JPH08285569A - Manufacture of contact of p measuring apparatus - Google Patents

Manufacture of contact of p measuring apparatus

Info

Publication number
JPH08285569A
JPH08285569A JP11933395A JP11933395A JPH08285569A JP H08285569 A JPH08285569 A JP H08285569A JP 11933395 A JP11933395 A JP 11933395A JP 11933395 A JP11933395 A JP 11933395A JP H08285569 A JPH08285569 A JP H08285569A
Authority
JP
Japan
Prior art keywords
contact
sphere
base body
radius
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11933395A
Other languages
Japanese (ja)
Inventor
Ikuo Shibuya
▲いく▼夫 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanmei Electric Co Ltd
Original Assignee
Sanmei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanmei Electric Co Ltd filed Critical Sanmei Electric Co Ltd
Priority to JP11933395A priority Critical patent/JPH08285569A/en
Publication of JPH08285569A publication Critical patent/JPH08285569A/en
Pending legal-status Critical Current

Links

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE: To obtain a contact utilizable for longer life by a method wherein the tip of a base body is brought into contact with a ball body formed separately to weld with the energization of a contact part of both bodies so that the part contacting an object to be measured is made hard to wear. CONSTITUTION: A ball body 20 is mounted on a base body 19 in such a manner that an external surface part 25b, an internal surface part 25c and a front part 25d out of the outer circumferential surface 25 of the ball body 20 are exposed continuously from the base body 19. In its manufacture, firstly a protruded part 86 is formed to concentrate current on the center part of the tip 19a of the base body 19 in welding. On the other hand, the ball body 20 is prepared which is formed separately from the base body 19. The base body 19 and the ball body 20 are held so as to axially align and then, the tip 19a of the base body 19 is brought in contact with the ball body 19. Under such a holding condition, the contact part 95 between the base body 19 and the ball body 20 is energized from an energization circuit 90 for welding to weld at a connection part of the both.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は曲がり部の曲率半径の測
定の為に用いるR測定器において、被測定物に当接させ
る接触子を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a contact for abutting against an object to be measured in an R measuring device used for measuring the radius of curvature of a curved portion.

【0002】[0002]

【従来の技術】ケースから夫々先端を被測定物の曲がり
部に当接させる為の二つの接触子(ジョウとも呼ばれ
る)を突設させると共に、上記ケースに対しては、先端
を上記曲がり部に当接させる為の測定子(スピンドルと
も呼ばれる)を、両接触子の中間位置において進退自在
に備えさせる。更に上記ケースには、上記接触子に対す
る測定子の変位を検出してそれに応じた電気信号を出力
する検出部と、検出部からの信号に基づいて上記曲がり
部の曲率半径を演算する演算部と、演算部によって得ら
れた曲率半径の値を表示する表示部とを備えさせてい
る。図17に示すように上記接触子71の先端71a及び測
定子72の先端72aを被測定物73の曲がり部74に宛がう
と、測定子は接触子に対して上記曲がり部74の曲率半径
Rの大きさに応じた変位をし、上記検出部はその変位H
を検出する。上記演算部には該測定器において固有の間
隔L(接触子71の先端と測定子72の先端との間隔)の値
に基づいた演算式が設定されている。従って演算部はそ
の演算式を用いて、上記変位Hの値から曲がり部74の曲
率半径を演算する。そしてその結果を表示部が表示する
(例えば実開昭57−182105号公報参照)。
2. Description of the Related Art Two contactors (also called jaws) for abutting a tip of a case on a curved portion of a measured object are projected from a case. A contact point (also referred to as a spindle) for abutting is provided so as to be movable back and forth at an intermediate position between the contact points. Further, in the case, a detection unit that detects the displacement of the probe with respect to the contact and outputs an electric signal corresponding to the displacement, and an operation unit that calculates the radius of curvature of the curved portion based on the signal from the detector. And a display unit that displays the value of the radius of curvature obtained by the calculation unit. As shown in FIG. 17, when the tip 71a of the contact piece 71 and the tip 72a of the contact piece 72 are applied to the curved portion 74 of the object 73 to be measured, the contact point of the contact piece is measured by the measuring element. Is displaced according to the magnitude of the
To detect. An arithmetic expression based on the value of the interval L (distance between the tip of the contact 71 and the tip of the probe 72) peculiar to the measuring device is set in the computing unit. Therefore, the calculation unit calculates the radius of curvature of the bending portion 74 from the value of the displacement H using the calculation formula. The result is displayed on the display unit (see, for example, Japanese Utility Model Laid-Open No. 57-182105).

【0003】上記R測定器にあっては、接触子及び測定
子の先端を曲がり部に宛がうだけで極めて簡単にしかも
迅速に曲率半径の測定を行いうる特長がある。
The R measuring instrument is characterized in that the radius of curvature can be measured very simply and quickly by merely applying the tips of the contact and the measuring element to the curved portion.

【0004】しかし上記従来のR測定器では、上記固有
の間隔Lに基づいた上記の演算式によって正しい曲率半
径の値が求まるよう、接触子の先端71aを尖らせて常に
その先端71aの一箇所のみが被測定物73に当たるように
してある。この為、使用回数の割に該先端71aが磨耗し
て短くなっていく度合いが大きい性質がある。このよう
な磨耗の結果、上記従来のR測定器は比較的短い期間の
使用で測定精度が劣化してくる問題点があった。即ち接
触子71の先端71aに符号77で示す磨耗が生じて符号78の
ような寸法減少が生ずると、図18に示すように、接触
子71は図17に示す当初の点から横にずれた符号75で示
す点が曲がり部74に当たるようになる。その結果、その
点75と測定子の先端72aが当たった点76との間隔L’
は、上記固有の間隔Lとは相違してしまう。すると上記
検出部に得られる変位Hは上記実際に当接した点75,76
の間隔L’に関連した値であるにも拘わらず、演算部は
上記変位Hと上記固有の間隔Lに基づいた演算式で演算
を行う為、得られた曲率半径の値には誤差が多く含まれ
精度が低下してしまう問題点があった。
However, in the conventional R measuring instrument, the tip 71a of the contactor is sharpened so that the correct value of the radius of curvature can be obtained by the above-mentioned arithmetic expression based on the peculiar interval L, and one point of the tip 71a is always provided. Only the object 73 to be measured hits. For this reason, there is a property that the tip 71a is worn and shortened for a large number of times of use. As a result of such wear, there is a problem that the above-mentioned conventional R measuring device deteriorates the measurement accuracy after being used for a relatively short period. That is, when the tip 71a of the contact 71 is worn as indicated by reference numeral 77 and the dimension is decreased by reference numeral 78, the contact 71 is laterally displaced from the initial point shown in FIG. 17, as shown in FIG. The point indicated by reference numeral 75 comes into contact with the bent portion 74. As a result, the distance L'between the point 75 and the point 76 where the tip 72a of the contact point hits
Is different from the unique interval L. Then, the displacement H obtained at the above-mentioned detecting portion is the point 75, 76 at which the above-mentioned actual contact occurs.
Despite the value related to the interval L'of the calculation unit, the calculation unit performs the calculation with the calculation formula based on the displacement H and the specific interval L. Therefore, there are many errors in the value of the obtained radius of curvature. There was a problem in that the accuracy was reduced due to the inclusion.

【0005】次に本願実施例の図1〜図9に示すR測定
器は上記従来技術の問題点(技術的課題)を解決する為
に提供するものである。その目的は、曲率半径を測定し
たい被測定物の曲がり部に接触子及び測定子を宛がうだ
けで、極めて簡単且つ迅速にその曲がり部の曲率半径を
測定できるR測定器を提供することである。他の目的
は、被測定物において曲率半径の大きい曲がり部に宛が
った場合と曲率半径の小さい曲がり部に宛がった場合と
では、上記接触子において夫々異なる部位が曲がり部に
当接するようにして、その結果、使用回数の割に、上記
接触子の各箇所の夫々の磨耗の度合いが小さくなるよう
にしたR測定器を提供することである。他の目的は、上
記のように接触子の各箇所の磨耗が小さくなるようにす
ることにより、長寿命に利用できるようにしたR測定器
を提供することである。他の目的は、上記のように曲が
り部の曲率半径の大小に応じR測定器の接触子が異なる
部位において曲がり部に当接しても、常に正確な曲率半
径を算出できるようにしたR測定器を提供することであ
る。他の目的は、上記曲率半径の演算の容易化が可能な
電気信号を得ることのできる変位センサを備えたR測定
器を提供することである。他の目的は、小から大まで広
い範囲の曲率半径の測定が可能なR測定器を提供するこ
とである。他の目的は、演算部での曲率半径の演算の基
準となる寸法即ち前記接触子と測定子との間隔の測定が
容易な構造のR測定器を提供することである。上記図1
〜図9の実施例の作用は次の通りである。測定子と二つ
の接触子とを曲がり部に当接させると、測定子は接触子
に対して曲がり部の曲率半径の大きさに応じた変位をす
る。その変位は変位センサが検出し、その出力信号に基
づき演算部は上記曲がり部の曲率半径を演算し、表示部
が演算により得られた曲率半径の値を表示する。接触子
における球体が曲がり部に当接する場合、曲がり部の曲
率半径が異なると、各々の場合において球体は異なる部
位が曲がり部に当接する。従ってR測定器の使用回数の
割に、接触子における球体の各箇所は何れも曲がり部に
当たる頻度が少なく、磨耗の度合いが小さい。このこと
はR測定器の寿命を長くする。曲がり部の曲率半径の大
きさに応じて曲がり部の表面に対する球体の当接部位が
相違しても、演算部では、演算の基準となる接触子と測
定子の間隔に対して、上記球体の円弧面の半径による補
正を加えて曲率半径の演算を行うので、正確な曲率半径
の値を得ることができる。
Next, the R measuring device shown in FIGS. 1 to 9 of the embodiment of the present application is provided to solve the above-mentioned problems (technical problems) of the prior art. An object of the present invention is to provide an R-measuring instrument that can measure the radius of curvature of a curved portion extremely simply and quickly by simply placing a contact and a probe on the curved portion of an object to be measured whose radius of curvature is to be measured. is there. Another purpose is to contact different curved portions of the contact with the curved portion having a large radius of curvature and the curved portion having a small radius of curvature in the object to be measured. In this way, as a result, an R measuring device is provided in which the degree of wear of each part of the contact is reduced for the number of times of use. Another object of the present invention is to provide an R measuring device which can be used for a long life by reducing the wear of each part of the contact as described above. Another object of the present invention is to make it possible to always calculate an accurate radius of curvature even when the contact of the R measuring device contacts the curved portion at different portions depending on the size of the radius of curvature of the curved portion as described above. Is to provide. Another object is to provide an R measuring device equipped with a displacement sensor capable of obtaining an electric signal capable of facilitating the calculation of the radius of curvature. Another object is to provide an R measuring instrument capable of measuring a wide range of radii of curvature from small to large. Another object of the present invention is to provide an R measuring device having a structure in which it is easy to measure a dimension serving as a reference for calculation of a radius of curvature in a calculation unit, that is, a distance between the contact and the measuring element. Figure 1 above
The operation of the embodiment of FIG. 9 is as follows. When the measuring element and the two contact elements are brought into contact with the curved portion, the measuring element is displaced with respect to the contact element according to the size of the radius of curvature of the curved portion. The displacement is detected by the displacement sensor, the calculation unit calculates the radius of curvature of the curved portion based on the output signal, and the display unit displays the value of the radius of curvature obtained by the calculation. When the sphere of the contactor comes into contact with the bend, if the radii of curvature of the bends are different, different parts of the sphere come into contact with the bend in each case. Therefore, in comparison with the number of times the R measuring device has been used, each portion of the spherical body of the contact has a low frequency of hitting the bent portion, and the degree of wear is small. This prolongs the life of the R meter. Even if the contact portion of the sphere with respect to the surface of the curved portion differs depending on the radius of curvature of the curved portion, in the calculation unit, with respect to the distance between the contact and the measuring element which is the reference of calculation, Since the radius of curvature is calculated by adding the correction based on the radius of the arc surface, an accurate value of the radius of curvature can be obtained.

