer battery according to claim 5, wherein the electrolytic solution containing a cyclic ether is selected from the group consisting of an electrolyte salt and a cyclic ether, an electrolyte salt and a cyclic ether, and an aprotic organic solvent.
【請求項12】正極活物質がV613+y(0≦y≦0.
16)である請求項5記載のリチウム・ポリマー電池の
製造法。
12. The positive electrode active material is V 6 O 13 + y (0 ≦ y ≦ 0.
16) The method for producing a lithium polymer battery according to claim 5.
【請求項13】正極と負極との間にポリマー電解質層を
有した電池であって、正極はV613+y(0≦y≦0.
16)を主成分として成型されていて、その空隙にジオ
キソラン,テトラヒドロフランのうち少なくとも1つを
含む電解液が含浸され、重合硬化されてなるリチウム・
ポリマー電池。
13. A battery having a polymer electrolyte layer between a positive electrode and a negative electrode, wherein the positive electrode is V 6 O 13 + y (0 ≦ y ≦ 0.
16) formed as a main component, the voids of which are impregnated with an electrolytic solution containing at least one of dioxolane and tetrahydrofuran, and polymerization-cured lithium
Polymer battery.
JP7082233A 1995-04-07 1995-04-07 Lithium-polymer battery and its manufacture Pending JPH08287949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7082233A JPH08287949A (en) 1995-04-07 1995-04-07 Lithium-polymer battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7082233A JPH08287949A (en) 1995-04-07 1995-04-07 Lithium-polymer battery and its manufacture

Publications (1)

Publication Number Publication Date
JPH08287949A true JPH08287949A (en) 1996-11-01

Family

ID=13768698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7082233A Pending JPH08287949A (en) 1995-04-07 1995-04-07 Lithium-polymer battery and its manufacture

Country Status (1)

Country Link
JP (1) JPH08287949A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922707A (en) * 1995-07-07 1997-01-21 Yuasa Corp Electrolyte for battery and battery
WO1999038225A1 (en) * 1998-01-27 1999-07-29 Yuasa Corporation Lithium secondary battery of flat type
WO2000001026A1 (en) * 1998-06-26 2000-01-06 Sanyo Electric Co., Ltd. Gelled polymer electrolyte lithium secondary cell
KR100424256B1 (en) * 2001-10-20 2004-03-22 삼성에스디아이 주식회사 Process for preparing an polymer electolyte by electrochemical polymerization and lithium battery employing such process
US8405957B2 (en) 2005-12-08 2013-03-26 Hitachi Maxell, Ltd. Separator for electrochemical device and method for producing the same, and electrochemical device and method for producing the same
JP2015018759A (en) * 2013-07-12 2015-01-29 三菱瓦斯化学株式会社 Polymer electrolyte
JP2015153452A (en) * 2014-02-10 2015-08-24 セイコーエプソン株式会社 Method for manufacturing electrode complex, electrode complex and battery
US9166250B2 (en) 2006-09-07 2015-10-20 Hitachi Maxell, Ltd. Separator for battery, method for manufacturing the same, and lithium secondary battery
US10930975B2 (en) 2016-06-28 2021-02-23 Lg Chem, Ltd. Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same
US11050095B2 (en) 2004-12-08 2021-06-29 Maxell Holdings, Ltd. Separator for electrochemical device, and electrochemical device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922707A (en) * 1995-07-07 1997-01-21 Yuasa Corp Electrolyte for battery and battery
US6444369B1 (en) 1998-01-08 2002-09-03 Sanyo Electric Co., Ltd. Gelled polymer electrolyte lithium secondary cell
WO1999038225A1 (en) * 1998-01-27 1999-07-29 Yuasa Corporation Lithium secondary battery of flat type
WO2000001026A1 (en) * 1998-06-26 2000-01-06 Sanyo Electric Co., Ltd. Gelled polymer electrolyte lithium secondary cell
KR100424256B1 (en) * 2001-10-20 2004-03-22 삼성에스디아이 주식회사 Process for preparing an polymer electolyte by electrochemical polymerization and lithium battery employing such process
US11050095B2 (en) 2004-12-08 2021-06-29 Maxell Holdings, Ltd. Separator for electrochemical device, and electrochemical device
US8405957B2 (en) 2005-12-08 2013-03-26 Hitachi Maxell, Ltd. Separator for electrochemical device and method for producing the same, and electrochemical device and method for producing the same
US9166250B2 (en) 2006-09-07 2015-10-20 Hitachi Maxell, Ltd. Separator for battery, method for manufacturing the same, and lithium secondary battery
JP2015018759A (en) * 2013-07-12 2015-01-29 三菱瓦斯化学株式会社 Polymer electrolyte
JP2015153452A (en) * 2014-02-10 2015-08-24 セイコーエプソン株式会社 Method for manufacturing electrode complex, electrode complex and battery
US10056616B2 (en) 2014-02-10 2018-08-21 Seiko Epson Corporation Manufacturing method of electrode assembly, electrode assembly and battery
US10930975B2 (en) 2016-06-28 2021-02-23 Lg Chem, Ltd. Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same

Similar Documents

Publication Publication Date Title
JP4218183B2 (en) Lithium battery
JP2000188099A (en) Manufacture of thin film type battery
JP2000067852A (en) Lithium secondary battery
JP4210440B2 (en) Gel-like electrolyte and lithium battery using the same
JP4014816B2 (en) Lithium polymer secondary battery
KR100553776B1 (en) Organic electrolytic solution and lithium sulfur battery comprising the same
JP3854382B2 (en) Polymer matrix for forming gelled solid electrolyte, solid electrolyte and battery
JP3394125B2 (en) Non-aqueous electrolyte secondary battery
CA2334240C (en) Lithium secondary battery using gelled polymeric electrolyte
JPH08287949A (en) Lithium-polymer battery and its manufacture
JP4439610B2 (en) Polymer gel electrolyte and lithium secondary battery using the same
JP3312836B2 (en) Non-aqueous electrolyte secondary battery
JP2005085761A (en) Organic electrolytic solution and lithium sulfur battery containing it
JPH0950802A (en) Lithium battery
JPH09185962A (en) Lithium battery
JP2000082496A (en) Lithium secondary battery and its manufacture
KR20190012843A (en) Manufacturing method of secondary battery
JPH10261437A (en) Polymer electrolyte and lithium polymer battery using it
JP3826619B2 (en) Lithium secondary battery using polymer gel electrolyte
JP3363676B2 (en) Solid electrolyte battery and method for manufacturing solid electrolyte battery
JPH1145725A (en) Lithium battery
JPH1166948A (en) High polymer electrolyte and lithium ion secondary battery
JPH05326019A (en) Battery
JP2006261129A (en) Method of manufacturing lithium secondary battery
JP3203093B2 (en) Solid electrolyte battery