【0006】[0006]

【発明が解決しようとする課題】しかし上記図1〜図9
に示す実施例の接触子は、基体19の先端に付設する球体
20を、該球体20において曲率半径の測定に使用する外側
面部25b、内側面部25c、前面部25dが連続して基体19
から露出する状態にする構造が後に詳しく説明するよう
に複雑であり、又その付設作業の工程中に、球体におい
て上記測定のための部分を傷つけたり変形させたりする
危険が高く、従ってその製造が非常に面倒で難しいとい
う問題点があった。
However, the above-mentioned FIGS.
The contactor of the embodiment shown in FIG.
The outer surface portion 25b, the inner surface portion 25c, and the front surface portion 25d used for measuring the radius of curvature of the sphere 20 are continuously connected to the base 19
Since the structure for exposing from above is complicated as will be described later in detail, and there is a high risk of damaging or deforming the portion for measurement in the sphere during the process of its attachment work, and therefore its manufacture is difficult. There was a problem that it was very troublesome and difficult.

【0007】本願発明のR測定器の接触子の製造方法は
上記図1〜図9に示される実施例の問題点(技術的課
題)を解決する為に提供するものである。第1の目的
は、被測定物に当接させる部分を球体で構成することに
より、その部分の磨耗を生じ難くして、長寿命に利用出
来ようにした接触子を製造する方法を提供することであ
る。第2の目的は、被測定物に当接させる部分を球体で
構成することにより、大きい曲率半径の測定を行う場合
と小さい曲率半径の測定を行う場合とでは被測定物に対
する球体表面の接触部位が相違して球体の局部的な磨耗
を生じ難くし、その結果長寿命に利用出来るようにした
接触子を製造する方法を提供することである。第3の目
的は、上記のように球体を用いた接触子であっても、基
体に対して球体を簡易な手段でもって、しかも球体にお
いて曲率半径の測定に使用する半球を傷つけたりするこ
となく付設することが出来るようにすることである。本
発明の他の目的は、種々の測定器において被測定物に当
接させるために用いられる接触子を製造する方法を提供
することである。他の目的及び利点は図面及びそれに関
連した以下の説明により容易に明らかになるであろう。
The method of manufacturing the contact of the R measuring device of the present invention is provided to solve the problems (technical problems) of the embodiments shown in FIGS. A first object of the present invention is to provide a method of manufacturing a contactor, which is configured so that a portion to be brought into contact with an object to be measured is formed of a spherical body, so that the portion is less likely to be worn and can be used for a long life. Is. The second purpose is to make a portion contacting the object to be measured with a sphere, so that a contact portion on the surface of the sphere with respect to the object to be measured is measured when a large radius of curvature is measured and when a small radius of curvature is measured. However, the object of the present invention is to provide a method for manufacturing a contactor which is unlikely to cause local wear of a sphere, and as a result can be used for a long life. A third object is to use a spherical body as described above, even if the spherical body is used as a simple means for the base body, without damaging the hemisphere used for measuring the radius of curvature of the spherical body. It is to be able to attach it. Another object of the present invention is to provide a method of manufacturing a contactor used for abutting an object to be measured in various measuring instruments. Other objects and advantages will be readily apparent from the drawings and the following description related thereto.

【0008】[0008]

【課題を解決するための手段】上記目的を達成する為
に、本願発明におけるR測定器の接触子の製造方法は、
後端部がR測定器のベースへの止着部となっている基体
の先端に、被測定物に当接させる為の球体を付設した接
触子を製造するに当たっては、基体の先端と、別体に形
成された球体とを接触させ、その両者の接触部を通して
基体と球体間において通電して、両者をその接触部にお
いて溶接するものである。
In order to achieve the above object, a method of manufacturing a contact of an R measuring device according to the present invention comprises:
When manufacturing a contactor in which a sphere for contacting an object to be measured is attached to the front end of the base body whose rear end portion is a fixing portion to the base of the R measuring device, separate from the front end of the base body. The spheres formed on the body are brought into contact with each other, and electric current is applied between the base body and the spheres through the contact portions between the two to weld them at the contact portions.

【0009】[0009]

【作用】基体の先端とそれとは別体に形成した球体とを
接触させる。その両者の接触部を通して基体と球体間に
おいて通電すると、その接触部が発熱し溶融する。通電
を停止するとその溶融部分が固化し基体と球体とが一体
化する。
Function: The tip of the substrate is brought into contact with a sphere formed separately therefrom. When electricity is applied between the base body and the sphere through the contact portions of both, the contact portions generate heat and melt. When the energization is stopped, the molten portion is solidified and the base body and the sphere are integrated.

【0010】[0010]

【実施例】以下本願の実施例を示す図面について説明す
る。先ず図1〜図9に示す実施例について説明する。図
1にはR測定器の一例として、手に持って被測定物の曲
がり部に宛がうようにした検出器1と、検出器1からの
信号を受けて曲率半径を演算し結果を表示するようにし
た演算表示装置2とを備えて、両者を接続コード3で接
続した構成のものを例示するが、検出器1に演算表示装
置2の機能を内蔵させたものであっても良い。上記検出
器1は手によって握り易い大きさ例えば直径1.6cm
程度、長さ10cm程度のペン型に形成してある。以下
該検出器1について説明する。4は種々の部材を収容す
る為のケース、5は被測定物の曲がり部の曲がり状態の
機械的な検出を行う為にケースの先端部分に備えさせた
検出ヘッド、6は検出ヘッドで検出した曲がり状態の機
械的なデータを電気信号のデータに変換する為の変位セ
ンサを夫々示す。上記ケース4を説明する。8はケース
の本体を成す外筒で、内蔵のセンサ6を電磁気的にシー
ルドする為に金属材料で形成してある。9は後述のコア
及びばねを収容すると共にばねの後端を受る為の部材
で、外筒8に固定されている。10は金属製のニップル、
11は金属製のキャップ、12は例えばゴム製のパッキンを
示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. First, the embodiment shown in FIGS. 1 to 9 will be described. As an example of the R measuring device, FIG. 1 shows a detector 1 which is held in a hand so as to be directed to a curved portion of an object to be measured, and a radius of curvature is calculated by receiving a signal from the detector 1 and the result is displayed. An example of a configuration in which the arithmetic display device 2 configured as described above is provided and the two are connected by the connection cord 3 is illustrated. However, the detector 1 may have the function of the arithmetic display device 2 built therein. The detector 1 has a size that can be easily gripped by a hand, for example, a diameter of 1.6 cm.
The pen shape is about 10 cm long. The detector 1 will be described below. Reference numeral 4 is a case for accommodating various members, 5 is a detection head provided at the tip of the case for mechanically detecting the bending state of the bent portion of the measured object, and 6 is a detection head. Displacement sensors for converting mechanical data in a bent state into electrical signal data are shown respectively. Case 4 will be described. Reference numeral 8 denotes an outer cylinder forming the main body of the case, which is made of a metal material for electromagnetically shielding the built-in sensor 6. Reference numeral 9 denotes a member for accommodating a core and a spring, which will be described later, and for receiving a rear end of the spring, which is fixed to the outer cylinder 8. 10 is a metal nipple,
Reference numeral 11 denotes a metal cap, and 12 denotes a rubber packing, for example.

【0011】次に上記検出ヘッド5を説明する。15はヘ
ッド5のベースを成す為のボディで、ねじ連結部16にお
いて上記外筒8に着脱自在に螺着してある。該ボディ15
は金属材料で形成され、測定子を進退自在に保持する為
の透孔17が形成してある。18,18は被測定物の曲がり部
に宛がう為の接触子を示す。上記両接触子18は曲率半径
の小さい凹形状或いは凸形状の曲がり部に対しても支障
無く宛がえるようにする為にボディ15から基体19を突設
させ、その先端に球体20を取付けて構成してある。18a
は接触子18において被測定物に当接させる為の当部を示
す。上記球体20は、被測定物の硬度が低くてもそれの表
面に対するめり込みを少なくする目的、その表面を傷つ
けることを少なくする目的、円弧面の当部18aを得る目
的、及び後述の演算における補正を容易化する目的の為
に用いるものであり、高い耐磨耗性を得る為に鋼球を用
いている。同様の目的でセラミックボールを用いても良
い。
Next, the detection head 5 will be described. Reference numeral 15 denotes a body for forming a base of the head 5, which is detachably screwed to the outer cylinder 8 at a screw connecting portion 16. The body 15
Is made of a metal material, and has a through hole 17 for holding the probe in a retractable manner. Reference numerals 18 and 18 indicate contacts for bending the measured object. Both of the contacts 18 are provided with a base body 19 projecting from the body 15 in order to address the concave or convex curved portion having a small radius of curvature without any trouble, and the spherical body 20 is attached to the tip thereof. Configured. 18a
Shows a portion of the contact 18 for contacting the object to be measured. The sphere 20 has a purpose of reducing the penetration of the surface of the object to be measured even if the hardness of the object to be measured is low, a purpose of reducing the damage to the surface, a purpose of obtaining the contact portion 18a of an arc surface, and a correction in the calculation described later. It is used for the purpose of facilitating abrasion resistance, and steel balls are used to obtain high wear resistance. Ceramic balls may be used for the same purpose.

【0012】上記両接触子18,18における各当部18a
は、曲率半径の大きい凸形状の曲がり部に対しても又小
さい凸形状の曲がり部に対しても当接させ得るようにす
る為に、夫々の前面側から相互に対向する側まで連続さ
せてある。又曲率半径の大きい凹形状の曲がり部に対し
ても又小さい凹形状の曲がり部に対しても当接させ得る
ようにする為に、夫々の前面側から相互に反対となる側
まで連続させてある。このような状態を達成するため
に、上記基体19に対する球体20の取付は、図2に示すよ
うに球体20の外周面25の内の外側面部25b、内側面部25
c及び前面部25dが基体19から連続して露出する状態に
取付けてある。
The corresponding portion 18a of each of the contacts 18, 18
In order to make it possible to contact both the convex curved part with a large radius of curvature and the convex curved part with a small radius of curvature, make it continuous from the front side to the side facing each other. is there. Further, in order to be able to contact both the concave curved portion having a large radius of curvature and the concave curved portion having a small radius of curvature, the front surface side of each is continuously connected to the opposite side. is there. In order to achieve such a state, the spherical body 20 is attached to the base body 19 as shown in FIG. 2 in which the outer side surface portion 25b and the inner side surface portion 25 of the outer peripheral surface 25 of the spherical body 20 are attached.
It is mounted so that c and the front surface portion 25d are continuously exposed from the base body 19.

【0013】上記取付の構成は、図4に示すように基体
19の先端に球体20を両横から保持する為の取付脚21,21
を備えさせ、それらの間が球体保持用の凹部22となるよ
うにする。上記の取付脚21は図2の如く正面から見た球
体20の外周面25の外郭線よりも外側面部25b、内側面部
25c及び前面部25dの側において小さくなるように形成
して、凹部22に存置させた球体20の外周面25の内の後面
部25aが凹部22の底側に隠れ、両側部25f,25fが取付
脚21の内側に隠れ、それ以外の外側面部25b、内側面部
25c及び前面部25dが、両取付脚21相互間の露出用窓23
から露出する状態となるようにする。その状態において
取付脚21の一部24をかしめて球体20を固定してある。尚
上記外周面25において前面部、後面部、外及び内側面部
とは、検出器1を宛がう方向の側(図1、2における下
方)を前面部、その反対側を後面部と呼び、検出器1の
軸芯の側を内側面部、その反対側を外側面部と呼ぶ。
As shown in FIG. 4, the mounting structure is such that
Mounting legs 21, 21 for holding the sphere 20 from both sides at the tip of 19
Are provided so that a sphere holding recess 22 is provided between them. As shown in FIG. 2, the above-mentioned mounting leg 21 has an outer side surface portion 25b and an inner side surface portion which are outside the outline of the outer peripheral surface 25 of the sphere 20 as viewed from the front.
The rear surface portion 25a of the outer peripheral surface 25 of the sphere 20 which is formed in the recess 22 is hidden on the bottom side of the recess 22 so that both side portions 25f, 25f are attached. Hiding inside the leg 21, the other outer side surface portion 25b, inner side surface portion
25c and the front part 25d are exposed windows 23 between both mounting legs 21
To be exposed from. In this state, the sphere 20 is fixed by caulking a part 24 of the mounting leg 21. In the outer peripheral surface 25, the front surface portion, the rear surface portion, and the outer and inner side surface portions are referred to as the front surface portion on the side facing the detector 1 (downward in FIGS. 1 and 2) and the rear surface portion on the opposite side, The side of the axis of the detector 1 is called the inner side surface portion, and the opposite side is called the outer side surface portion.

【0014】次に図1において、27は上記両接触子18の
中間位置において進退自在に備えさせた測定子で、上記
透孔17に進退自在に挿通している。該測定子27は先端部
に被測定物の曲がり部に当接させる為の当接部28を備え
ている。本例では測定子27と当接部28とは一体に形成し
てある。しかし当接部28は測定子27とは別体形成のもの
を測定子27に止着させても良い。当接部28は耐磨耗性の
高い材料例えば鋼材で形成するのがよい。当接部28の前
面は被測定物における凸形状の曲がり部のみでなく凹形
状の曲がり部の測定も行い得るようにする為に凸型例え
ば球面に形成してある。その目的は、被測定物の表面に
対するめり込みを少なくし且つその表面を傷つけること
を少なくする為と、常に前面の中心28aにおいて被測定
物に当接させる為である。29,30は測定子27の進退の範
囲を制限する為のストッパで、測定子27の周囲に止着し
てあり、透孔17の孔縁に当接して上記制限機能を果たす
ようにしてある。上記検出ヘッド5における球体20と当
接部28との関係は、当接部28の前面の中心28aが、両球
体20の球心相互を結ぶ仮想的な直線の中点を通って、そ
の直線に対し垂直な方向に進退するようになっている。
In FIG. 1, reference numeral 27 is a probe that is provided at the intermediate position between the two contacts 18 so as to be movable back and forth, and is inserted into the through hole 17 so as to be movable back and forth. The probe 27 is provided with an abutting portion 28 for abutting the curved portion of the object to be measured at the tip. In this example, the probe 27 and the contact portion 28 are integrally formed. However, the contact portion 28 formed separately from the probe 27 may be fixed to the probe 27. The contact portion 28 is preferably made of a material having high wear resistance, such as steel. The front surface of the contact portion 28 is formed in a convex shape, for example, a spherical surface so that not only the convex curved portion of the object to be measured but also the concave curved portion can be measured. The purpose is to reduce the penetration of the surface of the object to be measured and the damage to the surface, and to always contact the object to be measured at the center 28a of the front surface. Reference numerals 29 and 30 denote stoppers for limiting the range of advance / retreat of the probe 27, which are fixed around the probe 27 and abut the edge of the through hole 17 so as to perform the above-mentioned limiting function. . The relationship between the sphere 20 and the contact portion 28 in the detection head 5 is that the center 28a of the front surface of the contact portion 28 passes through the midpoint of an imaginary straight line connecting the sphere centers of the two spheres 20 to each other. It is designed to move back and forth in a direction perpendicular to.

【0015】次に上記変位センサ6としては当接部28の
大きな範囲の進退(例えば10mm程度の進退)を直線
性良く電気信号に変換できるように差動トランスが用い
てある。該差動トランスは周知の構成のもので、32はコ
イルボビン、33,34,35はコイル、36はそれらのコイル
のリード線、37はコイルに周設した磁性材料製のヨー
ク、38は磁性材料(例えばパーマロイ)製の進退自在の
コアである。39はコア38を常に測定子27に当接状態に保
つ為と、測定子27を前方に押して、測定中は当接部28を
常に被測定物に接触させる為と、非測定中においてはそ
れを初期位置(最も前方に出た位置)に戻す為のばねで
ある。次に上記接続コード3は例えばキャプタイヤコー
ドが用いられ、その一端はケース4内の接続空間40にお
いて上記リード線36と接続させてあり、他端は演算表示
装置2において次に述べる回路と接続させてある。
Next, as the displacement sensor 6, a differential transformer is used so that a large range of advance / retreat of the contact portion 28 (for example, about 10 mm) can be converted into an electric signal with good linearity. The differential transformer has a well-known structure, 32 is a coil bobbin, 33, 34 and 35 are coils, 36 is a lead wire of those coils, 37 is a yoke made of a magnetic material provided around the coil, and 38 is a magnetic material. It is a core made of (for example, Permalloy) that can move back and forth. 39 keeps the core 38 in contact with the probe 27 at all times, pushes the probe 27 forward, and keeps the contact portion 28 in contact with the object to be measured during measurement. Is a spring for returning to the initial position (the position at the most forward position). Next, for example, a cap tire cord is used as the connection cord 3, one end of which is connected to the lead wire 36 in the connection space 40 in the case 4, and the other end is connected to the circuit described below in the arithmetic display device 2. There is.

【0016】次に演算表示装置2に備えられた回路をブ
ロックで示す図6について説明する。曲率半径を演算す
る為の演算部41は符号42〜46で示されるブロックで構成
される。各ブロックは何れも周知のもので、42は差動ト
ランス用検出アンプ、43はA/Dコンバータ、44はCP
U、45はROMで、制御プログラム、計算パラメータで
ある寸法L及び寸法R0の値、及び曲率半径を演算する
ための演算式であるR=(L2+H2−2H・R0)/2
HとR=(L2+H2+2H・R0)/2Hが収納してあ
る。尚図8の(A)に示すように、上記Lは球体20の球
心と当接部28の前端の中心28aの進退経路との間の距離
(両球体20の球心相互間の距離の2分の1であって例え
ば2mm)、R0は球体20の半径(例えば0.8m
m)、Hは球体20の前端に対する当接部28の前端の中心
28aの変位(図において上方をプラス、下方をマイナス
とする)、Rは測定しようとする曲がり部の曲率半径
(凸形状の曲がり部の場合はプラス、凹形状の曲がり部
の場合はマイナスとする)を夫々示す。46はRAMであ
る。次に47は演算された曲率半径を表示するための表示
部として例示する表示器で、例えば液晶表示器である
が、発光ダイオードを用いた表示器であっても良い。該
表示器47は図1のように演算表示装置2の表示用の窓48
に外部から見ることが出来るように備えてある。尚演算
表示装置2は上記部材の他に周知の電源回路、電源スイ
ッチ等を備える。
Next, FIG. 6 showing a block diagram of a circuit provided in the arithmetic display unit 2 will be described. The calculation unit 41 for calculating the radius of curvature is composed of blocks indicated by reference numerals 42 to 46. Each block is well known, 42 is a detection amplifier for differential transformer, 43 is an A / D converter, 44 is CP
U and 45 are ROMs, which are arithmetic expressions for calculating the control program, the values of the dimension L and the dimension R 0 which are calculation parameters, and the radius of curvature R = (L 2 + H 2 −2H · R 0 ) / 2
H and R = (L 2 + H 2 + 2H · R 0 ) / 2H are stored. As shown in FIG. 8A, L is the distance between the ball center of the sphere 20 and the forward / backward path of the center 28a of the front end of the contact portion 28 (the distance between the ball centers of the two spheres 20). 1/2, for example 2 mm, R 0 is the radius of the sphere 20 (for example 0.8 m)
m), H is the center of the front end of the contact portion 28 with respect to the front end of the sphere 20
Displacement of 28a (upward in the figure is positive, downward is negative), R is the radius of curvature of the curved portion to be measured (plus in the case of a convex curved portion, negative in the case of a concave curved portion) ) Are shown respectively. 46 is a RAM. Next, 47 is a display device exemplified as a display unit for displaying the calculated radius of curvature, for example, a liquid crystal display device, but a display device using a light emitting diode may be used. As shown in FIG. 1, the display 47 has a display window 48 of the arithmetic and display unit 2.
It is prepared so that it can be seen from the outside. The arithmetic display device 2 includes a well-known power supply circuit, a power supply switch, and the like in addition to the above members.

【0017】上記構成のR測定器は、メーカでの製造の
場合、先ず組立を行い、次にその組み立てたR測定器の
各々についてROM45に上記種々のデータを記録させて
製品となる。この場合、上記寸法R0は球体20として用
いた球体の半径の値を上記ROM45にインプットする。
又寸法Lの値は、左右の球体20,20における外側面部25
b相互間の寸法又は内側面部25c相互間の寸法をマイク
ロメータその他の測定器で測定し、その値を2分の1
し、更に上記球体の半径寸法R0を差し引いて又は加え
て上記寸法Lを求め、その値を上記ROM45にインプッ
トする。尚上記外側面部25b相互間の寸法又は内側面部
25c相互間の寸法の測定の場合、それらの部分は窓23に
露出している為、測定は容易である。
In the case of manufacture by the manufacturer, the R measuring device having the above-described structure is first assembled, and then various kinds of data are recorded in the ROM 45 for each of the assembled R measuring devices to become a product. In this case, as the size R 0 , the value of the radius of the sphere used as the sphere 20 is input to the ROM 45.
Further, the value of the dimension L is the outer surface portion 25 of the left and right spheres 20, 20.
b Measure the dimension between each other or the dimension between the inside surface parts 25c with a micrometer or other measuring device, and halve the value.
Then, the radius dimension R 0 of the sphere is subtracted or added to obtain the dimension L, and the value is input to the ROM 45. In addition, the dimension between the outer side surface portions 25b or the inner side surface portion
In the case of measuring the dimension between 25c, the measurement is easy because those parts are exposed to the window 23.

【0018】上記構成のR測定器の使用法を説明する。
電源スイッチを投入して回路を動作状態にする。この状
態において手に持った検出器1における左右の球体20及
び中央の当接部28を例えば図8の(A)に示すように被
測定物50において曲率半径を測定しようとする曲がり部
51に当接させる。すると演算表示装置2の表示器47にそ
の曲がり部51の曲率半径が表示される。
A method of using the R measuring device having the above structure will be described.
Turn on the power switch to activate the circuit. In this state, the left and right spheres 20 and the central abutting portion 28 of the detector 1 held by the hand are bent portions for measuring the radius of curvature of the DUT 50 as shown in FIG. 8A, for example.
Abut on 51. Then, the radius of curvature of the bent portion 51 is displayed on the display 47 of the arithmetic display device 2.

【0019】上記の場合のR測定器の動作を説明する。
上記当接により、接触子18に対して測定子27が上記曲が
り部51の半径Rの大小に応じた位置まで変位し、差動ト
ランス6のコア38が対応位置に至り、差動トランス6の
コイルは対応した大きさの信号(交流信号)を出力す
る。上記信号は接続コード3を経て演算表示装置2に与
えられる。演算表示装置2においては、差動トランス用
検出アンプ42が上記信号を直流に変換して出力し、A/
Dコンバータ43がその出力(アナログ信号)をデジタル
信号に変換する。CPU44はそのデジタル信号を受けて
図7に示されるフローチャートの動作を行う。その動作
の結果、表示器47に上記曲がり部51の曲率半径Rが表示
される。
The operation of the R measuring device in the above case will be described.
Due to the contact, the probe 27 is displaced with respect to the contact 18 to a position corresponding to the size of the radius R of the bent portion 51, the core 38 of the differential transformer 6 reaches a corresponding position, and the differential transformer 6 The coil outputs a signal (AC signal) of a corresponding magnitude. The above signal is given to the arithmetic and display unit 2 via the connection cord 3. In the arithmetic display device 2, the differential transformer detection amplifier 42 converts the signal into a direct current and outputs the direct current.
The D converter 43 converts the output (analog signal) into a digital signal. The CPU 44 receives the digital signal and performs the operation of the flowchart shown in FIG. As a result of the operation, the radius of curvature R of the bent portion 51 is displayed on the display 47.

【0020】次に上記CPU44の動作を図7のフローチ
ャートに基づき説明する。ステップS1においてA/D
コンバータ43からの信号を基に当接部28の変位Hのデー
タを読み込む。次にステップS2において上記変位Hが
正か否かを判別する。正の場合、ステップS3において
RAM46に設定する符号レジスタに、上記曲がり部51が
凸形状であることを区分する為の「1」を記録する。然
る後ステップS4において図示の演算式に基づき半径R
を演算する。この場合、「−2H・R0」の項が間隔L
に対する補正項として機能する。従って、円弧状の当部
18aのどの箇所が曲がり部に当接していても正確な演算
が行われる。次にステップS11において上記演算され
た半径Rのデータを表示器47に出力しその数値を表示さ
せる。更にステップS12において符号レジスタの記録
が「1」か否かを判別し、この場合はそれが「1」であ
るのでステップS13において表示器47における「−」
の符号の表示を消す。その後再びステップS1以降を繰
り返す。
Next, the operation of the CPU 44 will be described with reference to the flowchart of FIG. A / D in step S1
The data of the displacement H of the contact portion 28 is read based on the signal from the converter 43. Next, in step S2, it is determined whether or not the displacement H is positive. If the result is positive, "1" for discriminating that the bent portion 51 has a convex shape is recorded in the code register set in the RAM 46 in step S3. Then, in step S4, the radius R
Is calculated. In this case, the term “−2H · R 0 ” is the interval L
Functions as a correction term for. Therefore, the arc-shaped part
Accurate calculation is performed regardless of which part of 18a is in contact with the bent portion. Next, in step S11, the data of the calculated radius R is output to the display 47 and the numerical value is displayed. Further, in step S12, it is judged whether or not the record in the code register is "1". In this case, since it is "1", "-" on the display 47 in step S13.
Turn off the display of the sign of. Then, step S1 and subsequent steps are repeated again.

【0021】上記ステップS2の判別結果が正でない場
合、ステップS5において上記変位Hが負か否かを判別
する。負の場合、ステップS6において、RAM46に設
定する符号レジスタに、曲がり部が図8の(C)に示す
場合のように凹であることを区分する為の「0」を記録
する。次にステップS7において上記変位Hの絶対値を
とり符号をマイナスからプラスに変換する。然る後ステ
ップS8において図示の演算式に基づき半径Rを演算す
る。この場合、「+2H・R0」の項が間隔Lに対する
補正項として機能する。その後はステップS11以降を
行う。この場合、ステップS12の判別は否となるので
ステップS14を行い、「−」の符号を表示器47に表示
させる。
If the determination result in step S2 is not positive, it is determined in step S5 whether the displacement H is negative. If it is negative, in step S6, "0" for discriminating that the bent portion is concave as in the case shown in FIG. 8C is recorded in the code register set in the RAM 46. Next, in step S7, the absolute value of the displacement H is taken and the sign is converted from minus to plus. Then, in step S8, the radius R is calculated based on the calculation formula shown. In this case, the term “+ 2H · R 0 ” functions as a correction term for the interval L. After that, step S11 and subsequent steps are performed. In this case, since the determination in step S12 is negative, step S14 is performed and the sign "-" is displayed on the display 47.

【0022】上記ステップS2の判別結果が正でなくし
かもステップS5の判別結果も負でない場合(変位Hが
0の場合)は、ステップS9において、曲がり部の半径
が無限大であることの表示として半径Rを「EEE」と
設定し、ステップS10において符号レジスタに「1」
を記録する。その後はステップS11,S12,S13
を行う。
If the result of the determination in step S2 is not positive and the result of the determination in step S5 is not negative (displacement H is 0), then in step S9, an indication that the radius of the bend is infinite is made. The radius R is set to "EEE", and the code register is set to "1" in step S10.
To record. After that, steps S11, S12, S13
I do.

【0023】上記構成のR測定器にあっては、変位セン
サ6として差動トランスを用いているので、当接部28の
変位に対して検出アンプ42の出力電圧は図5に示すよう
に直線的に比例関係で得ることが出来る。例えばプラス
4mmからマイナス5.2mm程度までの当接部28の変
位に対して、プラス4ボルトからマイナス5.2ボルト
程度まで直線的に変化する出力電圧を得ることが出来
る。従ってその出力電圧に基づく上記のような演算が容
易である。
In the R measuring device having the above construction, since the differential transformer is used as the displacement sensor 6, the output voltage of the detection amplifier 42 is linear with respect to the displacement of the contact portion 28 as shown in FIG. Can be obtained in a proportional relationship. For example, it is possible to obtain an output voltage that linearly changes from plus 4 volts to minus 5.2 volts with respect to the displacement of the contact portion 28 from plus 4 mm to minus 5.2 mm. Therefore, the above calculation based on the output voltage is easy.

【0024】上記構成のR測定器にあっては、球体20は
その外郭線25の前面部25dのみでなく内側面部25cも大
きく露出させてあるので、凸形状の曲がり部において大
から小まで広い範囲の曲率半径の測定が出来る。即ち図
8の(A)のように半径Rが大きい(例えば12mm)
凸形状の曲がり部51のみでなく、(B)のように半径R
の小さい(例えば3mm)凸形状の曲がり部52の曲率半
径の測定も行うことが出来る。又上記球体20は外郭線25
の外側面部25bも大きく露出させてあるので、凹形状の
曲がり部においても同様の測定が出来る。即ち、(C)
のように半径Rが大きい(例えば18mm)凹形状の曲
がり部53のみでなく、(D)のように半径Rの小さい
(例えば7mm)の凹形状の曲がり部54の曲率半径の測
定も行うことが出来る。
In the R measuring device having the above-mentioned structure, the spherical body 20 has a large exposed not only the front surface portion 25d of the outer line 25 but also the inner side surface portion 25c, so that the convex curved portion is wide from large to small. The radius of curvature of the range can be measured. That is, as shown in FIG. 8A, the radius R is large (for example, 12 mm).
Not only the convex bend 51, but also the radius R as shown in (B)
It is also possible to measure the radius of curvature of the convex curved portion 52 having a small size (for example, 3 mm). Also, the sphere 20 has an outer line 25
Since the outer side surface portion 25b of the above is also largely exposed, the same measurement can be performed in the concave curved portion. That is, (C)
The radius of curvature of not only the concave curved portion 53 having a large radius R (for example, 18 mm) as shown in (1) but also the concave curved portion 54 having a small radius R (for example, 7 mm) as shown in (D) should be measured. Can be done.

【0025】次に、上記球体20の半径R0が小さい場
合、或いは曲がり部の曲率の中心に対して、曲がり部に
対する当接部28の接触点(中心28aが接触する点)と、
曲がり部に対する球体20の接触点との成す角度が小さい
場合(例えば10゜程度以下の場合)等、上記の検出し
た変位Hを基にする演算によって求められる半径Rの誤
差(上記検出される変位Hにはセンサの精度に応じた誤
差が含まれ、従って演算により得られる半径Rの値に
は、上記センサの誤差に対応する誤差が含まれる)の程
度が、上記半径R0を演算に入れないことによる誤差よ
りも大きくなる場合や、或いは必要とする測定精度が元
々低くて良い場合には、ROM45に記録する演算式は
「2H・R0」の項を省略しても良い。そのようにする
と上記ステップS4及びステップS8における演算の高
速化が可能となり、球体20及び当接部28を測定したい曲
がり部に宛がってから演算結果が表示器に表示されるま
での時間を短くすることが出来る。
Next, when the radius R 0 of the sphere 20 is small, or with respect to the center of curvature of the curved portion, the contact point of the contact portion 28 with respect to the curved portion (the point where the center 28a contacts) is as follows:
When the angle between the curved portion and the contact point of the sphere 20 is small (for example, about 10 ° or less), the error of the radius R obtained by the calculation based on the above detected displacement H (the above detected displacement) the H includes error corresponding to the accuracy of the sensor, thus the value of the radius R obtained by calculating the degree of include errors corresponding to the errors of the sensor) is placed the radius R 0 in the calculation In the case where the error becomes larger than the error due to the absence, or when the required measurement accuracy is originally low, the term “2H · R 0 ” may be omitted from the arithmetic expression recorded in the ROM 45. By doing so, it is possible to speed up the calculation in the above steps S4 and S8, and it is possible to reduce the time from when the sphere 20 and the contact portion 28 are directed to the curved portion to be measured until the calculation result is displayed on the display. Can be shortened.

【0026】次に上記R測定器にあっては、図9に示す
ように変位センサとして前記差動トランスに代えて周知
の容量式変位センサ61を用い、そのセンサに対応して前
記差動トランス用検出アンプに代えて容量式変位センサ
用検出アンプ62を用いても良い。その場合、上記容量式
変位センサ61は検出する変位と出力信号との関係が非直
線なので、その非直線の信号を直線にする為のリニアラ
イザ63を用いる。又上記センサとしては上記容量式変位
センサに代えてインダクタンス式変位センサを用い、検
出アンプとしてインダクタンス式変位センサ用検出アン
プを用いても良い。なお、機能上前図のものと同一又は
均等の構成で説明が重複すると考えられる部分には、前
図と同一の符号にアルファベットのeを付して重複する
説明を省略した。
In the R measuring device, as shown in FIG. 9, a known capacitive displacement sensor 61 is used as the displacement sensor instead of the differential transformer, and the differential transformer corresponding to the sensor is used. The capacitance type displacement sensor detection amplifier 62 may be used in place of the use type detection amplifier. In this case, the capacitance type displacement sensor 61 has a non-linear relationship between the detected displacement and the output signal. Therefore, the linearizer 63 is used to make the non-linear signal a straight line. An inductance type displacement sensor may be used as the sensor instead of the capacitance type displacement sensor, and an inductance type displacement sensor detection amplifier may be used as the detection amplifier. In addition, for the parts which are functionally the same as or equivalent to those in the previous figure and are considered to be redundant, the same reference numerals as those in the previous figure are appended with the letter e, and the redundant description is omitted.

【0027】次に図10〜図12に示される実施例につ
いて説明する。この例は接触子18をベース15とは別体に
形成しそれをベース15に取付けるようにしている。80は
ベース15における接触子18の取付部で、有底の丸孔を例
示する。接触子18において球体20を支える為のベースと
なる基体19は硬質で又導電性のある材料例えば鉄やステ
ンレスでもって形成する。81は基体19において球体20を
支承する為の本体部で、丸棒状に形成しており、先端部
82は球体20を被測定物に宛がう際に邪魔にならぬよう先
細り状に形成してある。83は本体部81の後端の端面を示
し、ベース15に対し接触子18を取付ける際の位置決用の
基準面となっている。84は基体19の後端部を示し、上記
取付部80への止着部となっており、そこへの取付の為に
取付部80の内径に対応する外形の丸棒状に形成してい
る。又球体20において、20aは中央部であって、球体20
のうちの基体19の軸線19c方向の中央部(球体20の球心
を含む部分)を示し、該部分20aの外周の表面が、前記
外側面間の寸法又は内側面間の寸法をマイクロメータそ
の他の測定器で測定する為に用いる部分となっている。
20bは上記中央部20aよりも反基体19側の先側半球部を
示し、その外表面が曲率半径の測定の為に被測定物に当
接させる為の面となっている。20cは上記中央部20aよ
りも基体19側の元側半球部を示す。この部分20cは上記
寸法測定や曲率半径測定には利用されない部分である。
Next, the embodiment shown in FIGS. 10 to 12 will be described. In this example, the contact 18 is formed separately from the base 15 and is attached to the base 15. Reference numeral 80 denotes a mounting portion of the contact 18 on the base 15, which is a round hole having a bottom. The base body 19 serving as a base for supporting the sphere 20 in the contactor 18 is formed of a hard and conductive material such as iron or stainless steel. Reference numeral 81 denotes a main body for supporting the sphere 20 in the base body 19, which is formed in a round bar shape and has a tip end portion.
Numeral 82 is formed in a tapered shape so as not to interfere when the sphere 20 is applied to the object to be measured. Reference numeral 83 denotes an end surface of the rear end of the main body 81, which serves as a reference surface for positioning when the contact 18 is attached to the base 15. Reference numeral 84 denotes a rear end portion of the base body 19, which is a fastening portion to the mounting portion 80, and is formed in a round bar shape having an outer shape corresponding to the inner diameter of the mounting portion 80 for mounting there. Further, in the sphere 20, 20a is the central portion,
Showing the central portion of the base body 19 in the direction of the axis 19c (the portion including the spherical center of the spherical body 20), and the outer peripheral surface of the portion 20a indicates the dimension between the outer surfaces or the dimension between the inner surfaces by a micrometer or the like. It is the part used for measuring with the measuring instrument.
Reference numeral 20b denotes a front hemispherical portion on the side closer to the base 19 than the central portion 20a, the outer surface of which is a surface for contacting the object to be measured in order to measure the radius of curvature. Reference numeral 20c indicates a base hemispherical portion closer to the base body 19 than the central portion 20a. This portion 20c is a portion that is not used for the above dimension measurement or curvature radius measurement.

【0028】次に上記接触子18の製造について説明す
る。図12に示す如く、基体19(正確には基体19となる
棒材)の先端19aの中心部に溶接の際に電流を集中させ
る為の凸部86を形成する。その大きさは、充分な電流集
中と、球体20と溶接した際の必要充分な接合強度が得ら
れるように決めると良い。一方、上記基体19とは別体形
成の球体20を準備する。該球体20としては例えば市販さ
れている既製の高精度の球体を利用することが出来る。
又、球体20を保持する為のホルダー87を準備する。該ホ
ルダー87は球体20への通電の為に導電性の良好な材料例
えば銅で形成したものを用いると良い。ホルダー87には
球体20を位置決する為の位置決部88例えば図示の如き凹
部を形成しておく。凹部88は例えば真っ直ぐな円孔に形
成し、底面88aと内周面88bとで球体20の位置決を行う
ようにする。その為には、球体20を圧入に近い状態で凹
部88に嵌入させ得るよう凹部88の内径を球体20の直径例
えば1.5mm(2mmの場合もある)よりも僅かに小さい
1.45mm程度(球体20が2mmの場合1.95mm程度)
に形成すると良い。
Next, the manufacture of the contact 18 will be described. As shown in FIG. 12, a convex portion 86 for concentrating the electric current during welding is formed at the center of the tip 19a of the base body 19 (more precisely, the bar material that becomes the base body 19). The size should be determined so that sufficient current concentration and necessary and sufficient joint strength when welding to the sphere 20 can be obtained. On the other hand, a sphere 20 formed separately from the base body 19 is prepared. As the sphere 20, for example, a commercially available, high-precision sphere can be used.
Further, a holder 87 for holding the sphere 20 is prepared. The holder 87 is preferably made of a material having good conductivity, such as copper, for energizing the sphere 20. A positioning portion 88 for positioning the sphere 20 is formed in the holder 87, for example, a recess as shown in the drawing. The concave portion 88 is formed, for example, in a straight circular hole so that the sphere 20 can be positioned by the bottom surface 88a and the inner peripheral surface 88b. For that purpose, the inner diameter of the recess 88 is slightly smaller than the diameter of the ball 20, for example, 1.5 mm (sometimes 2 mm), which is approximately 1.45 mm (so that the ball 20 can be fitted into the recess 88 in a state close to press fitting). (If the sphere 20 is 2 mm, about 1.95 mm)
It is good to form it.

【0029】上記基体19と球体20とは図示外の周知の溶
接用の保持具により、基体19と球体20との芯が揃うよう
に即ち基体19の軸線19cが球体20の中心を通るように保
持し、図11の如く基体19の先端19aと球体20とを接触
させる。例えば球体20を基準にしてそこに先端19aの凸
部86を押し付ける。押し付け力は適正な溶接が出来るよ
う基体19や球体20の材質或いは寸法に応じて決めると良
く、例えば5kgf程度である。尚図において95は上記先
端19aと球体20との接触部を示す。上記のように保持し
た状態において、球体20は前記した中央部20a、先側半
球部20b、元側半球部20cが決まる。
The base body 19 and the sphere 20 are held by a well-known holder for welding (not shown) so that the cores of the base body 19 and the sphere 20 are aligned, that is, the axis 19c of the base body 19 passes through the center of the sphere body 20. Then, as shown in FIG. 11, the tip 19a of the base 19 and the sphere 20 are brought into contact with each other. For example, the convex portion 86 of the tip 19a is pressed against the sphere 20 as a reference. The pressing force may be determined according to the material or size of the base body 19 or the spherical body 20 so that proper welding can be performed, and is about 5 kgf, for example. In the figure, reference numeral 95 indicates a contact portion between the tip 19a and the sphere 20. In the state in which the sphere 20 is held as described above, the central portion 20a, the front hemisphere portion 20b, and the former hemisphere portion 20c of the sphere 20 are determined.

【0030】次に上記保持状態において、溶接用の通電
回路90から上記基体19と球体20との接触部95に通電し、
両者19,20をその接触部95において溶接する。上記通電
は上記ホルダー87を通して行う。通電回路90は、溶接用
の電力を蓄積する為のコンデンサ91(容量は例えば1280
00μF)と、コンデンサ91からの溶接用の電流を開閉す
るためのスイッチ手段92と、上記コンデンサ91を充電す
る為の直流電源93と直流電源93からコンデンサ91への充
電電流を開閉する為のスイッチ94を備える。上記スイッ
チ手段92としては半導体スイッチ例えばSCRを用いる
と良い。上記直流電源93としては、例えば出力電圧30
〜40Vで、コンデンサ91に蓄積する溶接用の電力の電
圧を変更してコンデンサ91からの溶接電流を変更出来る
よう電圧可変のものを用いている。
Next, in the holding state, the energizing circuit 90 for welding energizes the contact portion 95 between the base 19 and the sphere 20,
Both 19 and 20 are welded at the contact portion 95. The energization is performed through the holder 87. The energizing circuit 90 includes a capacitor 91 (capacity is, for example, 1280) for accumulating welding power.
00 μF), a switch means 92 for opening and closing the welding current from the capacitor 91, a DC power source 93 for charging the capacitor 91, and a switch for opening and closing the charging current from the DC power source 93 to the capacitor 91. With 94. A semiconductor switch such as an SCR may be used as the switch means 92. As the DC power source 93, for example, an output voltage of 30
A variable voltage type is used so that the voltage of welding power accumulated in the capacitor 91 can be changed at -40V to change the welding current from the capacitor 91.

【0031】上記通電は次のように行う。先ずスイッチ
94を閉じてコンデンサ91に溶接用の電力を充電する。次
にスイッチ94を開き、スイッチ手段92を閉じる。すると
コンデンサ91からは溶接用の瞬間的に大きな電流が、ス
イッチ手段92、基体19の本体部81、凸部86、凸部86と球
体20との接触部95、球体20、球体20において位置決部88
の底面88aと接触する先側半球部20bの先端部20b'及び
内周面88bと接触する中央部20aの外周表面20a'、ホル
ダー87の位置決部88において上記各部20b',20a'と夫々
接触する部分、ホルダー87の内部を順に通ってコンデン
サ91に戻る経路で流れる。上記通電により接触部95が溶
接される。即ち、上記電流が流れることにより上記接触
部95が発熱し溶融する。例えば本例の場合、細径に形成
された凸部86に電流が集中する為そこが確実に溶融す
る。上記凸部86の溶融により上記の如く相互に圧接され
ている基体19と球体20とは図13に示す如き状態とな
る。上記通電はコンデンサ91の放電によって短時間で終
了し、それが終了すると上記溶融した接触部95が冷えて
固化し、図13に示す状態で基体19と球体20とは一体化
する。
The above energization is performed as follows. First switch
94 is closed and the capacitor 91 is charged with electric power for welding. Next, the switch 94 is opened and the switch means 92 is closed. Then, a momentary large current for welding from the capacitor 91 is positioned at the switch means 92, the main body 81 of the base body 19, the convex portion 86, the contact portion 95 between the convex portion 86 and the spherical body 20, the spherical body 20, and the spherical body 20. Part 88
Tip 20b 'of the front hemispherical portion 20b that contacts the bottom surface 88a of the front side, outer peripheral surface 20a' of the central portion 20a that contacts the inner peripheral surface 88b, and the above-mentioned respective portions 20b ', 20a' in the positioning portion 88 of the holder 87, respectively. It flows in a path that passes through the contacting portion and the inside of the holder 87 in order and returns to the condenser 91. The contact portion 95 is welded by the energization. That is, when the current flows, the contact portion 95 generates heat and melts. For example, in the case of this example, since the current concentrates on the convex portion 86 formed to have a small diameter, that portion surely melts. Due to the melting of the convex portion 86, the base body 19 and the spherical body 20 pressed against each other as described above are in a state as shown in FIG. The energization is completed in a short time by discharging the capacitor 91, and when the energization is completed, the melted contact portion 95 is cooled and solidified, and the base body 19 and the sphere 20 are integrated in the state shown in FIG.

【0032】上記通電の場合において、球体20とホルダ
ー87との間の通電は、上記のように球体20の中央部20a
の外周表面20a'と先側半球部20bの先端部20b'との両方
で行われるが、特に外周表面20a'は球体20の全周に及ぶ
ため比較的大きな通電面積があり、従ってそれらの通電
が行われる部分20a',20b'での電流密度は比較的小さ
く、それらの部分20a',20b'の表面の荒れを防止でき
る。このことは、それらの部分20a',20b'の表面の高寸
法精度の維持に有益である。特に上記電流はその大部分
が、球体の全周であるが為に通電面積の大きくなってい
る外周表面20a'を流れる為、先端部20b'の電流は少なく
その部分の表面の荒れは殆ど生じない。このことは測定
の際のゼロ調操作などにおいて最も頻繁に利用する球体
20の先側半球部20bの先端部20b'の表面の寸法精度保持
に有益である。又上記のように主たる通電が中央部20a
の外周表面20a'で行われる為、球体20において測定に用
いる先側半球部20bの表面は実質的に荒れが全く生ぜ
ず、R測定器用として高品質の接触子18の提供が出来
る。
In the case of the above energization, the energization between the sphere 20 and the holder 87 is carried out as described above by the central portion 20a of the sphere 20.
Is performed on both the outer peripheral surface 20a 'and the tip portion 20b' of the front hemispherical portion 20b. Especially, since the outer peripheral surface 20a 'covers the entire circumference of the sphere 20, there is a relatively large energizing area, and therefore, the energizing The current density in the portions 20a ', 20b' where the heat treatment is performed is relatively small, and the surface roughness of those portions 20a ', 20b' can be prevented. This is useful for maintaining high dimensional accuracy of the surfaces of those portions 20a ', 20b'. In particular, most of the above current flows on the outer peripheral surface 20a 'where the energization area is large because it is the entire circumference of the sphere, so the current at the tip portion 20b' is small and the surface of that portion is rough. Absent. This is the sphere most frequently used for zero adjustment operations during measurement.
This is useful for maintaining the dimensional accuracy of the surface of the tip portion 20b 'of the front hemisphere portion 20b of 20. In addition, as described above, the main current is the central portion 20a.
Since it is performed on the outer peripheral surface 20a ', the surface of the front hemisphere portion 20b used for measurement in the sphere 20 is not substantially roughened, and a high quality contactor 18 for an R measuring instrument can be provided.

【0033】上記のようにして基体19と球体20の溶接を
終えたならばそれらを保持具から外し、基体19における
本体部81の先端部82及び止着部84を切削加工して、接触
子18を完成させる。尚上記切削加工の場合、球体20の中
心を基準にして基体19の芯出しを行うと、上記溶接の場
合に基体19と球体20を保持した際の相互の位置精度が低
くても、上記芯出し状態での切削により高精度の接触子
18を完成させることが出来る。又上記切削は、図10に
示す基準面83から球体20の先端20b'までの寸法L1が所定
寸法となるように行うと、上記溶接の際の接触部95の溶
け寸法に多少のばらつきがあっても、長さに関しての精
度の高い接触子18を完成させることが出来る。
When the base body 19 and the sphere 20 are welded as described above, they are removed from the holder, and the tip end portion 82 and the fastening portion 84 of the main body portion 81 of the base body 19 are cut to make contact pieces. Complete 18. In the case of the cutting process, if the base body 19 is centered with the center of the sphere 20 as a reference, even if the mutual positional accuracy when holding the base body 19 and the sphere 20 in the case of welding is low, the core High-precision contact by cutting in the extended state
18 can be completed. Further, if the cutting is performed so that the dimension L1 from the reference surface 83 shown in FIG. 10 to the tip 20b 'of the sphere 20 becomes a predetermined dimension, there is some variation in the melting dimension of the contact portion 95 during the welding. However, it is possible to complete the contactor 18 with high accuracy in terms of length.

【0034】上記のように完成した接触子18のベース15
に対する取付は、基準面83がベース15に圧接する状態と
なるまで止着部84を取付部80に圧入することで行う。こ
の場合接着手段例えば接着剤或いはロウ付けを併用した
り、それらの接着手段のみで取付を行っても良い。尚上
記ベース15と接触子18の基体19とは一材で構成しても良
い。その場合、ベース15と基体19の境界となる符号83で
示される部分を本件明細書中では止着部とも呼ぶ。又上
記のような方法による接触子の製造は、その他の測定器
例えば三次元測定器の測定子における接触子の製造にお
いて行っても良い。
The base 15 of the contact 18 completed as described above
The attachment is performed by pressing the fastening portion 84 into the attachment portion 80 until the reference surface 83 comes into a state of being pressed against the base 15. In this case, adhesive means such as an adhesive or brazing may be used together, or the attachment may be performed by only those adhesive means. The base 15 and the base 19 of the contact 18 may be made of one material. In that case, the portion indicated by reference numeral 83, which is the boundary between the base 15 and the base body 19, is also referred to as a fastening portion in the present specification. Further, the manufacturing of the contactor by the method as described above may be carried out in the manufacturing of the contactor in the measuring element of another measuring instrument, for example, a three-dimensional measuring instrument.

【0035】次に本願の異なる実施例を説明する。上記
基体19は、図13に示す如く予め所定の形状に仕上げて
おき、それの先端19aに球体20を溶接することによって
接触子18を完成させても良い。
Next, a different embodiment of the present application will be described. The base body 19 may be finished in a predetermined shape in advance as shown in FIG. 13, and the contact piece 18 may be completed by welding the sphere 20 to the tip 19a of the base body 19.

【0036】図14はホルダー87における位置決部88の
形状の異なる例を示すもので、多数の球体20の保持に繰
り返し用いて内周面88bがやや磨耗しても球体20を正し
く位置決できるようにする為に、内周面88bを下部ほど
細径になるテーパー状にした例を示すものである。
FIG. 14 shows an example in which the positioning portion 88 of the holder 87 has a different shape, and can be repeatedly used to hold a large number of spheres 20 to correctly position the sphere 20 even if the inner peripheral surface 88b is slightly worn. In order to do so, an example is shown in which the inner peripheral surface 88b is tapered so that the lower portion has a smaller diameter.

【0037】図15はホルダー87の構造の異なる例を示
すもので、球体20の外表面の内、前記外側面間の寸法又
は内側面間の寸法の測定や曲率半径の測定に不要な元側
半球部20cの外表面においてホルダー87と球体20との間
の通電を行うようにして、上記のような測定に使用する
側の先側半球部20bの外表面及び中央部20aの外周表面
20a'を無傷の状態に保って基体19と球体20との溶接を行
うことが出来るようにすることを目的とするものであ
る。図において、ホルダー87は球体20を支える為の受部
材96と球体20を押えるための一対の押え部材97a,97b
とにより構成している。一方の押え部材97bは矢印方向
に可動に構成し(両部材97a,97b共に可動でも良
い)、それらの部材97a,97bには球体20において元側
半球部20cとなる部分に接触させる為に下向きのテーパ
ー状に形成した位置決部98a,98bを、相互に補完して
完全な一つの位置決部となる状態に備えさせている。こ
のようなホルダー87では、一方の押え部材97bを他方の
押え部材97aから退避させ、受部材96の上に球体20を乗
せ、上記退避させた押え部材97bを元に戻すことにより
球体20を保持させる。球体20の保持状態において、位置
決部98a,98bは球体20の外表面の内の元側半球部20c
の外表面に接触し、そこを通じて球体20との通電を行
う。
FIG. 15 shows a different example of the structure of the holder 87. Of the outer surface of the sphere 20, the outer side of the sphere 20 is not necessary for measuring the dimension between the outer surfaces or the inner surface or the radius of curvature which is not necessary. The outer surface of the hemispherical portion 20c is energized between the holder 87 and the spherical body 20, and the outer surface of the front hemispherical portion 20b and the outer peripheral surface of the central portion 20a on the side used for the above-described measurement.
The purpose of the present invention is to enable welding of the base 19 and the sphere 20 while keeping 20a 'intact. In the figure, a holder 87 includes a receiving member 96 for supporting the sphere 20 and a pair of holding members 97a, 97b for holding the sphere 20.
It consists of: One pressing member 97b is configured to be movable in the direction of the arrow (both members 97a and 97b may be movable), and these members 97a and 97b face downward in order to come into contact with the portion of the spherical body 20 that will become the original hemisphere portion 20c. The tapered positioning portions 98a and 98b are provided so as to complement each other to form a complete positioning portion. In such a holder 87, one pressing member 97b is retracted from the other pressing member 97a, the sphere 20 is placed on the receiving member 96, and the retracted pressing member 97b is returned to hold the sphere 20. Let In the holding state of the sphere 20, the positioning portions 98a and 98b are located in the original hemisphere portion 20c of the outer surface of the sphere 20.
The outer surface of the sphere 20 is brought into contact therewith, and electricity is supplied to the sphere 20 therethrough.

【0038】図16はホルダー87の構造の更に異なる例
を示すもので、多数の球体20の保持に繰り返し用いるこ
とによって位置決部88の内周面が磨耗した場合に、一部
の要素の取り替えのみによってホルダー87の更新が出来
るようにすることを目的とするものであり、図におい
て、ホルダー87は受け台100とそこに取り替え自在に装
着した保持要素101とで構成し、保持要素101に位置決部
88を備えさせている。上記受け台100は例えば鉄製であ
り、一方保持要素101は例えば厚みが1.5mm程度の銅
板製である。溶接用の通電回路との接続は、例えば受け
台100を上記通電回路に接続して、受け台100から保持要
素101を通して球体20への通電を行うが、保持要素101を
上記通電回路に接続して、直接に保持要素101から球体2
0に行っても良い。上記のようなホルダー87では、位置
決部88の孔径が大きくなって球体20が受け台100に当接
するようになったならば、保持要素101を新しいものと
取り替える。
FIG. 16 shows a further different example of the structure of the holder 87. When the inner peripheral surface of the positioning portion 88 is worn by repeatedly using it for holding a large number of spheres 20, some elements are replaced. The purpose is to allow the holder 87 to be updated only by itself, and in the figure, the holder 87 is composed of a pedestal 100 and a holding element 101 that is replaceably mounted on the pedestal 100, and is located at the holding element 101. Deciding part
Equipped with 88. The pedestal 100 is made of, for example, iron, while the holding element 101 is made of, for example, a copper plate having a thickness of about 1.5 mm. For connection with the energizing circuit for welding, for example, by connecting the pedestal 100 to the energizing circuit and energizing the sphere 20 from the pedestal 100 through the holding element 101, the holding element 101 is connected to the energizing circuit. Directly from the holding element 101 to the sphere 2
You can go to 0. In the holder 87 as described above, when the hole diameter of the positioning portion 88 becomes large and the sphere 20 comes into contact with the pedestal 100, the holding element 101 is replaced with a new one.

【0039】[0039]

【発明の効果】以上のように本願発明にあっては、R測
定器に用いた場合、長寿命に利用することが出来る接触
子18を製造出来る効果がある。即ち本願発明では基体19
の先端に球体20を付設した接触子18を製造出来るので、
該接触子18をR測定器に用いた場合、被測定物に当接さ
せたときの当接部分自身の磨耗を生じ難くできる。又、
球体20はその先側半球部20bが完全露出の状態になるの
で、大きい曲率半径の測定を行う場合も又小さい曲率半
径の測定を行う場合も先側半球部20bにおいて夫々相手
の被測定物に応じて異なる部位をそれらの被測定物に当
接させることが出来、球体20の表面の局部的な磨耗を生
じ難くできる。これらのことは、該接触子18を長寿命に
利用することを可能にする効果がある。しかも上記のよ
うに球体20を用いるものであっても、その製造は基体19
の先端19aに対して球体20を接触させてその接触部95を
溶接するので、球体20において基体19と接合は球体20に
おいて曲率半径の測定に不要となる側で行われ、曲率半
径の測定に必要不可欠な側(先側半球部20b)は無傷の
状態に保つことが出来、上記測定にぴったりと適合した
接触子18を提供できる効果がある。その上、上記のよう
に基体19の先端19aに対して球体20を接触させてその接
触部95を溶接するのみであるので、その作業は非常に容
易で簡単に行うことが出来る作業上の効果がある。
As described above, according to the present invention, when used in the R measuring device, there is an effect that the contactor 18 which can be used for a long life can be manufactured. That is, in the present invention, the base 19
Since it is possible to manufacture the contactor 18 with the sphere 20 attached to the tip of,
When the contactor 18 is used in the R measuring device, it is possible to prevent abrasion of the contact portion itself when the contact portion 18 is brought into contact with the object to be measured. or,
Since the front hemispherical portion 20b of the sphere 20 is completely exposed, the front hemispherical portion 20b will be exposed to the object to be measured in both the large radius radius measurement and the small radius radius measurement. Accordingly, different parts can be brought into contact with those objects to be measured, and local abrasion of the surface of the sphere 20 can be made less likely to occur. These have the effect that the contactor 18 can be used for a long life. Moreover, even if the sphere 20 is used as described above, the manufacture of the base 19
Since the sphere 20 is brought into contact with the tip 19a of the sphere 20 and the contact portion 95 is welded, the base 19 is joined to the sphere 20 on the side of the sphere 20 which is unnecessary for the measurement of the radius of curvature. The indispensable side (front hemisphere 20b) can be kept intact, providing the contact 18 fitted exactly to the above measurements. Moreover, since the sphere 20 is only brought into contact with the tip 19a of the base 19 and the contact portion 95 is welded as described above, the work is very easy and can be easily performed. There is.

【図面の簡単な説明】[Brief description of drawings]

【図1】検出器の縦断面及びそれと演算表示装置との関
係を示す図。
FIG. 1 is a diagram showing a longitudinal section of a detector and a relationship between the detector and a calculation display device.

【図2】検出ヘッドの前端部を示す半断面図。FIG. 2 is a half sectional view showing a front end portion of a detection head.

【図3】検出ヘッドの前端部の底面図。FIG. 3 is a bottom view of the front end portion of the detection head.

【図4】図2におけるIV−IV線断面図。FIG. 4 is a sectional view taken along line IV-IV in FIG. 2;

【図5】測定子の変位と差動トランス用検出アンプの出
力との関係を示すグラフ。
FIG. 5 is a graph showing the relationship between the displacement of the tracing stylus and the output of the differential transformer detection amplifier.

【図6】R測定器のブロック回路図。FIG. 6 is a block circuit diagram of an R measuring device.

【図7】R測定器の動作を示すフローチャート。FIG. 7 is a flowchart showing the operation of the R measuring device.

【図8】(A)〜(D)は種々の形状の曲がり部に対し
て夫々検出ヘッドを宛がった場合の状態を示す図。
FIG. 8A to FIG. 8D are diagrams showing a state in which the detection heads are respectively applied to the bent portions of various shapes.

【図9】R測定器の回路の異なる例を示すブロック回路
図。
FIG. 9 is a block circuit diagram showing a different example of the circuit of the R measuring device.

【図10】(A)はR測定器の本体の先端部を示す一部
破断図、(B)は基体を判断面にして示す接触子の正面
図。
FIG. 10A is a partially cutaway view showing the tip of the main body of the R measuring instrument, and FIG. 10B is a front view of the contactor with the substrate as a judgment surface.

【図11】基体と球体の溶接状態を示す図。FIG. 11 is a view showing a welded state of a base body and a sphere.

【図12】基体と球体を溶接した直後の状態を示す図。FIG. 12 is a view showing a state immediately after welding a base body and a sphere.

【図13】基体を予め所定の形状に形成してから基体と
球体とを接合する場合の例を示す図。
FIG. 13 is a view showing an example of a case where a base body is previously formed into a predetermined shape and then the base body and the sphere are joined.

【図14】球体のホルダーの異なる例を示す縦断面図。FIG. 14 is a vertical sectional view showing another example of a spherical holder.

【図15】(A)は球体のホルダーの更に異なる例を示
す縦断面図、(B)は同平面図。
15A is a vertical cross-sectional view showing a further different example of a spherical holder, and FIG. 15B is a plan view of the same.

【図16】球体のホルダーの他の異なる例を示す図。FIG. 16 is a view showing another different example of the spherical holder.

【図17】従来のR測定器の使用状態を示す図。FIG. 17 is a diagram showing a usage state of a conventional R measuring device.

【図18】従来のR測定器において接触子が磨耗した状
態での使用状態を示す図。
FIG. 18 is a diagram showing a usage state in a state where a contact is worn in a conventional R measuring device.

【符号の説明】[Explanation of symbols]

19 基体 20 球体 19 Base 20 Sphere

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 後端部がR測定器のベースへの止着部と
なっている基体の先端に、被測定物に当接させる為の球
体を付設した接触子を製造するに当たっては、基体の先
端と、別体に形成された球体とを接触させ、その両者の
接触部を通して基体と球体間において通電して、両者を
その接触部において溶接することを特徴とするR測定器
の接触子の製造方法。
1. When manufacturing a contactor having a spherical body for abutting against an object to be measured attached to the front end of the base body whose rear end portion is a fixing portion to the base of the R measuring device, The contactor of the R measuring device, characterized in that the tip of the sphere and a sphere formed separately are brought into contact with each other, electricity is applied between the base body and the sphere through the contact portions of the two, and both are welded at the contact portion. Manufacturing method.
【請求項2】 基体の先端に、被測定物に当接させる為
の球体を付設した接触子を製造するに当たっては、基体
の先端と、別体に形成された球体とを接触させ、その両
者の接触部を通して基体と球体間において通電して、両
者をその接触部において溶接することを特徴とする接触
子の製造方法。
2. When manufacturing a contactor in which a sphere for contacting an object to be measured is attached to the tip of a base, the tip of the base and a sphere formed separately are brought into contact with each other. A method for manufacturing a contact, characterized in that an electric current is applied between the base body and the sphere through the contact part, and both are welded at the contact part.
JP11933395A 1995-04-19 1995-04-19 Manufacture of contact of p measuring apparatus Pending JPH08285569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11933395A JPH08285569A (en) 1995-04-19 1995-04-19 Manufacture of contact of p measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11933395A JPH08285569A (en) 1995-04-19 1995-04-19 Manufacture of contact of p measuring apparatus

Publications (1)

Publication Number Publication Date
JPH08285569A true JPH08285569A (en) 1996-11-01

Family

ID=14758890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11933395A Pending JPH08285569A (en) 1995-04-19 1995-04-19 Manufacture of contact of p measuring apparatus

Country Status (1)

Country Link
JP (1) JPH08285569A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007090412A (en) * 2005-09-30 2007-04-12 Adachi Kakoki:Kk Precision processing machine
JP2014077746A (en) * 2012-10-12 2014-05-01 Mitsubishi Electric Corp Monitoring control system for servo valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007090412A (en) * 2005-09-30 2007-04-12 Adachi Kakoki:Kk Precision processing machine
JP2014077746A (en) * 2012-10-12 2014-05-01 Mitsubishi Electric Corp Monitoring control system for servo valve

Similar Documents

Publication Publication Date Title
JP2933658B2 (en) Equipment for digitizing tooth surfaces, especially for creating crowns
JPH08285569A (en) Manufacture of contact of p measuring apparatus
JP2007064798A (en) Digital calipers with acceptance determination function
CN212007033U (en) Portable precision measurement appearance of high stability
CN101373129B (en) Method and device for measuring pore diameter
JP3525072B2 (en) Micrometer
JP2570945Y2 (en) Force measuring device for resistance welding machine
JPH11183102A (en) Height measuring instrument and method for using it
JPH07318303A (en) Radius measuring device
CN212253980U (en) Automobile clearance measuring device
JP3079777B2 (en) Remote automatic film thickness measuring device in small diameter pipe
US4567672A (en) Coordinate measuring instrument
JP2000292114A (en) Position detector and contacting needle thereof
JPS5819503A (en) Size measuring device
CN2145977Y (en) Welding seam malposition detecting rule
CN214702060U (en) A general detection instrument for measuring external diameter in batches
JPS63131018A (en) Apparatus for measuring inner and outer diameters
JP3191726B2 (en) Stress measuring method and apparatus utilizing magnetostriction effect
CN217953405U (en) Digital display length measuring device
CN213714227U (en) Measuring needle frame of profile tolerance measuring instrument
JP2586899Y2 (en) Force measuring device for resistance welding machine
CN215572562U (en) Gauge for measuring position of lug hole of watch case
CN212133603U (en) Workbench and calibration device for calibration of torsional spring gauge type measuring tool calibration instrument
CN215064251U (en) Detection tool for 90-degree steel bar bending arc inner diameter
CN218723635U (en) Tractor stroke test tool

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040105

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040622